×
27.02.2015
216.013.2d3c

Результат интеллектуальной деятельности: ЭЛЕКТРОЛИЗНАЯ УСТАНОВКА КОСМИЧЕСКОГО НАЗНАЧЕНИЯ И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ

Вид РИД

Изобретение

№ охранного документа
0002543048
Дата охранного документа
27.02.2015
Аннотация: Изобретение относится к электролизной установке космического назначения, включающей электролизный модуль с выходными пневмомагистралями кислорода и водорода, снабженными конденсаторами пара, выполненными из пористого гидрофильного материла и имеющими водоотвод в окружающую среду, резервуар с водой, снабженный датчиком температуры, гидравлически связанный с электролизным модулем и работающий под избыточным давлением, газобаллонную систему хранения кислорода и водорода с пневмомагистралями выдачи этих газов с запорными элементами, имеющую, по крайней мере, по два последовательно связанных друг с другом пневмомагистралями баллона для каждого из газов, с установленными на баллонах датчиками давления, а также систему контроля параметров, подключенную к этим датчикам, датчику внешнего давления и датчику температуры. При этом конденсаторы пара связаны с резервуаром с водой гидромагистралями с запорными элементами, на пневмомагистралях, связывающих баллоны, установлены запорные элементы, при этом внутри баллонов размещены вкладыши из пористого гидрофильного материала для сбора конденсата, а сами баллоны снабжены гидромагистралями для удаления собранного во вкладышах конденсата, причем данные гидромагистрали снабжены запорными элементами и сообщаются с соответствующими конденсаторами пара. Также изобретение относится к способу. Использование настоящего изобретения позволяет снизить влагосодержание продуцируемых газов, повысить энергетическую эффективность и надежность работы устройства. 2 н. и 2 з.п. ф-лы, 1 ил.

Предлагаемое изобретение относится к электроэнергетике и может быть использовано в космических энергоустановках, например бортовых установках космических аппаратов (КА).

Аналогами данному предложению является большинство наземных электролизных установок (ЭЛУ) (например, патент RU №2046841, МПК: C25B 1/12 (2006.01), 27.10.1995), имеющих традиционный набор элементов, основными из которых являются:

- электролизер воды с блоком питания и системой контроля параметров;

- резервуар для сбора реакционной воды (РСВ);

- пневмогидросхема с пневмомагистралями и арматурой (клапаны и пр.).

Во многих случаях в состав ЭЛУ включаются также баллоны для хранения электролизных газов - кислорода и водорода.

Работают такие установки по принципу «электрохимического компрессора», когда баллоны заполняются газами прямо от электролизера, без использования механических компрессоров, которые снижают ресурс и надежность ЭЛУ, ухудшают ее массогабаритные параметры и усложняют обслуживание.

Общим недостатком ЭЛУ-аналогов является большая влажность генерируемых ими электролизных газов (независимо от типа электролизера). Это затрудняет их использование на борту КА, где применяются чистые газы с очень низкой точкой росы (~ минус 50°C), которые готовятся заранее, в земных условиях. Использование же влажных газов в условиях полета, когда системы КА работают при больших перепадах давления и температуры, неизбежно ведет к конденсации влаги в трубопроводах и элементах арматуры и, как следствие, - к нештатным ситуациям.

Такого недостатка не имеет принятое за прототип устройство для получения водорода и кислорода (патент RU №2032770, МПК: C25B 1/02 (2006.01), 10.04.1995), включающее электролизер и средство для осушки газов, выполненное в виде емкости с гидрофильным газопроницаемым материалом, боковые стенки которой выполнены перфорированными, а гидрофильный газопроницаемый материал выполнен фильтрующим, при этом и емкость снабжена также элементом из гидрофильного материала, непроницаемым для водорода и кислорода, установленным между перфорированными стенками емкости и фильтрующим гидрофильным газопроницаемым материал. В качестве фильтрующего гидрофильного газопроницаемого материала используют войлок, вату, измельченный асбест, в качестве гидрофильного материала, непроницаемого для водорода и кислорода, - асбокартон.

