×
27.02.2015
216.013.2d0a

Результат интеллектуальной деятельности: СПОСОБ ЛАБОРАТОРНОГО ОПРЕДЕЛЕНИЯ АНИЗОТРОПИИ АБСОЛЮТНОЙ ГАЗОПРОНИЦАЕМОСТИ НА ПОЛНОРАЗМЕРНОМ КЕРНЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области нефтедобычи, в частности к способам определения анизотропии проницаемости горных пород в лабораторных условиях, и предназначен для лабораторного определения коэффициента абсолютной газопроницаемости при стационарной фильтрации на образцах керна с сохраненным при выбуривании на скважине диаметром, в параллельных и перпендикулярном напластованию направлениях. Техническим результатом является повышение достоверности и точности определения анизотропии абсолютной газопроницаемости на полноразмерном керне за счет увеличения количества замеров горизонтальной газопроницаемости, а следовательно, увеличения информативности данного способа. Способ включает экстрагирование и высушивание керна, его исследование методом стационарной фильтрации через него газа с определением коэффициентов вертикальной и горизонтальной абсолютной газопроницаемости и последующий анализ результатов исследования и определение анизотропии абсолютной газопроницаемости. При определении коэффициента горизонтальной абсолютной газопроницаемости керна исследования проводят в шести горизонтальных направлениях с шагом измерения в 30°. После этого рассчитывают вертикальную анизотропию по шести направлениям, как отношение горизонтальной абсолютной газопроницаемости по каждому направлению к вертикальной. Также рассчитывают горизонтальную анизотропию, как отношение максимальной абсолютной газопроницаемости к минимальной, из определенных по шести горизонтальным направлениям. 2 з.п. ф-лы, 3 ил., 2 табл.

Изобретение относится к области нефтедобычи, в частности к способам определения анизотропии проницаемости горных пород в лабораторных условиях, и предназначен для лабораторного определения коэффициента абсолютной газопроницаемости при стационарной фильтрации на образцах керна с сохраненным при выбуривании на скважине диаметром, в параллельных и перпендикулярном напластованию направлениях. При реализации предлагаемого способа обеспечивается получение информации о фильтрационных свойствах горных пород, характеризующихся наличием элементов с ярко выраженными текстурными особенностями (плитчатость, переслаивание), наличием трещин и каверн размером более 2 мм.

Анизотропия газопроницаемости является одним из ключевых факторов при построении 3D геологической и гидродинамической моделей продуктивного пласта и при обосновании технологий разработки залежи нефти или газа. Под анизотропией здесь понимается различие значений коэффициентов абсолютной газопроницаемости в различных направлениях (вертикальном, горизонтальном). Измерение проницаемости на отобранном из пласта керновом материале является единственным прямым способом оценки его фильтрационных характеристик.

Известен способ определения анизотропии порового пространства и положения главных осей тензора проницаемости горных пород на керне (патент РФ №2492447), согласно которому проводят исследование керна, для этого первоначально керновый материал экстрагируют и высушивают, из него изготавливают пластину толщиной 3-5 мм. Затем на закрепленную пластину на горизонтальной поверхности дозированно по каплям на центр пластины подают дистиллированную воду, а наличие анизотропии и направление главных осей анизотропии проницаемости определяют по форме образующегося на пластине мокрого пятна. Техническим результатом указанного известного изобретения является создание экспресс-метода установления латеральной анизотропии фильтрационно-емкостных свойств пористых сред и положения главных осей тензора проницаемости горных пород на керне.

Недостатком этого известного способа является ограниченная область применения, а именно только для терригенных коллекторов, не осложненным трещинами и кавернами, что снижает его практическую ценность.

Также известен способ определения анизотропии проницаемости пласта в лабораторных условиях (патент РФ №2407889) на керновой колонке длиной 1 метр с сохраненным диаметром. Способ включает последующую подготовку колонок путем высушивания и/или экстрагирования или без такой подготовки. Для определения анизотропии проницаемости пласта используют специальную лабораторную установку.

