×
27.02.2015
216.013.2d53

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОДОВ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ С ТВЕРДЫМ ЭЛЕКТРОЛИТОМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электротехники, а именно к способу изготовления электродов электрохимических устройств с твердым электролитом. Снижение поляризационного сопротивления электрода, а также улучшение протекания электродных реакций газообмена является техническим результатом предложенного изобретения. Способ включает пропитку электрода раствором азотнокислого празеодима с его последующей термообработкой, при этом электрод однократно пропитывают раствором азотнокислого празеодима в этиловом спирте с концентрацией 0.3-2.0 мас.% PrO, после чего термообработку электрода ведут при нагреве со скоростью не более 50°С/час до температуры образования пленки оксида празеодима на границе «электрод/электролит». 1 табл.
Основные результаты: Способ изготовления электродов электрохимических устройств с твердым электролитом, включающий пропитку электрода раствором азотнокислого празеодима с его последующей термообработкой, отличающийся тем, что электрод однократно пропитывают раствором азотнокислого празеодима в этиловом спирте с концентрацией 0.3-2.0 масс.% PrO, термообработку электрода ведут при нагреве со скоростью не более 50°C/час до температуры образования пленки оксида празеодима на границе «электрод/электролит».

Изобретение относится к области электрохимической энергетики и может быть использовано при изготовлении электродов, работающих в окислительной атмосфере, применяемых в различных электрохимических устройствах с твердым электролитом, таких как топливные элементы, электролизеры, электрохимические насосы, датчики и т.п.

Важнейшее требование к электродам вышеуказанных устройств состоит в том, что они должны иметь малое поляризационное сопротивление, чтобы обеспечивать эффективную работу устройства. Один из способов уменьшения поляризационного сопротивления - активация электродов путем введения в него электрохимически активных добавок - активаторов.

Наиболее близким к заявляемому способу является способ изготовления электродов, работающих в окислительной атмосфере, применяемых для электрохимических устройств с твердым электролитом, известный из RU 2322730, опубл. 20.04.2008. Согласно этому способу, в сформированном двухслойном электроде распределен высокодисперсный нанопорошок PrO2-δ в количестве 7-10 масс.% по отношению к массе электрода.

Таким образом, необходимое уменьшение поляризационного сопротивления электродов для электрохимических устройств, достигается большим количеством активатора по отношению к массе электрода. Для введения в электрод большого количества активатора в процессе, включающем пропитку и прокаливание, нужно осуществлять неоднократную пропитку насыщенными концентрированными (около 40 масс.% в случае нитрата празеодима) растворами активатора, что нетехнологично. Ситуация усугубляется тем, что при пропитке электрода большими количествами активатора на его внешней поверхности образуется слой активатора, который затрудняет коммутацию электродов и который, в ряде случаев, нужно счищать, чтобы присоединить токоподвод. Кроме того, активатор, введенный в электрод в большом количестве, заполняет поры электрода, ухудшая газообмен, который важен для протекания электродных реакций с участием газов (кислород, водяной пар, CO2, водород, метан и т.д.) в устройствах с твердым электролитом. Таким образом, известный способ по прототипу нетехнологичен и отрицательно влияет на газообмен.

Задача настоящего изобретения состоит в разработке технологичного способа изготовления электродов в устройствах с твердым электролитом, позволяющим изготавливать малополяризуемые электроды, свободные от вышеперечисленных недостатков.

Для решения поставленной задачи способ изготовления электродов электрохимических устройств с твердым электролитом включает пропитку электрода раствором азотнокислого празеодима с последующей термообработкой, при этом электрод однократно пропитывают раствором азотнокислого празеодима в этиловом спирте с концентраций 0.3-2.0 масс.% в пересчете на оксид празеодима, термообработку ведут при нагреве со скоростью не более 50°С/час до температуры образования пленки оксида празеодима.