Данное устройство представляет собой маломощную лабораторную ЭЛУ для производства кислорода и водорода, используемых в газоанализаторах. В этом случае влажность газов существенно влияет на результаты анализа, поэтому перед использованием газов необходима их осушка. Это достигается с помощью осушителей (водоотделителей), выполненных на основе пористого гидрофильного материала (ПГФМ), который улавливает в первую очередь капельную влагу, содержащуюся в электролизных газах. Собранная жидкая вода сбрасывается в окружающую среду через боковую поверхность осушителя и ПГФМ, что в свою очередь стимулирует конденсацию паров воды, содержащихся в газах.

Под действием напряжения от источника тока вода в электролизере подвергается разложению с образованием водорода и кислорода. Полученные газы в смеси с водой поступают в соответствующие газожидкостные сепараторы, где отделяются от жидкости и направляются в осушители газов. С помощью гидрофильного газопроницаемого материала, поглощающего капельную влагу, происходит осушка газов. Уловленная материалом влага через гидрофильный материал, непроницаемый для водорода и кислорода, и перфорации в стенках осушителей непрерывно диффундирует в окружающую среду. Таким образом, в процессе работы осушителей устанавливается равновесие между осушаемыми газами и окружающей средой по влагосодержанию, и газы выходят из осушителей с относительной влажностью, практически равной влажности окружающей среды. Выходящие из осушителей газы направляются потребителям. Таким путем происходит постоянное удаление влаги из осушителей, т.е. постоянная саморегенерация влагопоглощающего материала.

Недостатком прототипа устройства и способа его эксплуатации является низкая эффективность осушки газов, так как испарение жидкой воды из осушителей в окружающую среду достаточно слабое и охлаждающий эффект невелик. Соответственно, влажность газов снижается незначительно, удаляется в основном капельная влага. Кроме того, «запустить» такой осушитель можно только при условии его предварительного охлаждения. Если начальная температура осушителя достаточно велика (не меньше температуры газов), конденсации пара не будет, то есть осушитель работать не будет.

Таким образом, для «запуска» такого осушителя его необходимо предварительно охладить. Кроме того, поскольку испарение через полупроницаемую стенку слабое, при больших расходах газа габариты такого осушителя будут слишком велики, поскольку удельная мощность теплоотвода за счет такого испарения без кипения мала.

Задача данного технического предложения - разработка бортовой ЭЛУ, производящей сухие газы без использования других систем КА (например, системы терморегулирования), специальных влагопоглощающих материалов и дополнительных агрегатов, то есть за счет использования физических процессов, происходящих в самой ЭЛУ.

Техническим результатом изобретения является снижение влагосодержания продуцируемых газов, повышение энергетической эффективности и надежности работы ЭЛУ космического назначения.

Технический результат достигается за счет того, что в электролизной установке космического назначения, включающей электролизный модуль с выходными пневмомагистралями кислорода и водорода, снабженными конденсаторами пара, выполненными из пористого гидрофильного материла и имеющими водоотвод в окружающую среду, резервуар с водой, снабженный датчиком температуры, гидравлически связанный с электролизным модулем и работающий под избыточным давлением, газобаллонную систему хранения кислорода и водорода с пневмомагистралями выдачи этих газов с запорными элементами, имеющую, по крайней мере, по два последовательно связанных друг с другом пневмомагистралями баллона для каждого из газов, с установленными на баллонах датчиками давления, а также систему контроля параметров, подключенную к этим датчикам, датчику внешнего давления и датчику температуры, конденсаторы пара связаны с резервуаром с водой гидромагистралями с запорными элементами, на пневмомагистралях, связывающих баллоны, установлены запорные элементы, при этом внутри баллонов размещены вкладыши из пористого гидрофильного материала для сбора конденсата, а сами баллоны снабжены гидромагистралями для удаления собранного во вкладышах конденсата, причем данные гидромагистрали снабжены запорными элементами и сообщаются с соответствующими конденсаторами пара.

Кроме того, пневмомагистрали выдачи кислорода и водорода подключены к баллонам, имеющим только одну соединительную пневмомагистраль.

