×
27.02.2015
216.013.2c3f

ЗАЩИТНОЕ ПОКРЫТИЕ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к тепловой защите элементов конструкции космического аппарата (КА) от воздействия ионизированных газовых потоков, преимущественно стационарных плазменных двигателей. Защитное покрытие выполнено в виде алюминиевой фольги, закрывающей указанные элементы КА. На внешней стороне фольги микродуговым оксидированием сформирован слой оксида алюминия толщиной не менее 30 мкм. Алюминиевую фольгу на поверхности защищаемых элементов закрепляют механическим путем либо наклеивают. По результатам испытаний и расчетов предлагаемое защитное покрытие обеспечит активное существование КА на протяжении 15 лет и более. Техническим результатом изобретения является повышение срока службы защитного покрытия в условиях эрозионного воздействия плазмы указанных двигателей КА. 3 табл.
Основные результаты: Защитное покрытие, выполненное в виде ленты, закрывающей элементы конструкции космического аппарата, подвергающиеся воздействию ионизированного газового потока, отличающееся тем, что в качестве ленты применена алюминиевая фольга, на внешней стороне которой микродуговым оксидированием сформирован слой оксида алюминия толщиной не менее 30 мкм.
Реферат Свернуть Развернуть

Изобретение относится к защитным покрытиям и может быть использовано в качестве защиты от воздействия ионизированных газовых потоков стационарных плазменных двигателей на элементы космического аппарата (КА) со сроком активного существования 15 и более лет.

Жесткие требования по массе, энерговооруженности и повышенные требования к ресурсу и надежности КА приводят к уплотнению его компоновочной схемы. Как следствие, возрастает эрозионное воздействие стационарных плазменных двигателей (СПД), используемых в качестве двигателей коррекции, на материалы элементов конструкции КА. Эрозионное воздействие плазменных струй СПД заключается в уносе материала конструкции в результате длительной бомбардировки ионами газа, что приводит к уменьшению их толщины и к загрязнению внешних поверхностей КА продуктами распыления.

Предварительная оценка эрозионно-загрязняющего воздействия плазмы, генерируемой стационарными плазменными двигателями, на поверхности панелей солнечных батарей и терморегулирующих покрытий радиатора системы терморегулирования космического аппарата позволяет сделать вывод о существенном влиянии СПД на оптические приборы и поверхности солнечных батарей КА (статья В.А. Смирнова, А.Б. Надирадзе и др. Исследование загрязняющего воздействия собственной внешней атмосферы и плазмы стационарных плазменных двигателей на космическом аппарате «Экспресс-АМ» / Вестник Сиб. гос. аэрокосмич. ун-та: сб. науч. тр. / Сиб. гос. аэрокосмич. ун-т. Красноярск, 2006. Вып. 2(9). С 46-50); статья А.Б. Надирадзе, P.P. Рахматуллина и др. Особенности экспериментального определения стойкости композиционных материалов к эрозионному воздействию струй стационарных плазменных двигателей» / Вестник Сиб. гос. аэрокосмич. ун-та: сб. науч. тр. / Сиб. гос. аэрокосмич. ун-т. Красноярск, 2012. Вып. 1. С 91-96).

Значение деградации коэффициента поглощения солнечной радиации терморегулирующего покрытия радиатора системы терморегулирования КА вследствие загрязнения продуктами эрозии панелей солнечной батареи равно 0,12, что является недопустимо высоким, так как допускаемое значение деградации коэффициента поглощения от воздействия всех факторов, например, на платформе «Экспресс-1000Н» составляет 0,16.

Известно применение в качестве защиты от эрозионного воздействия плазменных струй СПД элементов конструкций КА, функционирующих на геостационарных орбитах, полимерной ленты - полиимидной пленки с липким слоем Л1-ПМ (ТУ 2255-066-00203536-2000). Толщина пленки 40 мкм. Пленка наклеивается на защищаемые поверхности при помощи липкого слоя согласно техническому регламенту ОАО «Информационные спутниковые системы» имени академика М.Ф. Решетнева» ТР №370-762-48.