Введение в электрод в качестве активатора пленкообразующего спиртового раствора азотнокислого празеодима с последующей термообработкой при заявленных режимах, приводит к образованию на границе «электрод/электролит» пленки оксида празеодима, которая способствует резкому снижению поляризационного сопротивления электрода. При этом способ характеризуется повышенной технологичностью, обусловленной однократным нанесением раствора азотнокислого празеодима и позволяет избежать недостатков, вызванных введением в электрод большого количества активатора. Выбор интервала концентраций раствора азотнокислого празеодима (0.3-2.0 масс.% в пересчете на PrO1.83) обусловлен тем, что именно в этом интервале на границе «электрод/электролит» образуется пленка оксида празеодима с нужными характеристиками. При использовании раствора азотнокислого празеодима с концентрацией, меньшей 0.3 масс.% PrO1.83, образующаяся пленка слабо активирует электрод, а при концентрации раствора азотнокислого празеодима, превышающей 2.0 масс.% PrO1.83, пленка не образуется - покрытие распадается на отдельные кристаллики - порошинки и также слабо активирует электрод. Пропитанный в соответствии с заявленным способом, термически обработанный электрод содержит оксид празеодима в количестве 0.3-2.0 масс.%, что существенно меньше, чем в способе по прототипу.

Новый технический результат, достигаемый заявленным способом, заключается в снижении поляризационного сопротивления электрода при однократном введении в электролит малых количеств активатора, улучшении протекания электродных реакций газообмена, упрощении коммутации электродов.

Предлагаемый способ апробирован в лабораторных условиях в Институте высокотемпературной электрохимии УрО РАН. Эксперименты были проведены в одних и тех же условиях на электрохимических ячейках с твердым электролитом состава 0.9ZrO2+0.1Y2O3 (далее YSZ), на который были нанесены платиновые электроды. Для нанесения электродов использовали тонкоизмельченный порошок чистой платины в виде взвеси в спирте. Платиновые порошковые электроды наносили методом окрашивания на обе стороны круглых пластинок твердого электролита YSZ диаметром 10 мм и толщиной около 0.5 мм. Нанесенные электроды припекали на воздухе при температуре 1100°С. Операцию нанесения электродов на твердый электролит проводили дважды, результирующий электрод содержал количество платины около 15 мг/см2.

Активирование платиновых электродов производили, смачивая их пленкообразующим спиртовым раствором нитрата празеодима, с последующей термообработкой.

Эксперименты с использованием электронной микроскопии (растровый электронный микроскоп JSM 5900LV с энергодисперсионным спектрометром INCA ENERGY) показали, что пленки оксидов получаются только из пленкообразующих растворов, предельное содержание соли в которых (в пересчете на оксид празеодима) не превышает ~ 2.0 масс.%. При использовании насыщенных спиртовых растворов нитратов, указанных в прототипе, пленка на границе «электрод/электролит» не образуется ни при каких условиях термообработки электрода; покрытие распадается на отдельные кристаллики-порошинки.

Платиновые электроды, пропитанные спиртовым раствором нитратов празеодима, с концентрацией активатора 0.3-2.0 масс.% в пересчете на оксид празеодима, прокаливали на воздухе в двух режимах - при быстром нагреве (200°С/час), при котором пленка оксида-активатора не образуется, и при медленном нагреве (50°С/час), при котором пленка оксида-активатора образуется. Нагрев в обоих случаях вели до температуры 850°С, время выдержки при максимальной температуре составляло 1 час.

Сравнительные характеристики электродов изучали с помощью импедансметра «PARSTAT 2273» в области частот 0.1÷1 МГц при амплитуде сигнала 30 мВ. Измерения проводили в атмосфере воздуха в интервале температур 700÷500°С, который соответствует средним рабочим температурам электрохимических устройств с данными материалами.