Технический результат достигается также и тем, что в способе эксплуатации электролизной установки космического назначения, включающем разложение воды в электролизере током с образованием водорода и кислорода, конденсацию паров воды из потоков этих газов путем их охлаждения при сбросе полученного конденсата в окружающую среду, заполнение осушенными газами соответствующих баллонов с последующей выдачей полученных газов потребителям, сброс конденсата в окружающую среду производят при значении давления в ней ниже уровня, при котором происходит кипение воды с данной температурой, а заполнение баллонов соответствующим газом осуществляют последовательно из баллона в баллон при сверхкритическом перепаде давления, при этом выделяющуюся в баллонах капельную влагу собирают в пористом гидрофильном материале внутри баллона, а процесс заполнения баллонов газом периодически прерывают, удаляя собранную воду из баллонов.

Кроме того, перед началом разложения воды проводят предварительное захолаживание конденсаторов пара, направляя в них часть воды из резервуара с водой при давлении в окружающей среде, меньшем давления, при котором происходит кипение воды с данной температурой.

Сущность изобретения заключается в стимулировании конденсации паров из электролизных газов за счет их охлаждения в процессе перетекания их из электролизера в баллонную батарею, а также в процессе их сбора в баллонной батарее ЭЛУ. Охлаждение газов производят в два этапа: сначала перед заполнением первого баллона батареи (ресивера), сообщающегося с электролизным модулем, а затем - в ходе последовательного перепуска газа из ресивера в остальные баллоны батареи.

На первом этапе потоки газа охлаждаются в газожидкостном теплообменнике-сублиматоре (ГЖТС) за счет испарения в них воды (в том числе собранного конденсата) в вакуум.

При запуске ЭЛУ, перед включением электролизера, ГЖТС захолаживается, для чего в них направляется часть воды, предназначенной для разложения на газы. Попадая в гидрополость ГЖТС, где давление ниже уровня, при котором кипит вода с данной температурой, вода сначала закипает, а затем на ее поверхности образуется лед (www.edwardsvacuum.com «Water Phase Changes - Water to ice in 90 sec, using vacuum»). В вакууме этот лед сублимируется с большой удельной теплотой (теплота испарения + теплота плавления), что обеспечивает эффективность работы ГЖТС. При этом быстрое образование льда, обусловленное теплооттоком, сопровождающим кипение воды, обеспечивает малость потерь воды на захолаживание ГЖТС.

На стационарном режиме работы ЭЛУ потери воды на испарение в ГЖТС в целом компенсируются за счет конденсата, собранного из самих электролизных газов (водород и кислород). При этом поскольку теплота конденсации воды примерно равна теплоте ее испарения, количество воды, испарившейся в вакуум, примерно соответствует количеству полученного конденсата (без учета потерь тепла).

На втором этапе охлаждения газов, при перепуске газа из одного баллона в последующий, охлаждение происходит в процессе быстрого адиабатического расширения газа в заполняемом баллоне. Выделяющаяся при этом капельная влага улавливается и периодически удаляется из баллонов (до того момента как снова начнет испаряться в процессе последующего медленного нагревания газа в баллоне при его сжатии).

Сущность изобретения поясняется чертежом (фиг.1), на котором представлена принципиальная схема электролизной установки космического назначения, где обозначено:

1 - электролизный модуль (ЭМ);

2 - выходная водородная пневмомагистраль ЭМ;

3 - водородный конденсатор пара (ГЖТС);

4, 37 - водоотводы в окружающее пространство;

5 - резервуар с водой (РСВ);

6 - выходная гидромагистраль РСВ;

7 - пневмомагистраль выдачи водорода;

8, 18, 19, 23, 24, 31, 32, 39, 40, 41 - запорные элементы (ЗЭ);

9, 10 - баллоны для хранения водорода;

11, 36 - соединительные пневмомагистрали;

12, 13, 33, 34 - датчики давления в баллонах;

14, 15, 27, 28 - вкладыши из пористого гидрофильного материала (ПГФМ);

16, 17 - выходные гидромагистрали водородных баллонов;

20 - гидромагистраль для удаления водородного конденсатора;

21 - кислородный конденсатор пара (ГЖТС);

22 - гидромагистраль для удаления кислородного конденсата;

25, 26 - баллоны для хранения кислорода;

29, 30 - выходные гидромагистрали кислородных баллонов;

35 - выходная кислородная пневмомагистраль ЭМ;

38 - пневмомагистраль выдачи кислорода;

42 - датчик температуры РСВ;

43 - датчик внешнего давления;

44 - система контроля параметров.

