×
27.02.2015
216.013.2d53

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОДОВ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ С ТВЕРДЫМ ЭЛЕКТРОЛИТОМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электротехники, а именно к способу изготовления электродов электрохимических устройств с твердым электролитом. Снижение поляризационного сопротивления электрода, а также улучшение протекания электродных реакций газообмена является техническим результатом предложенного изобретения. Способ включает пропитку электрода раствором азотнокислого празеодима с его последующей термообработкой, при этом электрод однократно пропитывают раствором азотнокислого празеодима в этиловом спирте с концентрацией 0.3-2.0 мас.% PrO, после чего термообработку электрода ведут при нагреве со скоростью не более 50°С/час до температуры образования пленки оксида празеодима на границе «электрод/электролит». 1 табл.
Основные результаты: Способ изготовления электродов электрохимических устройств с твердым электролитом, включающий пропитку электрода раствором азотнокислого празеодима с его последующей термообработкой, отличающийся тем, что электрод однократно пропитывают раствором азотнокислого празеодима в этиловом спирте с концентрацией 0.3-2.0 масс.% PrO, термообработку электрода ведут при нагреве со скоростью не более 50°C/час до температуры образования пленки оксида празеодима на границе «электрод/электролит».

Изобретение относится к области электрохимической энергетики и может быть использовано при изготовлении электродов, работающих в окислительной атмосфере, применяемых в различных электрохимических устройствах с твердым электролитом, таких как топливные элементы, электролизеры, электрохимические насосы, датчики и т.п.

Важнейшее требование к электродам вышеуказанных устройств состоит в том, что они должны иметь малое поляризационное сопротивление, чтобы обеспечивать эффективную работу устройства. Один из способов уменьшения поляризационного сопротивления - активация электродов путем введения в него электрохимически активных добавок - активаторов.

Наиболее близким к заявляемому способу является способ изготовления электродов, работающих в окислительной атмосфере, применяемых для электрохимических устройств с твердым электролитом, известный из RU 2322730, опубл. 20.04.2008. Согласно этому способу, в сформированном двухслойном электроде распределен высокодисперсный нанопорошок PrO2-δ в количестве 7-10 масс.% по отношению к массе электрода.

Таким образом, необходимое уменьшение поляризационного сопротивления электродов для электрохимических устройств, достигается большим количеством активатора по отношению к массе электрода. Для введения в электрод большого количества активатора в процессе, включающем пропитку и прокаливание, нужно осуществлять неоднократную пропитку насыщенными концентрированными (около 40 масс.% в случае нитрата празеодима) растворами активатора, что нетехнологично. Ситуация усугубляется тем, что при пропитке электрода большими количествами активатора на его внешней поверхности образуется слой активатора, который затрудняет коммутацию электродов и который, в ряде случаев, нужно счищать, чтобы присоединить токоподвод. Кроме того, активатор, введенный в электрод в большом количестве, заполняет поры электрода, ухудшая газообмен, который важен для протекания электродных реакций с участием газов (кислород, водяной пар, CO2, водород, метан и т.д.) в устройствах с твердым электролитом. Таким образом, известный способ по прототипу нетехнологичен и отрицательно влияет на газообмен.

Задача настоящего изобретения состоит в разработке технологичного способа изготовления электродов в устройствах с твердым электролитом, позволяющим изготавливать малополяризуемые электроды, свободные от вышеперечисленных недостатков.

Для решения поставленной задачи способ изготовления электродов электрохимических устройств с твердым электролитом включает пропитку электрода раствором азотнокислого празеодима с последующей термообработкой, при этом электрод однократно пропитывают раствором азотнокислого празеодима в этиловом спирте с концентраций 0.3-2.0 масс.% в пересчете на оксид празеодима, термообработку ведут при нагреве со скоростью не более 50°С/час до температуры образования пленки оксида празеодима.