В таблице приведены результаты сравнительных испытаний платиновых электродов:

1) неактивированных;

2) активированных растворами нитрата празеодима в режиме термообработки электрода, не образующим пленку активатора на границе «электрод/электролит»;

3) активированных растворами нитрата празеодима в режиме термообработки электрода, при котором образуется пленка активатора на границе «электрод/электролит»;

Испытания показали, что в интервале температур 700÷500°С неактивированный электрод имеет высокое поляризационное сопротивление, составляющее 700÷52000 Ом. Электрод, однократно пропитанный раствором азотнокислого празеодима в этиловом спирте с концентрацией, меньшей 0.3 масс.%, в пересчете на оксид празеодима с последующей термообработкой в интервале температур 700-500°С при медленном нагреве со скоростью 50°С/час, содержит оксид празеодима в количестве, меньшем 0.05 мг/см2. Пленка активатора при этом не образуется, улучшение характеристик электрода не происходит. Электрод, однократно пропитанный раствором азотнокислого празеодима в этиловом спирте с оптимальной концентрацией 0.3-2.0 масс.% PrO1.83 с последующей термообработкой в этом же интервале температур с такой же скоростью нагрева, содержит оксид празеодима в количестве 0.05-0.30 мг оксида празеодима на 1 см2 поверхности электрода. В этом случае на границе «электрод/электролит» образуется пленка активатора, и поляризационное сопротивление электрода резко уменьшается.

Из результатов этих испытаний следует, что предлагаемый способ имеет существенные преимущества по сравнению с прототипом. По этому способу достаточно однократного введения в электролит малых количеств активатора для образования на 1 см2 поверхности электрода 0.05-0.30 мг оксида празеодима, достаточного, чтобы при термообработке электрода нагревом со скоростью не более 50°С/час до температуры образования на границе «электрод/электролит» пленки оксида празеодима, достичь резкого снижения поляризационного сопротивления электрода. Малое количество введенного в электрод активатора меньше забивает его поры, что способствует лучшему протеканию электродных реакций газообмена. При этом на внешней поверхности электрода не образуется изолирующий слой, затрудняющий коммутацию электродов.

Таким образом, заявленный способ позволяет более технологично изготавливать малополяризуемые электроды, способствует лучшему протеканию электродных реакций газообмена и упрощению коммутации электродов.

Таблица
Температура, °С Поляризационное сопротивление электрода, Ом·см2
без активации с активацией 0.2 мг оксида/см2
без образования пленки с образованием пленки
700 0.7·103 1.2·103 0.5
600 7.8·103 8.3·103 1.7
500 52.0·103 75.0·103 18.0

Способ изготовления электродов электрохимических устройств с твердым электролитом, включающий пропитку электрода раствором азотнокислого празеодима с его последующей термообработкой, отличающийся тем, что электрод однократно пропитывают раствором азотнокислого празеодима в этиловом спирте с концентрацией 0.3-2.0 масс.% PrO, термообработку электрода ведут при нагреве со скоростью не более 50°C/час до температуры образования пленки оксида празеодима на границе «электрод/электролит».
Источник поступления информации: Роспатент

Показаны записи 31-40 из 97.
10.02.2015
№216.013.2325

Способ измерения кислородосодержания и влажности газа

Изобретение относится к аналитической технике и может быть использовано для измерения кислородосодержания и влажности газов. Способ измерения кислородосодержания и влажности газа. В поток анализируемого газа помещают электрохимическую ячейку с полостью, образованную двумя дисками из...
Тип: Изобретение
Номер охранного документа: 0002540450
Дата охранного документа: 10.02.2015
27.02.2015
№216.013.2c14

Способ изготовления пористых катодных материалов на основе манганита лантана-стронция

Изобретение относится к области электротехники, а именно к способу изготовления пористых катодных материалов на основе манганита лантана-стронция, и может быть использовано для изготовления твердооксидных топливных элементов (ТОТЭ), работающих при высоких температурах. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002542752
Дата охранного документа: 27.02.2015
20.04.2015
№216.013.42dc

Способ определения коэффициента диффузии горючих газов в азоте

Изобретение направлено на высокоточное измерение коэффициентов диффузии горючих газов в азоте или иных инертных газах в широком температурном диапазоне посредством кислородпроводящего твердого электролита. Способ заключается в пропускании электрического тока через электрохимическую ячейку,...
Тип: Изобретение
Номер охранного документа: 0002548614
Дата охранного документа: 20.04.2015
20.08.2015
№216.013.6f9b