Электролизный модуль (ЭМ) (1), который обеспечивается водой от резервуара с водой (РСВ) (5) с датчиком температуры (42) по гидромагистрали (6), своими выходными пневмомагистралями (2) и (35) связан с газобаллонной системой хранения электролизных газов, включающей баллоны для хранения водорода (9), (10), соединенные между собой пневмомагистралями (11) с запорным элементом (41), и баллоны для хранения кислорода (25), (26), соединенные между собой пневмомагистралями (36) с запорным элементом (39). Для выдачи газов потребителю система хранения имеет пневмомагистрали выдачи водорода (7) и кислорода (38) с ЗЭ (8) и (40) соответственно. На выходных магистралях (2) и (35) электролизного модуля (1) установлены конденсаторы пара (3) и (21), представляющие собой газожидкостные теплообменники-сублиматоры (ГЖТС), выполненные на основе пористого гидрофильного материала (ПГФМ) (например, поролона) и имеющие водоотводы (дренажные приспособления) в окружающее пространство (4) и (37).

На баллонах (9), (10), (25), (26) установлены датчики давления (12), (13), (33), (34), подключенные к системе контроля параметров (44), которая соединена также с датчиком температуры воды (42), установленным в РСВ (5), а также датчиком внешнего давления (43), контролирующим давление в окружающей среде (датчик «вакуума»). Внутри каждого баллона размещены вкладыши из ПГФМ-уловители капельной влаги (14), (15), (27), (28). При этом баллоны для хранения водорода (9), (10) имеют выходные гидромагистрали (16), (17) с установленными на них ЗЭ (18), (19), по которым конденсат, собранный во вкладышах (14), (15), удаляется из баллонов (9), (10). Баллоны для хранения кислорода (25), (26) также имеют выходные гидромагистрали (29), (30) с установленными на них ЗЭ (31), (32), по которым конденсат, собранный во вкладышах (27), (28), удаляется из баллонов (25), (26). Выходные гидромагистрали (29), (30) кислородных баллонов соединяются с кислородным конденсатором пара (21), а выходные гидромагистрали (16), (17) водородных баллонов - с водородным конденсатором пара (3). Конденсаторы пара (3) и (21) установлены на соответствующих выходной водородной пневмомагистрали (2) и выходной кислородной пневмомагистрали (35) электролизного модуля (1). Помимо этого конденсаторы пара (3) и (21) соединены также с РСВ (5) гидромагистралями (20) и (22) с ЗЭ (23), (24). В состав установки входит также датчик внешнего давления (43), подключенный к системе контроля параметров (44).

Таким образом, пневмогидросхема ЭЛУ представляет собой два частично открытых в вакуум газожидкостных контура, связанных друг с другом через РСВ (водокислородный и водоводородный контуры).

Работа установки описывается применительно к водоводородному контуру, аналогично работает и водокислородный контур.

При стационарной работе предлагаемой электролизной установки вода под действием избыточного давления из РСВ (5) по гидромагистрали (6) поступает в ЭМ (1), где разлагается на водород и кислород, имеющие влажность 100%. Влажный водород по выходной пневмомагистрали (2) направляется в газобаллонную систему хранения (баллоны для хранения водорода (9), (10)), проходя через водородный конденсатор пара (3). Здесь водород охлаждается за счет испарения воды (или льда) в вакуум через водоотвод (4). При охлаждении влажного водорода происходит выделение капельной влаги, которая вместе с газом поступает в водородный баллон (10) (ресивер). Здесь капли воды улавливаются вкладышем (15).