Полиимидная пленка изготавливается путем полива раствора полипиромеллитамидокислоты в диметилформамиде (или диметилацетамиде) на бесконечную ленту с последующей термоимидизацией. Полиимидная пленка обладает высокими механическими и электрическими свойствами, мало изменяющимися в широком интервале температур. Особенностью пленки является высокая радиационная стойкость.

К недостаткам полиимидной пленки следует отнести невысокую эрозионную стойкость, не позволяющую эксплуатировать ее на протяжении 15 и более лет.

Задачей изобретения является повышение срока службы защитного покрытия от эрозионного воздействия плазмы стационарных плазменных двигателей.

Поставленная задача достигается тем, что в известном защитном покрытии, выполненном в виде ленты, закрывающей элементы конструкции, подвергающиеся воздействию ионизированного газового потока, согласно техническому решению в качестве ленты применена алюминиевая фольга, на внешней стороне которой микродуговым оксидированием сформирован слой оксида алюминия толщиной не менее 30 мкм.

Защитное покрытие изготавливают следующим образом. На алюминиевой ленте, в качестве которой используют алюминиевую фольгу АД1 по ГОСТ 4784-74 толщиной 100 мкм, микродуговым оксидированием формируют слой оксида алюминия толщиной 30 мкм.

Микродуговое оксидирование проводили на установке ИАТ-Т, источник питания которой позволяет осуществлять независимую регулировку анодной и катодной составляющих тока и имеет следующие технические характеристики: диапазон регулируемых напряжений - (0-800) В; диапазон регулируемых токов - (0-120) А/дм2; погрешность стабилизации тока до 5%.

В качестве электролита использовали слабощелочные водные растворы различных составов.

Слой оксида алюминия формировали на одной стороне алюминиевой фольги при соотношении Iк/Ia от 0,6 до 1,4, плотностях тока в диапазоне от 10 до 40 А/дм2. Продолжительность обработки составляла 10…60 мин. Размеры образцов 160×130 мм.

Экспериментально выявлено, что оптимальными режимами получения слоя оксида алюминия в составе защитного покрытия являются следующие режимы обработки: плотность тока 15 А/дм2, соотношение анодной и катодной составляющей тока Iк/Ia<1, время обработки от 20 до 40 мин.

Режимы получения оксидного слоя в защитном покрытии приведены в таблице 1.

Таблица 1
Электролит Плотность тока анода, А/дм2 Плотность тока катода, А/дм2 Время обработки, мин Толщина слоя оксида алюминия, мм.
1 КОН - 4 г/л Na2SiO3 - 10 г/л 15 15 40 0,03
2 КОН - 4 г/л Na2SiO3 - 70 г/л 15 15 40 0,033
3 КОН - 4 г/л Na2SiO3 - 180 г/л 15 15 40 0,035
4 Na6P6O12 - 40 г/л 15 15 30 0,022

Для проведения испытаний на воздействие факторов хранения и эксплуатации изготовили образцы защитного покрытия размером 100×100 мм.

На образцах были проведены следующие виды испытаний:

- цикличное сгибание на диаметре 20 мм;

- измерение поверхностного сопротивления;

- радиационное воздействие;

- термоциклирование;

- стойкость к воздействию плазмы.

Образцы подвергли циклическому сгибанию по боковой поверхности цилиндра диаметром 20 мм и последующему разгибанию в плоскость. Количество циклов 50. Внешний вид покрытий после воздействия не изменился. Наличия трещин и отслоений покрытия не обнаружено.

Измерение поверхностного сопротивления проводилось на тераомметре Е6-13А. Сопротивление поверхности составляет 7,1·107-8,6·107 Ом/□.