Введение в электрод в качестве активатора пленкообразующего спиртового раствора азотнокислого празеодима с последующей термообработкой при заявленных режимах, приводит к образованию на границе «электрод/электролит» пленки оксида празеодима, которая способствует резкому снижению поляризационного сопротивления электрода. При этом способ характеризуется повышенной технологичностью, обусловленной однократным нанесением раствора азотнокислого празеодима и позволяет избежать недостатков, вызванных введением в электрод большого количества активатора. Выбор интервала концентраций раствора азотнокислого празеодима (0.3-2.0 масс.% в пересчете на PrO1.83) обусловлен тем, что именно в этом интервале на границе «электрод/электролит» образуется пленка оксида празеодима с нужными характеристиками. При использовании раствора азотнокислого празеодима с концентрацией, меньшей 0.3 масс.% PrO1.83, образующаяся пленка слабо активирует электрод, а при концентрации раствора азотнокислого празеодима, превышающей 2.0 масс.% PrO1.83, пленка не образуется - покрытие распадается на отдельные кристаллики - порошинки и также слабо активирует электрод. Пропитанный в соответствии с заявленным способом, термически обработанный электрод содержит оксид празеодима в количестве 0.3-2.0 масс.%, что существенно меньше, чем в способе по прототипу.

Новый технический результат, достигаемый заявленным способом, заключается в снижении поляризационного сопротивления электрода при однократном введении в электролит малых количеств активатора, улучшении протекания электродных реакций газообмена, упрощении коммутации электродов.

Предлагаемый способ апробирован в лабораторных условиях в Институте высокотемпературной электрохимии УрО РАН. Эксперименты были проведены в одних и тех же условиях на электрохимических ячейках с твердым электролитом состава 0.9ZrO2+0.1Y2O3 (далее YSZ), на который были нанесены платиновые электроды. Для нанесения электродов использовали тонкоизмельченный порошок чистой платины в виде взвеси в спирте. Платиновые порошковые электроды наносили методом окрашивания на обе стороны круглых пластинок твердого электролита YSZ диаметром 10 мм и толщиной около 0.5 мм. Нанесенные электроды припекали на воздухе при температуре 1100°С. Операцию нанесения электродов на твердый электролит проводили дважды, результирующий электрод содержал количество платины около 15 мг/см2.

Активирование платиновых электродов производили, смачивая их пленкообразующим спиртовым раствором нитрата празеодима, с последующей термообработкой.

Эксперименты с использованием электронной микроскопии (растровый электронный микроскоп JSM 5900LV с энергодисперсионным спектрометром INCA ENERGY) показали, что пленки оксидов получаются только из пленкообразующих растворов, предельное содержание соли в которых (в пересчете на оксид празеодима) не превышает ~ 2.0 масс.%. При использовании насыщенных спиртовых растворов нитратов, указанных в прототипе, пленка на границе «электрод/электролит» не образуется ни при каких условиях термообработки электрода; покрытие распадается на отдельные кристаллики-порошинки.

Платиновые электроды, пропитанные спиртовым раствором нитратов празеодима, с концентрацией активатора 0.3-2.0 масс.% в пересчете на оксид празеодима, прокаливали на воздухе в двух режимах - при быстром нагреве (200°С/час), при котором пленка оксида-активатора не образуется, и при медленном нагреве (50°С/час), при котором пленка оксида-активатора образуется. Нагрев в обоих случаях вели до температуры 850°С, время выдержки при максимальной температуре составляло 1 час.

Сравнительные характеристики электродов изучали с помощью импедансметра «PARSTAT 2273» в области частот 0.1÷1 МГц при амплитуде сигнала 30 мВ. Измерения проводили в атмосфере воздуха в интервале температур 700÷500°С, который соответствует средним рабочим температурам электрохимических устройств с данными материалами.