В процессе заполнения баллона-ресивера (10) и второго водородного баллона (9) периодически открываются ЗЭ (19) и (18) на гидромагистралях (17) и (16) соответственно и ЗЭ (23) на гидромагистрали (20), и собранный конденсат (вода) под действием избыточного давления перепускается в РСВ (5). При этом вода проходит через конденсатор пара (3) и восполняет потери воды (льда), обусловленные испарением в вакуум.

Кроме откачки конденсата из баллона-ресивера (10) в процессе его заполнения водород (уже более холодный и сухой) периодически перепускается в следующий баллон хранения водорода (9). Для этого открывают ЗЭ (41) на пневмомагистрали (11), и водород из баллона-ресивера (10) перетекает в баллон (9) с меньшим давлением. При достаточно большом (сверхкритическом) перепаде давлений между баллонами (это контролируется датчиками давления (12), (13) и системой контроля параметров (44)) расширение газа в заполняемом баллоне происходит адиабатически, с охлаждением и дополнительной конденсацией пара. Так же как и в баллоне (10) капельная влага собирается во вкладыше (14) баллона (9) и периодически удаляется из баллона (9) по гидромагистрали (16) при открывании ЗЭ (18).

Заполнение последующих баллонов (если они необходимы) и удаление из них конденсата проводят аналогичным образом, при этом необходимо отметить следующее:

- перепуск газа из баллона в баллон должен осуществляться при сверхкритическом перепаде давления (≈3 атм) - это обеспечивает независимость параметров газа в «питающем» баллоне от параметров газа в заполняемом баллоне. При этом чем больше перепад давления, тем больше охлаждается газ на начальной стадии процесса (в струе), тем больше воды конденсируется;

- в последующем, при сжатии газа в баллоне он будет нагреваться, а выделившаяся вода, соответственно, снова испаряться. Этот процесс идет гораздо медленнее адиабатического охлаждения, поэтому необходимо своевременно удалять из баллонов собранный во вкладышах конденсат.

Проще всего это делать периодически.

Следует также отметить, что:

а) влажность газа в каждом «последующем» баллоне меньше, чем в «баллоне-источнике», поэтому самый сухой газ будет в последнем заполняемом баллоне, откуда он будет выдаваться по магистралям выдачи водорода (7) с ЗЭ (8) и выдачи кислорода (38) с ЗЭ (40). Отличительной особенностью этого баллона в системе хранения является наличие еще лишь одной (кроме магистрали выдачи) пневматической связи с другими элементами ЭЛУ;

б) при выходе на стационарный режим для запуска рабочего процесса необходимо предварительно обеспечить работоспособность конденсаторов пара (3), (21) на соответствующих выходных пневмомагистралях (2), (35) ЭМ (1). Для этого открывают ЗЭ (23), (24) и по гидромагистралям (20), (22) заполняют конденсаторы пара (3), (21) водой от РСВ (5), находящегося под избыточным давлением. После этого ЗЭ (23), (24) перекрывают и включают питание ЭМ (1). При этом заполнение конденсаторов пара (3), (21) водой начинают при достаточно низком внешнем давлении, ориентируясь на показания датчика температуры (42) РСВ (5) и датчика внешнего давления в окружающей среде (43), с тем чтобы обеспечить вскипание воды.


ЭЛЕКТРОЛИЗНАЯ УСТАНОВКА КОСМИЧЕСКОГО НАЗНАЧЕНИЯ И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ
Источник поступления информации: Роспатент

Показаны записи 221-230 из 370.
13.01.2017
№217.015.7960

Дублированный электронасосный агрегат

Изобретение относится к области машиностроения и может быть использовано в системах терморегулирования изделий авиационной и ракетной техники. Дублированный электронасосный агрегат содержит составной из двух частей корпус (1). Внешняя часть (2) снабжена входным и выходным патрубками (3, 4) и...
Тип: Изобретение
Номер охранного документа: 0002599402
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7a2f