Технический результат указанного известного способа заключается в повышении степени достоверности определения. Однако данный известный способ исследования очень сложно реализовать практически. Это объясняется следующим:

- как правило, отобрать керн длиной 1 м, особенно со сложной структурой порового пространства, не представляется возможным, так как обычно керновая колонка представлена кусками до полуметра;

- высокая сложность и длительность процесса экстрагирования керновой колонки данных размеров требует слишком больших трудозатрат;

- предложенная в известном способе экстракция керна в приборе Сокслета является в значительной степени иррациональной;

- исследование керна длиной 1 метр затрудняет возможность проведения исследований других физических свойств породы и получения основных корреляционных зависимостей «керн-керн».

Наиболее близким к предлагаемому техническому решению по технической сущности является способ лабораторного определения анизотропии абсолютной газопроницаемости на полноразмерном керне (Recommended Practice for Core Analysis. API. RP 40, second edition, February 1998), включающий экстрагирование и высушивание керна, его исследование методом стационарной фильтрации через него газа с определением коэффициентов вертикальной и горизонтальной абсолютной газопроницаемости, последующий анализ результатов исследования и определение анизотропии абсолютной газопроницаемости. При этом горизонтальную проницаемость измеряют по двум направлениям: одно по направлению предполагаемой максимальной проницаемости (вдоль основного растрескивания), другое - под углом 90° от максимального. В указанном способе направление, параллельное плоскости напластования, определяется как горизонтальная проницаемость, перпендикулярное плоскости напластования - вертикальная проницаемость. Однако и этот способ не лишен недостатков, а именно:

- значение предполагаемой максимальной горизонтальной фильтрации в породе может не соответствовать выбранному направлению, тем самым можно ошибочно предположить, что в случае равенства полученных значений по результатам двух замеров горизонтальная проницаемость является изотропной. В результате этого в дальнейшем может возникнуть ошибка при расчете анизотропии.

- сложно выявить минимальное и максимальное значения горизонтальной проницаемости, ввиду недостаточной информативности о распределении потока фильтрации в образце при выполнении только двух замеров.

Технический результат, достигаемый предлагаемым способом, заключается в повышении достоверности и точности определения анизотропии абсолютной газопроницаемости на полноразмерном керне за счет увеличения количества замеров горизонтальной газопроницаемости, а следовательно, увеличения информативности данного способа.

Указанный технический результат достигается предлагаемым способом лабораторного определения анизотропии абсолютной газопроницаемости на полноразмерном керне, включающим экстрагирование и высушивание керна, его исследование методом стационарной фильтрации через него газа с определением коэффициентов вертикальной и горизонтальной абсолютной газопроницаемости, последующий анализ результатов исследования и определение анизотропии абсолютной газопроницаемости, при этом новым является то, что при определении коэффициента горизонтальной абсолютной газопроницаемости керна исследования проводят в шести горизонтальных направлениях с шагом измерения в 30°, после этого рассчитывают вертикальную анизотропию по шести направлениям, как отношение горизонтальной абсолютной газопроницаемости по каждому направлению к вертикальной; также рассчитываются горизонтальную анизотропию, как отношение максимальной абсолютной газопроницаемости к минимальной, из определенных по шести горизонтальным направлениям.

При определении коэффициента вертикальной абсолютной газопроницаемости керна фильтрацию газа через него проводят в перпендикулярном напластованию направлении.

При определении коэффициента горизонтальной абсолютной газопроницаемости керна фильтрацию газа через него проводят в параллельном напластованию направлении.

Рассмотрим отличительные признаки предлагаемого изобретения. Новым в предлагаемом способе является следующее:

- определение коэффициента горизонтальной абсолютной газопроницаемости керна исследования проводят в шести горизонтальных направлениях с шагом измерения 30°,

- анизотропию абсолютной газопроницаемости при этом рассчитывают как между вертикальным и любым горизонтальным направлениям - вертикальная анизотропия, так и между максимальным и минимальным горизонтальными направлениями - горизонтальная анизотропия.