В таблице приведены результаты сравнительных испытаний платиновых электродов:

1) неактивированных;

2) активированных растворами нитрата празеодима в режиме термообработки электрода, не образующим пленку активатора на границе «электрод/электролит»;

3) активированных растворами нитрата празеодима в режиме термообработки электрода, при котором образуется пленка активатора на границе «электрод/электролит»;

Испытания показали, что в интервале температур 700÷500°С неактивированный электрод имеет высокое поляризационное сопротивление, составляющее 700÷52000 Ом. Электрод, однократно пропитанный раствором азотнокислого празеодима в этиловом спирте с концентрацией, меньшей 0.3 масс.%, в пересчете на оксид празеодима с последующей термообработкой в интервале температур 700-500°С при медленном нагреве со скоростью 50°С/час, содержит оксид празеодима в количестве, меньшем 0.05 мг/см2. Пленка активатора при этом не образуется, улучшение характеристик электрода не происходит. Электрод, однократно пропитанный раствором азотнокислого празеодима в этиловом спирте с оптимальной концентрацией 0.3-2.0 масс.% PrO1.83 с последующей термообработкой в этом же интервале температур с такой же скоростью нагрева, содержит оксид празеодима в количестве 0.05-0.30 мг оксида празеодима на 1 см2 поверхности электрода. В этом случае на границе «электрод/электролит» образуется пленка активатора, и поляризационное сопротивление электрода резко уменьшается.

Из результатов этих испытаний следует, что предлагаемый способ имеет существенные преимущества по сравнению с прототипом. По этому способу достаточно однократного введения в электролит малых количеств активатора для образования на 1 см2 поверхности электрода 0.05-0.30 мг оксида празеодима, достаточного, чтобы при термообработке электрода нагревом со скоростью не более 50°С/час до температуры образования на границе «электрод/электролит» пленки оксида празеодима, достичь резкого снижения поляризационного сопротивления электрода. Малое количество введенного в электрод активатора меньше забивает его поры, что способствует лучшему протеканию электродных реакций газообмена. При этом на внешней поверхности электрода не образуется изолирующий слой, затрудняющий коммутацию электродов.

Таким образом, заявленный способ позволяет более технологично изготавливать малополяризуемые электроды, способствует лучшему протеканию электродных реакций газообмена и упрощению коммутации электродов.

Таблица
Температура, °С Поляризационное сопротивление электрода, Ом·см2
без активации с активацией 0.2 мг оксида/см2
без образования пленки с образованием пленки
700 0.7·103 1.2·103 0.5
600 7.8·103 8.3·103 1.7
500 52.0·103 75.0·103 18.0

Способ изготовления электродов электрохимических устройств с твердым электролитом, включающий пропитку электрода раствором азотнокислого празеодима с его последующей термообработкой, отличающийся тем, что электрод однократно пропитывают раствором азотнокислого празеодима в этиловом спирте с концентрацией 0.3-2.0 масс.% PrO, термообработку электрода ведут при нагреве со скоростью не более 50°C/час до температуры образования пленки оксида празеодима на границе «электрод/электролит».
Источник поступления информации: Роспатент

Показаны записи 21-30 из 97.
20.07.2014
№216.012.df2e

Электролизер для тонкослойного электролитического рафинирования металлического свинца

Изобретение относится к тонкослойному рафинированию легкоплавких цветных металлов, в частности сортового свинца. Электролизер для тонкослойного электролитического рафинирования металлического свинца содержит вертикально помещенную в корпус электролизера пористую керамическую диафрагму,...
Тип: Изобретение
Номер охранного документа: 0002522920
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e233

Способ получения твердооксидного топливного элемента с двухслойным несущим катодом

Изобретение относится к области электротехники, а именно к способу получения твердооксидного топливного элемента с двухслойным несущим катодом, который включает формование электродного и коллекторного слоев катода, их спекание, при этом на электродный слой катода наносят и припекают слой...
Тип: Изобретение
Номер охранного документа: 0002523693
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.e957

Способ получения нановискерных структур оксидных вольфрамовых бронз на угольном материале