Осевой вентилятор

Заявленный осевой вентилятор может быть использован в системе терморегулирования авиационной и ракетной техники. Осевой вентилятор содержит корпус в виде цилиндрический оболочки и размещенной в ней втулки с радиальными выступами, внутри которой установлен электродвигатель с наружной...
Тип: Изобретение
Номер охранного документа: 0002599549
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7a98

Теплоизоляция агрегатов двигательной установки космического объекта и способ ее монтажа

Группа изобретений относится к теплоизоляции агрегатов двигательной установки космического объекта (ДУ КО). Теплоизоляция агрегатов ДУ КО содержит теплоизоляцию из пакетов экранно-вакуумной теплоизоляции (ЭВТИ) криогенного бака и гермооболочку криогенного бака поверх них из мягкого...
Тип: Изобретение
Номер охранного документа: 0002600032
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7aff

Устройство для парашютной посадки груза на посадочную поверхность

Изобретение относится к области спуска объектов в атмосфере на парашюте. Устройство для мягкой парашютной посадки груза на посадочную поверхность содержит парашют, основной и дополнительный грузы, соединенные гибкой связью, упругое звено, соединяющее парашют и основной груз. Абсолютное...
Тип: Изобретение
Номер охранного документа: 0002600028
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7cf4

Способ определения положения объекта преимущественно относительно космического аппарата и система для его осуществления

Группа изобретений относится к космической технике. В способе определения положения объекта преимущественно относительно КА определяют параметры относительного положения излучателей инфракрасных импульсных сигналов, осуществляют формирование управляющих воздействий на излучатели, осуществляют...
Тип: Изобретение
Номер охранного документа: 0002600039
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7f59

Теплоизоляция агрегатов двигательной установки космического объекта и способ ее монтажа

Группа изобретений относится к теплоизоляции агрегатов двигательной установки космического объекта (ДУ КО). Теплоизоляция агрегатов ДУ КО содержит теплоизоляцию из пакетов экранно-вакуумной теплоизоляции (ЭВТИ) криогенного бака и гермооболочку криогенного бака поверх них из мягкого...
Тип: Изобретение
Номер охранного документа: 0002600022
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7f5b

Водяная баллистическая установка космического назначения и способ подготовки её к работе

Группа изобретений относится к газодинамическим баллистическим установкам. Водяная баллистическая установка космического назначения включает газовую пушку, состоящую из секционированного ствола, соединенного герметизируемым мембранным узлом с отсеком высокого давления. Отсек высокого давления...
Тип: Изобретение
Номер охранного документа: 0002600013
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.85ee

Устройство и способ исследования воздействия факторов космического пространства на вещества и микроорганизмы

Группа изобретений относится к инструментам и технологиям исследования воздействия факторов космического пространства на вещества и микроорганизмы. Устройство состоит из корпуса (1), выполненного, например, из фторопласта. В полость (2) корпуса (одну или более) с резьбой (3) и конической...
Тип: Изобретение
Номер охранного документа: 0002603817
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.86a4

Способ моделирования процессов биокоррозионных поражений тонкостенных герметичных оболочек из алюминиево-магниевых сплавов при эксплуатации космических аппаратов и имитационный состав для его реализации (варианты)

Изобретение относится к технической микробиологии и биокоррозионным испытаниям, а именно к способам моделирования процессов биокоррозионных поражений алюминиево-магниевых сплавов, применяемых в авиа-космической технике. Описан способ моделирования процессов биокоррозионных поражений...
Тип: Изобретение
Номер охранного документа: 0002603797
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.870e

Способ контроля нештатных ситуаций на пилотируемом космическом аппарате и система для его осуществления

Группа изобретений относится к космической технике. В способе контроля нештатных ситуаций на пилотируемом КА определяют параметры относительного положения излучателей инфракрасных импульсных сигналов, размещенных на подвижных частях космонавтов, осуществляют измерение параметров, определяют...
Тип: Изобретение
Номер охранного документа: 0002603814
Дата охранного документа: 27.11.2016
Показаны записи 221-230 из 295.
12.01.2017
№217.015.6119