При определении коэффициента вертикальной абсолютной газопроницаемости керна фильтрацию газа через него проводят в перпендикулярном напластованию направлении. При определении коэффициента горизонтальной абсолютной газопроницаемости керна фильтрацию газа через него проводят в параллельных напластованию направлениях.

Достижение указанного технического результата обеспечивается за счет следующего.

Благодаря тому, что керн предварительно экстрагируют и высушивают, обеспечивается определение абсолютной газопроницаемости горной породы без присутствия в поровом пространстве углеводородов и водных растворов.

Подготовленный таким образом образец керна исследуют методом стационарной фильтрации через него газа, с помощью газового пермеаметра, оснащенного кернодержателем Хасслера. Метод заключается в определении постоянной (стационарной) скорости фильтрации газа через образец горной породы в вертикальном и шести горизонтальных направлениях под действием разности давлений. При стационарной фильтрации скорость определяется известным объемом газа, прошедшим через образец за фиксированный отрезок времени при постоянной разности давлений. Для равномерного распределения потока газа по керну и от керна применяют проницаемые экраны различной конструкции. Направление, параллельное плоскости напластования, стандартизуется как горизонтальная проницаемость. Для изучения симметрии порового пространства горизонтальную проницаемость измеряют в шести направлениях с шагом измерений 30°. Измерений в шести направлениях достаточно, чтобы всесторонне охарактеризовать значение данного параметра, так как измерение по одному направлению, например 30°-210°, характеризует и проницаемость в обратном направлении - 210°-30°. Таким образом, охватываются все 360°. Направление, перпендикулярное плоскости напластования, стандартизуется как вертикальная проницаемость.

Благодаря тому, что при определении коэффициента горизонтальной абсолютной газопроницаемости керна исследования проводят в шести горизонтальных направлениях, с получением шести показателей, расширяется информативная база данных (в прототипе получают только два показателя), а значит, последующий расчет анизотропии абсолютной газопроницаемости производят с учетом уже всех полученных расширенных результатов, что повышает достоверность и точность определения фильтрационных свойств породы. В этом новизна предлагаемого способа.

Прием определения коэффициента вертикальной абсолютной газопроницаемости керна путем фильтрации газа через него в перпендикулярном напластованию направлении и прием определения коэффициента вертикальной абсолютной газопроницаемости керна путем фильтрации газа через него в параллельных напластованию направлениях, являются известными.

Сущность предлагаемого способа иллюстрируется графически.

На рис.1 представлен образец полноразмерного азимутально-ориентированного керна с разметкой измерения горизонтальной проницаемости по шести направлениям с шагом 30°, с ориентировкой север-юг.

На рис.2 показан профиль изменения абсолютной горизонтальной газопроницаемости образца керна. На диаграмме показаны направления измерений через каждые 30°, по которым откладываются значения абсолютной газопроницаемости, полученные по каждому из направлений. Все значения проницаемости соединяются ломаной линией, характеризующей изменения абсолютной газопроницаемости по направлениям.

На рис.3 представлена схема направления фильтрации газа через образец керна в кернодержателе Хасслера, (а) - измерение вертикальной проницаемости; (б) - измерение горизонтальной проницаемости.

Предлагаемый способ реализуется на конкретном примере следующим образом.

1. Подготовка образцов керна к анализу.

Образцы изготавливают из куска керна с сохраненным при выбуривании на скважине диаметром путем параллельного отрезания торцов и шлифовки. Торцы образца должны быть строго взаимно параллельны и перпендикулярны оси образца, оптимальная высота образца 11-15 см. На выпиленном образце черной несмываемой тушью указывают глубину верхнего и нижнего торцов, лабораторный номер образца, а также наносят линии через 30°, соответствующие направлениям фильтрации.