Испытания на радиационное воздействие проводились на электронном ускорителе ЭЛУ-4 в НИИ интроскопии. Образцы облучались электронами в среде азота до поглощенной дозы 6·108 рад. Средняя энергия электронов в плоскости размещения образцов - 4 МэВ, средняя плотность потока электронов 4,2·1010 см-2с-1.

После радиационного воздействия образцы подвергли термоциклированию.

Испытание на воздействие термоциклов проводилось в вакуумной камере УКГ-1000, при остаточном давлении не более 5·10-6 мм рт.ст. Образцы располагались на термостоле, сверху закрывались теплоизолирующими матами. Нагрев и охлаждение осуществлялись за счет теплового контакта и радиационного излучения с поверхности термостола. Нагрев термостола осуществлялся лампами типа КГ-127-1000, а охлаждение жидким азотом. Скорость нагрева-охлаждения составляла от 5 до 10 градусов в минуту. Излучение от ламп на поверхность образцов не попадало. Температура контролировалась с помощью датчиков температуры типа «термометры платиновые ТП 018-03». Термоциклирование в количестве 100 циклов проводилось в диапазоне температур от минус 150°С до плюс 170°С с выдержкой при крайних температурах в течение 10 минут.

После термоциклирования проводился визуальный осмотр внешнего вида образцов. Нарушений внешнего вида покрытий не наблюдалось.

Для оценки эрозионного износа от воздействия плазмы СПД провели испытания трех видов покрытий: алюминиевой фольги, полиимидной пленки и заявляемого защитного покрытия из алюминиевой фольги со слоем оксида алюминия толщиной 30 мкм, сформированным микродуговым оксидированием.

Из каждого материала было изготовлено по 4 образца размером 30×30 мм, которые укладывались в зоне облучения в шахматном порядке.

Испытания на стойкость к воздействию плазмы проводились на установке имитационной аргоновой плазмы на базе вакуумной камеры «Булат», которая позволяет при испытаниях сравнивать характеристики стойкости материалов к воздействию плазмы и получить предварительную оценку распыления материалов.

Режимы испытания в камере «Булат»: ток на катушке соленоида - 2,5 А, напряжение на аноде - в переделах 800 В, ток разряда - 15 мА. Расчетное значение плотности теплового потока, создаваемого плазменной струей ионного источника, составила 0,008 Вт/см2. Расстояние от столика с образцами до генератора плазмы равно 150 мм. Угол падения ионов на поверхности образцов - около 90°. Длительность обработки - 60 мин.

До и после воздействия пучка ионов на образцы производилось взвешивание образцов на прецизионных электронных весах HR-202, а также измерение толщины контактным способом с использованием многооборотного индикатора. Толщину образцов измеряли в нескольких точках, затем вычислили среднее значение. Процентное значение изменения массы образца в результате распыления плазмой рассчитывали по формуле

,

где Мдо - масса образца до испытаний, г;

Мпосле - масса образца после испытания, г.

Толщину образцов контролировали толщиномером ТТ260 и на поперечных шлифах при помощи оптического микроскопа.

Полученные экспериментальные данные по изменению массы исследуемых образцов приведены в таблице 2, а по изменению толщины - в таблице 3.

Таблица 2
Изменение массы исследуемых образцов
Образцы Масса образцов, г Изменение массы, г (Мдопосле) ΔМ, %
Мдо Мпосле
Полиимидное покрытие (ПМ) 1 0,22837 0,22679 0,00158 0,692
2 0,23180 0,23021 0,00159 0,686
3 0,23860 0,23713 0,00147 0,616
4 0,23080 0,22951 0,00129 0,559
Среднее значение 0,00148 0,638
Заявляемое покрытие 1 0,42781 0,42728 0,00053 0,124
2 0,42818 0,42751 0,00067 0,156
3 0,46758 0,46683 0,00075 0,160
4 0,45172 0,45112 0,00060 0,133
Среднее значение 0,00079 0,154
Алюминиевая фольга без МДО (АД1) 1 0,41936 0,41904 0,00032 0,076
2 0,42135 0,42104 0,00031 0,073
3 0,42358 0,42329 0,00029 0,068
4 0,42582 0,42552 0,00030 0,070
Среднее значение 0,00031 0,072