Изобретение относится к способу получения нановискерных структур оксидных вольфрамовых бронз на угольном материале, в котором электролиз ведут в импульсном потенциостатическом режиме при перенапряжении 300 мВ в расплаве, содержащем 30 мол. % KWO, 25 мол. % LiWO и 45 мол. % WO, с использованием...
Тип: Изобретение
Номер охранного документа: 0002525543
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ebfc

Чувствительный элемент электрохимического датчика водорода в газовых смесях

Чувствительный элемент электрохимического датчика водорода в газовых смесях. Может быть использован для измерения концентрации водорода в воздухе и в инертном газе. Чувствительный элемент электрохимического датчика водорода в газовых смесях, выполненный в виде таблетки из твердого электролита,...
Тип: Изобретение
Номер охранного документа: 0002526220
Дата охранного документа: 20.08.2014
27.10.2014
№216.013.02e5

Способ измерения кислорода в газовых средах

Использование: для измерения концентрации кислорода в газовых смесях различного состава. Сущность изобретения заключается в том, что используют ячейку с полостью, образованную кислородопроводящим твердым электролитом, на противоположных поверхностях электролита расположены электроды, включая...
Тип: Изобретение
Номер охранного документа: 0002532139
Дата охранного документа: 27.10.2014
10.01.2015
№216.013.1832

Состав шихты для изготовления оксидно-металлического инертного анода

Изобретение может быть использовано при изготовлении композиционного оксидно-металлического инертного кислородвыделяющего анода для электролитического получения металлов, в частности, алюминия. Состав шихты для изготовления указанного анода включает смесь оксидной и металлической составляющих,...
Тип: Изобретение
Номер охранного документа: 0002537622
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1833

Способ синтеза микро- и нанокомпозиционных алюминий-углеродных материалов

Изобретение относится к способу получения алюминий-углеродных композиционных материалов, которые могут найти применение в авиационной, космической и электротехнической промышленности, а также в производстве шарикоподшипников нового поколения. Способ характеризуется тем, что алюминий или...
Тип: Изобретение
Номер охранного документа: 0002537623
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1868

Способ электрохимического получения алюминий-титановой лигатуры для коррозионностойких алюминиевых сплавов

Изобретение относится к электрохимическому получению лигатурных алюминий-титановых сплавов и может быть использовано для получения коррозионно-стойких алюминиевых сплавов. Способ включает химическое активирование поверхности титана в расплавленных фторидах щелочных металлов и/или калиевом...
Тип: Изобретение
Номер охранного документа: 0002537676
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a0b

Электрохимический генератор с твердым электролитом

Изобретение относится к устройству электрохимического генератора с твердым электролитом, преимущественно для генераторов малой и средней мощности до 15÷20 кВт. Указанный генератор содержит заключенные в корпус с теплоизолирующими стенками, рабочую камеру с батареей топливных элементов, камеру...
Тип: Изобретение
Номер охранного документа: 0002538095
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.1fd8

Электрохимический способ получения порошка гексаборида кальция

Изобретение относится к электрохимическому способу получения порошка гексаборида кальция, включающему электролиз солевого расплава, содержащего кальций- и борсодержащие компоненты. Способ характеризуется тем, что используют солевой расплав, содержащий хлорид кальция с добавками оксида кальция и...
Тип: Изобретение
Номер охранного документа: 0002539593
Дата охранного документа: 20.01.2015
Показаны записи 21-30 из 61.
20.07.2014
№216.012.df2e

Электролизер для тонкослойного электролитического рафинирования металлического свинца

Изобретение относится к тонкослойному рафинированию легкоплавких цветных металлов, в частности сортового свинца. Электролизер для тонкослойного электролитического рафинирования металлического свинца содержит вертикально помещенную в корпус электролизера пористую керамическую диафрагму,...
Тип: Изобретение
Номер охранного документа: 0002522920
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e233