Образцы очищают от углеводородов путем экстрагирования. В качестве растворителей используют толуол или смесь спирта и бензола в соотношении 1:1, высушивают в сушильном шкафу при температуре 105° ±5°С и после сушки охлаждают и хранят в эксикаторе над прокаленным хлористым кальцием.

Определяют размеры образцов штангенциркулем как среднее из 3-5 определений в каждом направлении с погрешностью до 0,1 мм.

2. Определение вертикальной абсолютной газопроницаемости.

В соответствии с диаметром образца керна 1, выбирают нужный диаметр кернодержателя Хасслера, (рис.3), состоящий из корпуса 3, нижнего плунжера 4, верхнего плунжера 5 и резиновой манжеты 2.

Открывают верхнюю пневматическую линию «от пермеаметра» и нижнюю «к пермеаметру», закрывают нижнюю «от пермеаметра» (рис.3,а).

Образец керна 1 загружают в кернодержатель, установив между ним и верхним ллунжером 5 и нижним плунжером 4 дисковые проницаемые экраны 6.

Создают давление бокового обжима образца в пределах 350-400 Psi (2,413-2,758 МПа) с помощью пневматической системы 8.

Устанавливают поток газа через образец керна. Измеряют перепад давления ΔР на входе и выходе образца.

Выполняют трехкратное измерение расхода газа через образец 1 при различных перепадах давления. Измерения расхода газа проводят с перерывами в 3-10 минут, пока расход газа не станет постоянным.

3. Определение горизонтальной абсолютной газопроницаемости.

Устанавливают вертикальные проницаемые экраны 6 (рис.3,б) на нижний плунжер 4 кернодержателя диаметрально противоположно друг к другу. Каждый экран 6 должен быть на 1/4 окружности керна.

Закрывают запорный клапан на верхнем плунжере 5 кернодержателя. Открывают нижние линии «от пермеаметра» и «к пермеаметру». Это обеспечит прохождение газа от пермеаметра через нижний плунжер, правый экран 6, боковую поверхность образца 1, образец 1 - к левому приемному экрану 6 и далее, через нижний плунжер 4 (рис.3,б.).

Устанавливают образец 1 на нижний плунжер 4 между экранами, сверху и снизу образца устанавливают резиновые прокладки 7, не имеющие осевого отверстия.

Создают давление бокового обжима образца в пределах 350-400 Psi (2,413-2,758 МПа) с помощью пневматической системы 8.

Устанавливают поток газа через образец керна. Измеряют перепад давления ΔР на входе и выходе образца 1.

Выполняют трехкратное измерение расхода газа через образец 1 при различных перепадах давления. Измерения расхода газа проводят с перерывами в 3-10 минут, пока расход газа не станет постоянным.

После этого образец 1 поворачивают на 30° и вновь повторяют все измерения. Всего проводят 6 измерений горизонтальной газопроницаемости. Для этого на торце образца размечают основные направления измерений (рис.1). Для азимутально-ориентированного керна за начало отсчета принимают ориентационную линию север-юг.

4. Последующий анализ результатов исследования и определение анизотропии абсолютной газопроницаемости.

Коэффициент вертикальной газопроницаемости при стационарной фильтрации вычисляют по формуле:

где Кв - коэффициент вертикальной газопроницаемости, измеренный при заданном среднем давлении в образце, мД (миллидарси);

µ - вязкость газа при условиях фильтрации, мПа·с (миллипаскаль-секунда);

Q - расход газа, прошедшего через образец, см3/с;

Ра - атмосферное давление, атм;

ΔР - перепад давления на образце между входом и выходом, атм;

P1 - избыточное давление на входе в образец, атм;

Р2 - избыточное давление на выходе из образца, атм;

L - длина образца, см;

F - площадь поперечного сечения образца, см2.