Способ производства ракетного топлива в условиях космического полёта

Изобретение относится к космическим двигательным системам и может использоваться при создании в будущем орбитального заправочного комплекса (ОЗК). Способ включает доставку на ОЗК воды и получение из неё электролизом водорода и кислорода. Эти газы предварительно охлаждают при контакте с холодной...
Тип: Изобретение
Номер охранного документа: 0002591131
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6120

Способ производства жидкого ракетного топлива в космосе

Изобретение относится к космическим двигательным системам и может использоваться при создании в будущем орбитального заправочного комплекса (ОЗК) или лунной базы. Способ включает доставку на ОЗК воды и получение из неё электролизом водорода и кислорода. Эти газы предварительно охлаждают при...
Тип: Изобретение
Номер охранного документа: 0002591129
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.630b

Устройство измерения комплексного сопротивления мостовой схемы

Изобретение относится к электроизмерительной технике, а конкретно к мостовым методам измерения на переменном токе параметров плечевых комплексных сопротивлений, и может быть использовано в устройствах для измерения количества топлива, в частности в устройствах для измерения расхода топлива...
Тип: Изобретение
Номер охранного документа: 0002589273
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6dbd

Устройство для перекрытия канала

Заявленное устройство для перекрытия канала относится к машиностроительной гидравлике и может быть использовано в авиационной и ракетной технике, а также в других областях техники. Техническим результатом, достигаемым с помощью заявленного изобретения, является снижение усилий срабатывания,...
Тип: Изобретение
Номер охранного документа: 0002597348
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6f60

Устройство для определения параметров пространственного положения объектов

Изобретение относится к области автоматического управления и может быть использовано при построении высоконадежных резервированных устройств и систем, содержащих измерители с числоимпульсным выходом (датчики угловой скорости, акселерометры и т.д.), где наряду с достижением высокой надежности...
Тип: Изобретение
Номер охранного документа: 0002597463
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7827

Шаровой клапан

Изобретение относится к области машиностроения, в частности к ракетно-космической технике, и предназначено в качестве запорного клапана с ручным приводом. Шаровой клапан состоит из корпуса с входным и выходным штуцерами и двумя седлами. Указанные седла выполнены в виде уплотнительных элементов,...
Тип: Изобретение
Номер охранного документа: 0002599405
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7960

Дублированный электронасосный агрегат

Изобретение относится к области машиностроения и может быть использовано в системах терморегулирования изделий авиационной и ракетной техники. Дублированный электронасосный агрегат содержит составной из двух частей корпус (1). Внешняя часть (2) снабжена входным и выходным патрубками (3, 4) и...
Тип: Изобретение
Номер охранного документа: 0002599402
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7a2f

Осевой вентилятор

Заявленный осевой вентилятор может быть использован в системе терморегулирования авиационной и ракетной техники. Осевой вентилятор содержит корпус в виде цилиндрический оболочки и размещенной в ней втулки с радиальными выступами, внутри которой установлен электродвигатель с наружной...
Тип: Изобретение
Номер охранного документа: 0002599549
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7a98

Теплоизоляция агрегатов двигательной установки космического объекта и способ ее монтажа

Группа изобретений относится к теплоизоляции агрегатов двигательной установки космического объекта (ДУ КО). Теплоизоляция агрегатов ДУ КО содержит теплоизоляцию из пакетов экранно-вакуумной теплоизоляции (ЭВТИ) криогенного бака и гермооболочку криогенного бака поверх них из мягкого...
Тип: Изобретение
Номер охранного документа: 0002600032
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7aff

Устройство для парашютной посадки груза на посадочную поверхность

Изобретение относится к области спуска объектов в атмосфере на парашюте. Устройство для мягкой парашютной посадки груза на посадочную поверхность содержит парашют, основной и дополнительный грузы, соединенные гибкой связью, упругое звено, соединяющее парашют и основной груз. Абсолютное...
Тип: Изобретение
Номер охранного документа: 0002600028
Дата охранного документа: 20.10.2016
+ добавить свой РИД