Способ определения химического коэффициента обмена и химического коэффициента диффузии кислорода в оксидных материалах

Изобретение относится к физической химии и электрохимии твердых электролитов и может быть использовано для определения химического коэффициента обмена и химического коэффициента диффузии кислорода в оксидных материалах со смешанной электронной и кислород-ионной проводимостью. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002560141
Дата охранного документа: 20.08.2015
20.09.2015
№216.013.7bf0

Амперометрический способ измерения концентрации горючих газов в азоте

Изобретение направлено на возможность измерения горючего газа в смеси с азотом или другим инертным газом. Способ заключается в том, что в поток анализируемого горючего газа помещают электрохимическую ячейку с полостью, образованной герметично соединенными между собой двумя дисками из твердого...
Тип: Изобретение
Номер охранного документа: 0002563325
Дата охранного документа: 20.09.2015
20.11.2015
№216.013.92b2

Способ определения концентрации протонов в протон-проводящих оксидных материалах

Изобретение относится к физической химии и электрохимии твердых электролитов и может быть использовано для определения концентрации протонов в протон-проводящих оксидных материалах в атмосфере сухого водорода. Способ определения концентрации протонов в протон-проводящих оксидах заключается в...
Тип: Изобретение
Номер охранного документа: 0002569172
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.97e9

Способ получения тонкоплёночного твердого электролита для электрохимических устройств

Изобретение относится к области электротехники, а именно к получению оксидной пленки электролита толщиной, соизмеримой с размером пор материала электрода, более простым и технологичным, а также более экономичным способом, чем ионно-плазменный. Тонкую газоплотную оксидную пленку электролита...
Тип: Изобретение
Номер охранного документа: 0002570509
Дата охранного документа: 10.12.2015
27.01.2016
№216.014.bc91

Батарея элементов тепловых химических источников тока

Изобретение относится к области электротехники, а именно к термоактивируемым химическим источникам тока. Батарея содержит внутреннюю и внешнюю герметичные оболочки с полостью между ними и два слоя теплоизоляции, образующих корпус, в котором расположена сборка из электрохимических элементов,...
Тип: Изобретение
Номер охранного документа: 0002573860
Дата охранного документа: 27.01.2016
10.03.2016
№216.014.bf06

Способ тонкослойного электролитического получения свинца

Изобретение относится к способу получения свинца. Способ включает электролиз в расплаве галогенидов солей с использованием жидкометаллических катода и анода из чернового свинца. При этом электролиз ведут с использованием пропитанной расплавом галогенидов солей керамической диафрагмы,...
Тип: Изобретение
Номер охранного документа: 0002576409
Дата охранного документа: 10.03.2016
27.03.2016
№216.014.dd29

Электрохимический способ получения сложных гибридных каталитических систем на основе модифицированного углерода, содержащих на поверхности оксидные вольфрамовые бронзы

Изобретение относится к электрохимическому способу получения сложных гибридных каталитических систем на основе модифицированного углерода, содержащих на поверхности оксидные вольфрамовые бронзы, в котором каталитические системы получают из расплава 30 мол.% KWO, 25 мол.% LiWO и 45 мол.% WO в...
Тип: Изобретение
Номер охранного документа: 0002579119
Дата охранного документа: 27.03.2016
Показаны записи 31-40 из 61.
10.02.2015
№216.013.2325

Способ измерения кислородосодержания и влажности газа

Изобретение относится к аналитической технике и может быть использовано для измерения кислородосодержания и влажности газов. Способ измерения кислородосодержания и влажности газа. В поток анализируемого газа помещают электрохимическую ячейку с полостью, образованную двумя дисками из...
Тип: Изобретение
Номер охранного документа: 0002540450
Дата охранного документа: 10.02.2015
27.02.2015
№216.013.2c14

Способ изготовления пористых катодных материалов на основе манганита лантана-стронция