Таблица 3
Изменение толщины исследуемых образцов
Образцы Толщина образцов, мм Изменение толщины (Тдопосле), мм
Тдо Тпосле
Полиимидное покрытие (ПМ) 1 0,097 0,096 0,001
2 0,105 0,098 0,007
3 0,103 0,099 0,004
4 0,100 0,0,97 0,003
Среднее значение 0,00375
Заявляемое покрытие 1 0,121 0,121 0
2 0,125 0,124 0,001
3 0,129 0,128 0,001
4 0,111 0,110 0,001
Среднее значение 0,00075
Алюминиевая фольга без МДО (АД1) 1 0,096 0,094 0,002
2 0,096 0,093 0,002
3 0,096 0,092 0,004
4 0,096 0.094 0,002
Среднее значение 0,0025

Анализ данных таблиц 2, 3 позволяет сделать вывод о том, что заявляемое защитное покрытие является наиболее стойким к воздействию плазмы стационарных плазменных двигателей.

Алюминиевую фольгу с внешним слоем оксида алюминия накладывают на поверхности, подвергающиеся воздействию плазменных струй СПД, и закрепляют либо механическим путем либо наклеивают.

Проведенные испытания и расчеты показывают, что защитное покрытие в виде алюминиевой фольги, на внешней стороне которой микродуговым оксидированием сформирован слой оксида алюминия толщиной не менее 30 мкм, обеспечит активное существование КА на протяжении 15 лет.

Защитное покрытие, выполненное в виде ленты, закрывающей элементы конструкции космического аппарата, подвергающиеся воздействию ионизированного газового потока, отличающееся тем, что в качестве ленты применена алюминиевая фольга, на внешней стороне которой микродуговым оксидированием сформирован слой оксида алюминия толщиной не менее 30 мкм.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 27.
20.02.2013
№216.012.288c

Микрополосковый полосно-пропускающий фильтр

Микрополосковый полосно-пропускающий фильтр относится к технике сверхвысоких частот и может быть использован в селективных трактах приемных и передающих систем. Достигаемый технический результат-повышение технологичности изготовления, а также улучшение его селективных свойств. Микрополосковый...
Тип: Изобретение
Номер охранного документа: 0002475900
Дата охранного документа: 20.02.2013
10.06.2013
№216.012.4936

Гидростатическая опора

Изобретение относится к области машиностроения и может найти применение в станкостроении в качестве адаптивных опорных модулей незамкнутых гидростатических направляющих, а также в других ответственных гидростатических опорах с плоскими рабочими поверхностями скольжения. Гидростатическая опора...
Тип: Изобретение
Номер охранного документа: 0002484322
Дата охранного документа: 10.06.2013
10.07.2013
№216.012.54ad

Регулятор для гидростатических опор

Изобретение относится к области машиностроения и может найти применение в станкостроении в системах питания замкнутых и незамкнутых гидростатических опор, работающих в условиях оппозитного нагружения, а также в системах адаптивного управления положением шпинделя или направляющих. Регулятор...
Тип: Изобретение
Номер охранного документа: 0002487280
Дата охранного документа: 10.07.2013
10.08.2013
№216.012.5c3d

Способ размерной электрохимической обработки

Изобретение относится к электрофизическим и электрохимическим методам обработки и может быть использовано при электрохимической обработке длинномерных деталей. В способе размерную электрохимическую обработку детали осуществляют электродом-инструментом, содержащим токопроводящий корпус с...
Тип: Изобретение
Номер охранного документа: 0002489234
Дата охранного документа: 10.08.2013
27.01.2014
№216.012.9d11