Коэффициент горизонтальной газопроницаемости для каждого направления из шести направлений при стационарной фильтрации вычисляют по формуле:

где Кг - коэффициент горизонтальной газопроницаемости, измеренный при заданном среднем давлении в образце, мД (миллидарси);

µ - вязкость газа при условиях фильтрации, мПа·с (миллипаскаль-секунда);

Q - расход газа, прошедшего через образец, см3/с;

ΔР - перепад давления на образце между входом и выходом, атм;

L - высота проницаемого экрана, см.

k - структурный коэффициент. Для проницаемых экранов, каждый из которых закрывает ¼ поверхности керна k=1.

Затем по результатам измерения горизонтальной проницаемости в шести направлениях строят профиль проницаемости (рис.2).

Вертикальная анизотропия абсолютной газопроницаемости определяется как отношение горизонтальной абсолютной газопроницаемости, определенной по одному из шести направлений, к вертикальной. Таким образом, рассчитываются шесть значений анизотропии по каждому направлению.

Горизонтальная анизотропия абсолютной газопроницаемости определяется как отношения максимальной абсолютной газопроницаемости к минимальной, полученные в ходе шести замеров.

Исследования показали, что предлагаемый способ имеет диапазон измерения (1·102-5·104) мД и относительную погрешность определения абсолютной газопроницаемости 10%.

Предлагаемый способ был испытан на 35 образцах керна.

Результаты испытаний приведены в таблице 1.

Для проверки достоверности измерений предлагаемым способом был выполнен ряд определений проницаемости на одном и том же образце (таблица 2). Приведенные в этой таблице 2 результаты измерений однозначно подтверждают необходимую точность данного способа.

Таким образом, предлагаемый способ позволяет достоверно определить значения проницаемости по вертикали и горизонтали, при этом выявив направления максимальной и минимальной фильтрации.


СПОСОБ ЛАБОРАТОРНОГО ОПРЕДЕЛЕНИЯ АНИЗОТРОПИИ АБСОЛЮТНОЙ ГАЗОПРОНИЦАЕМОСТИ НА ПОЛНОРАЗМЕРНОМ КЕРНЕ
СПОСОБ ЛАБОРАТОРНОГО ОПРЕДЕЛЕНИЯ АНИЗОТРОПИИ АБСОЛЮТНОЙ ГАЗОПРОНИЦАЕМОСТИ НА ПОЛНОРАЗМЕРНОМ КЕРНЕ
СПОСОБ ЛАБОРАТОРНОГО ОПРЕДЕЛЕНИЯ АНИЗОТРОПИИ АБСОЛЮТНОЙ ГАЗОПРОНИЦАЕМОСТИ НА ПОЛНОРАЗМЕРНОМ КЕРНЕ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 60.
27.02.2014
№216.012.a660

Тампонажный состав для цементирования горизонтальных стволов скважин

Изобретение относится к нефтегазодобывающей промышленности, а именно к строительству скважин, в основном к цементированию эксплуатационных колонн, расположенных в наклонно-направленной (с отклонением от вертикали более 45°) и горизонтальной части ствола. Технический результат заключается в...
Тип: Изобретение
Номер охранного документа: 0002508307
Дата охранного документа: 27.02.2014
20.04.2014
№216.012.ba90

Способ строительства нефтегазовой скважины

Изобретение относится к строительству нефтяных и газовых скважин, в частности к способам экологически безопасной утилизации буровых сточных вод при проведении буровых работ на суше. Способ включает экспериментальные исследования, на основании которых устанавливают допустимую норму объема...
Тип: Изобретение
Номер охранного документа: 0002513488
Дата охранного документа: 20.04.2014
10.08.2014
№216.012.e8df

Тампонажный материал для установки мостов в скважине, пробуренной на инвертно-эмульсионном буровом растворе (варианты)

Изобретение относится к области нефтедобычи, в частности к строительству и ремонту скважин, пробуренных на инвертно-эмульсионном буровом растворе (ИЭР), и может быть использовано при установке мостов. Технический результат - обеспечение гарантированной надежности установки цементных...
Тип: Изобретение
Номер охранного документа: 0002525408
Дата охранного документа: 10.08.2014
10.02.2015
№216.013.2420