Изобретение относится к области электротехники, а именно к способу изготовления пористых катодных материалов на основе манганита лантана-стронция, и может быть использовано для изготовления твердооксидных топливных элементов (ТОТЭ), работающих при высоких температурах. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002542752
Дата охранного документа: 27.02.2015
20.04.2015
№216.013.42dc

Способ определения коэффициента диффузии горючих газов в азоте

Изобретение направлено на высокоточное измерение коэффициентов диффузии горючих газов в азоте или иных инертных газах в широком температурном диапазоне посредством кислородпроводящего твердого электролита. Способ заключается в пропускании электрического тока через электрохимическую ячейку,...
Тип: Изобретение
Номер охранного документа: 0002548614
Дата охранного документа: 20.04.2015
20.08.2015
№216.013.6f9b

Способ определения химического коэффициента обмена и химического коэффициента диффузии кислорода в оксидных материалах

Изобретение относится к физической химии и электрохимии твердых электролитов и может быть использовано для определения химического коэффициента обмена и химического коэффициента диффузии кислорода в оксидных материалах со смешанной электронной и кислород-ионной проводимостью. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002560141
Дата охранного документа: 20.08.2015
20.09.2015
№216.013.7bf0

Амперометрический способ измерения концентрации горючих газов в азоте

Изобретение направлено на возможность измерения горючего газа в смеси с азотом или другим инертным газом. Способ заключается в том, что в поток анализируемого горючего газа помещают электрохимическую ячейку с полостью, образованной герметично соединенными между собой двумя дисками из твердого...
Тип: Изобретение
Номер охранного документа: 0002563325
Дата охранного документа: 20.09.2015
20.11.2015
№216.013.92b2

Способ определения концентрации протонов в протон-проводящих оксидных материалах

Изобретение относится к физической химии и электрохимии твердых электролитов и может быть использовано для определения концентрации протонов в протон-проводящих оксидных материалах в атмосфере сухого водорода. Способ определения концентрации протонов в протон-проводящих оксидах заключается в...
Тип: Изобретение
Номер охранного документа: 0002569172
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.97e9

Способ получения тонкоплёночного твердого электролита для электрохимических устройств

Изобретение относится к области электротехники, а именно к получению оксидной пленки электролита толщиной, соизмеримой с размером пор материала электрода, более простым и технологичным, а также более экономичным способом, чем ионно-плазменный. Тонкую газоплотную оксидную пленку электролита...
Тип: Изобретение
Номер охранного документа: 0002570509
Дата охранного документа: 10.12.2015
27.01.2016
№216.014.bc91

Батарея элементов тепловых химических источников тока

Изобретение относится к области электротехники, а именно к термоактивируемым химическим источникам тока. Батарея содержит внутреннюю и внешнюю герметичные оболочки с полостью между ними и два слоя теплоизоляции, образующих корпус, в котором расположена сборка из электрохимических элементов,...
Тип: Изобретение
Номер охранного документа: 0002573860
Дата охранного документа: 27.01.2016
10.03.2016
№216.014.bf06

Способ тонкослойного электролитического получения свинца

Изобретение относится к способу получения свинца. Способ включает электролиз в расплаве галогенидов солей с использованием жидкометаллических катода и анода из чернового свинца. При этом электролиз ведут с использованием пропитанной расплавом галогенидов солей керамической диафрагмы,...
Тип: Изобретение
Номер охранного документа: 0002576409
Дата охранного документа: 10.03.2016
27.03.2016
№216.014.dd29

Электрохимический способ получения сложных гибридных каталитических систем на основе модифицированного углерода, содержащих на поверхности оксидные вольфрамовые бронзы

Изобретение относится к электрохимическому способу получения сложных гибридных каталитических систем на основе модифицированного углерода, содержащих на поверхности оксидные вольфрамовые бронзы, в котором каталитические системы получают из расплава 30 мол.% KWO, 25 мол.% LiWO и 45 мол.% WO в...
Тип: Изобретение
Номер охранного документа: 0002579119
Дата охранного документа: 27.03.2016
+ добавить свой РИД