Способ получения твердооксидного топливного элемента с двухслойным несущим катодом

Изобретение относится к области электротехники, а именно к способу получения твердооксидного топливного элемента с двухслойным несущим катодом, который включает формование электродного и коллекторного слоев катода, их спекание, при этом на электродный слой катода наносят и припекают слой...
Тип: Изобретение
Номер охранного документа: 0002523693
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.e957

Способ получения нановискерных структур оксидных вольфрамовых бронз на угольном материале

Изобретение относится к способу получения нановискерных структур оксидных вольфрамовых бронз на угольном материале, в котором электролиз ведут в импульсном потенциостатическом режиме при перенапряжении 300 мВ в расплаве, содержащем 30 мол. % KWO, 25 мол. % LiWO и 45 мол. % WO, с использованием...
Тип: Изобретение
Номер охранного документа: 0002525543
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ebfc

Чувствительный элемент электрохимического датчика водорода в газовых смесях

Чувствительный элемент электрохимического датчика водорода в газовых смесях. Может быть использован для измерения концентрации водорода в воздухе и в инертном газе. Чувствительный элемент электрохимического датчика водорода в газовых смесях, выполненный в виде таблетки из твердого электролита,...
Тип: Изобретение
Номер охранного документа: 0002526220
Дата охранного документа: 20.08.2014
27.10.2014
№216.013.02e5

Способ измерения кислорода в газовых средах

Использование: для измерения концентрации кислорода в газовых смесях различного состава. Сущность изобретения заключается в том, что используют ячейку с полостью, образованную кислородопроводящим твердым электролитом, на противоположных поверхностях электролита расположены электроды, включая...
Тип: Изобретение
Номер охранного документа: 0002532139
Дата охранного документа: 27.10.2014
10.01.2015
№216.013.1832

Состав шихты для изготовления оксидно-металлического инертного анода

Изобретение может быть использовано при изготовлении композиционного оксидно-металлического инертного кислородвыделяющего анода для электролитического получения металлов, в частности, алюминия. Состав шихты для изготовления указанного анода включает смесь оксидной и металлической составляющих,...
Тип: Изобретение
Номер охранного документа: 0002537622
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1833

Способ синтеза микро- и нанокомпозиционных алюминий-углеродных материалов

Изобретение относится к способу получения алюминий-углеродных композиционных материалов, которые могут найти применение в авиационной, космической и электротехнической промышленности, а также в производстве шарикоподшипников нового поколения. Способ характеризуется тем, что алюминий или...
Тип: Изобретение
Номер охранного документа: 0002537623
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1868

Способ электрохимического получения алюминий-титановой лигатуры для коррозионностойких алюминиевых сплавов

Изобретение относится к электрохимическому получению лигатурных алюминий-титановых сплавов и может быть использовано для получения коррозионно-стойких алюминиевых сплавов. Способ включает химическое активирование поверхности титана в расплавленных фторидах щелочных металлов и/или калиевом...
Тип: Изобретение
Номер охранного документа: 0002537676
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a0b

Электрохимический генератор с твердым электролитом

Изобретение относится к устройству электрохимического генератора с твердым электролитом, преимущественно для генераторов малой и средней мощности до 15÷20 кВт. Указанный генератор содержит заключенные в корпус с теплоизолирующими стенками, рабочую камеру с батареей топливных элементов, камеру...
Тип: Изобретение
Номер охранного документа: 0002538095
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.1fd8

Электрохимический способ получения порошка гексаборида кальция

Изобретение относится к электрохимическому способу получения порошка гексаборида кальция, включающему электролиз солевого расплава, содержащего кальций- и борсодержащие компоненты. Способ характеризуется тем, что используют солевой расплав, содержащий хлорид кальция с добавками оксида кальция и...
Тип: Изобретение
Номер охранного документа: 0002539593
Дата охранного документа: 20.01.2015
+ добавить свой РИД