Способ вскрытия продуктивного пласта на депрессии

Изобретение относится к области нефтяной и газовой промышленности, а именно к способам вскрытия скважинами продуктивных горизонтов. Способ включает спуск в скважину колонны бурильных труб с долотом и контейнерами с манометрами. После промывки ствола проводят исследования по установлению режимов...
Тип: Изобретение
Номер охранного документа: 0002540701
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2449

Гидрофобный кислотно-мицеллярный состав для глушения, освоения и вторичного вскрытия продуктивных пластов, пробуренных с использованием буровых растворов на неводной основе

Изобретение относится к области строительства скважин и нефтедобычи, в частности к составам для обработки призабойной зоны пласта, представленного терригенным водочувствительным коллектором, и может быть использовано в качестве жидкости глушения, освоения и вторичного вскрытия, в качестве...
Тип: Изобретение
Номер охранного документа: 0002540742
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.293c

Тампонажный раствор для цементирования нефтяных и газовых скважин

Изобретение относится к тампонажным растворам, используемым при цементировании нефтяных и газовых скважин. Тампонажный раствор для цементирования нефтяных и газовых скважин, содержащий портландцемент, пенетрирующую добавку, понизитель водоотдачи, пластификатор, пеногаситель и воду, отличается...
Тип: Изобретение
Номер охранного документа: 0002542013
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.296e

Тампонажный состав для изоляции зон интенсивного поглощения

Изобретение относится к области строительства и ремонта нефтегазовых скважин, а именно к тампонажным изоляционным составам. Технический результат заключается в повышении степени изолирующих свойств предлагаемого состава при изоляции интервалов поглощения скважинных жидкостей в пористых,...
Тип: Изобретение
Номер охранного документа: 0002542063
Дата охранного документа: 20.02.2015
20.09.2015
№216.013.7e03

Способ бурения скважин, осложненных поглощающими горизонтами

Изобретение относится к бурению нефтяных и газовых скважин, а именно к способам предупреждения и ликвидации поглощений бурового раствора в процессе строительства скважины. Технический результат - повышение эффективности способа бурения скважин, осложненных поглощающими горизонтами, при...
Тип: Изобретение
Номер охранного документа: 0002563856
Дата охранного документа: 20.09.2015
27.12.2015
№216.013.9d5a

Морская ледостойкая платформа

Изобретение относится к гидротехническим сооружениям, в частности к стационарным морским многофункциональным платформам для бурения скважин и добычи углеводородного сырья на мелководных акваториях с сезонным ледяным покровом, и может быть использовано в конструкциях морских ледостойких...
Тип: Изобретение
Номер охранного документа: 0002571912
Дата охранного документа: 27.12.2015
27.12.2015
№216.013.9ddb

Оборудование для одновременно-раздельной эксплуатации нефтяного и газоносного пластов в скважине

Изобретение относится к устройствам для одновременно-раздельной эксплуатации двух пластов в скважине. Оборудование включает колонну внешних насосно-компрессорных труб с отверстиями и обратным клапаном, внутрь которых спущена коаксиально расположенная колонна внутренних насосно-компрессорных...
Тип: Изобретение
Номер охранного документа: 0002572041
Дата охранного документа: 27.12.2015
Показаны записи 11-20 из 36.
20.12.2013
№216.012.8e36

Способ подготовки структур, перспективных для поисково-разведочного бурения на нефть и газ

Изобретение относится к области глубинного структурного картирования поднятий, перспективных на нефть и газ. Сущность: проводят сейсмические измерения МОГТ на площади, перспективной в нефтегазоносном отношении. Выполняют обработку и структурную интерпретацию сейсмических данных, получая...
Тип: Изобретение
Номер охранного документа: 0002502089
Дата охранного документа: 20.12.2013
20.02.2014
№216.012.a2b8

Способ строительства горизонтальных скважин в интервалах неустойчивых отложений (варианты)

Изобретение относится к нефтяной промышленности для строительств пологих и горизонтальных скважин в сложных гидрогеологических условиях. Технический результат- возможность бурения скважин по терригенным девонским отложениям без ограничения величины зенитного угла, по песчаникам под...
Тип: Изобретение
Номер охранного документа: 0002507371
Дата охранного документа: 20.02.2014
27.02.2014
№216.012.a660

Тампонажный состав для цементирования горизонтальных стволов скважин

Изобретение относится к нефтегазодобывающей промышленности, а именно к строительству скважин, в основном к цементированию эксплуатационных колонн, расположенных в наклонно-направленной (с отклонением от вертикали более 45°) и горизонтальной части ствола. Технический результат заключается в...
Тип: Изобретение
Номер охранного документа: 0002508307
Дата охранного документа: 27.02.2014
20.04.2014
№216.012.ba90

Способ строительства нефтегазовой скважины

Изобретение относится к строительству нефтяных и газовых скважин, в частности к способам экологически безопасной утилизации буровых сточных вод при проведении буровых работ на суше. Способ включает экспериментальные исследования, на основании которых устанавливают допустимую норму объема...
Тип: Изобретение
Номер охранного документа: 0002513488
Дата охранного документа: 20.04.2014
10.08.2014
№216.012.e8df

Тампонажный материал для установки мостов в скважине, пробуренной на инвертно-эмульсионном буровом растворе (варианты)

Изобретение относится к области нефтедобычи, в частности к строительству и ремонту скважин, пробуренных на инвертно-эмульсионном буровом растворе (ИЭР), и может быть использовано при установке мостов. Технический результат - обеспечение гарантированной надежности установки цементных...
Тип: Изобретение
Номер охранного документа: 0002525408
Дата охранного документа: 10.08.2014
10.02.2015
№216.013.2420

Способ вскрытия продуктивного пласта на депрессии

Изобретение относится к области нефтяной и газовой промышленности, а именно к способам вскрытия скважинами продуктивных горизонтов. Способ включает спуск в скважину колонны бурильных труб с долотом и контейнерами с манометрами. После промывки ствола проводят исследования по установлению режимов...
Тип: Изобретение
Номер охранного документа: 0002540701
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2449

Гидрофобный кислотно-мицеллярный состав для глушения, освоения и вторичного вскрытия продуктивных пластов, пробуренных с использованием буровых растворов на неводной основе

Изобретение относится к области строительства скважин и нефтедобычи, в частности к составам для обработки призабойной зоны пласта, представленного терригенным водочувствительным коллектором, и может быть использовано в качестве жидкости глушения, освоения и вторичного вскрытия, в качестве...
Тип: Изобретение
Номер охранного документа: 0002540742
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.293c

Тампонажный раствор для цементирования нефтяных и газовых скважин

Изобретение относится к тампонажным растворам, используемым при цементировании нефтяных и газовых скважин. Тампонажный раствор для цементирования нефтяных и газовых скважин, содержащий портландцемент, пенетрирующую добавку, понизитель водоотдачи, пластификатор, пеногаситель и воду, отличается...
Тип: Изобретение
Номер охранного документа: 0002542013
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.296e

Тампонажный состав для изоляции зон интенсивного поглощения

Изобретение относится к области строительства и ремонта нефтегазовых скважин, а именно к тампонажным изоляционным составам. Технический результат заключается в повышении степени изолирующих свойств предлагаемого состава при изоляции интервалов поглощения скважинных жидкостей в пористых,...
Тип: Изобретение
Номер охранного документа: 0002542063
Дата охранного документа: 20.02.2015
20.09.2015
№216.013.7e03

Способ бурения скважин, осложненных поглощающими горизонтами

Изобретение относится к бурению нефтяных и газовых скважин, а именно к способам предупреждения и ликвидации поглощений бурового раствора в процессе строительства скважины. Технический результат - повышение эффективности способа бурения скважин, осложненных поглощающими горизонтами, при...
Тип: Изобретение
Номер охранного документа: 0002563856
Дата охранного документа: 20.09.2015
+ добавить свой РИД