Электронный генератор электроэнергии

Электронный генератор электроэнергии относится к электротехнике, а именно к производству электроэнергии. Электронный генератор электроэнергии содержит реактор электронной плазмы (1), заполненный рабочей средой (разреженный инертный газ с примесью материалов с малой энергией ионизации), в...
Тип: Изобретение
Номер охранного документа: 0002505915
Дата охранного документа: 27.01.2014
27.02.2014
№216.012.a710

Гидростатическая опора

Изобретение относится к области машиностроения и может найти применение в шпиндельных узлах, а также в других ответственных узлах с гидростатическими, аэростатическими или комбинированными опорами скольжения. Опора состоит из корпуса (1), вала (2), втулки (3) и плавающего кольца (4). В корпусе...
Тип: Изобретение
Номер охранного документа: 0002508483
Дата охранного документа: 27.02.2014
20.03.2014
№216.012.ad77

Способ создания электродинамической тяги

Изобретение относится к области электротехники и может быть использован при создании аэрокосмических транспортных средств и аппаратов, а также приводов наземного транспорта. Технический результат - увеличение тягового усилия, повышение КПД за счет уменьшения потерь электроэнергии....
Тип: Изобретение
Номер охранного документа: 0002510122
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.affb

Способ создания электродинамической тяги

Изобретение относится к электротехнике и может быть использовано при создании аэрокосмических транспортных средств и аппаратов, а также приводов наземного транспорта. Электродинамическую тягу в направлении вектора импульса силы, создают взаимодействием вектора магнитного потока замкнутого...
Тип: Изобретение
Номер охранного документа: 0002510766
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.b9f0

Многофункциональный композиционный материал

Изобретение относится к терморегулирующим материалам, эксплуатирующимся в составе космической техники, в частности в качестве внешнего слоя экранно-вакуумной теплоизоляции на наружных поверхностях космических аппаратов (КА) с электрическим заземлением на корпус КА или в качестве...
Тип: Изобретение
Номер охранного документа: 0002513328
Дата охранного документа: 20.04.2014
27.06.2014
№216.012.d656

Способ определения крутильной податливости гидромеханической трансмиссии

Изобретение относится к способу определения крутильной податливости гидромеханической трансмиссии. Способ включает нагружение слоя грунта траками гусеничного трактора с гидромеханической трансмиссией, неподвижно зафиксированного посредством силоизмерительного устройства, плавное увеличение...
Тип: Изобретение
Номер охранного документа: 0002520648
Дата охранного документа: 27.06.2014
Показаны записи 1-10 из 33.
20.02.2013
№216.012.288c

Микрополосковый полосно-пропускающий фильтр

Микрополосковый полосно-пропускающий фильтр относится к технике сверхвысоких частот и может быть использован в селективных трактах приемных и передающих систем. Достигаемый технический результат-повышение технологичности изготовления, а также улучшение его селективных свойств. Микрополосковый...
Тип: Изобретение
Номер охранного документа: 0002475900
Дата охранного документа: 20.02.2013
10.06.2013
№216.012.4936

Гидростатическая опора

Изобретение относится к области машиностроения и может найти применение в станкостроении в качестве адаптивных опорных модулей незамкнутых гидростатических направляющих, а также в других ответственных гидростатических опорах с плоскими рабочими поверхностями скольжения. Гидростатическая опора...
Тип: Изобретение
Номер охранного документа: 0002484322
Дата охранного документа: 10.06.2013
10.07.2013
№216.012.54ad

Регулятор для гидростатических опор

Изобретение относится к области машиностроения и может найти применение в станкостроении в системах питания замкнутых и незамкнутых гидростатических опор, работающих в условиях оппозитного нагружения, а также в системах адаптивного управления положением шпинделя или направляющих. Регулятор...
Тип: Изобретение
Номер охранного документа: 0002487280
Дата охранного документа: 10.07.2013
10.08.2013
№216.012.5c3d

Способ размерной электрохимической обработки

Изобретение относится к электрофизическим и электрохимическим методам обработки и может быть использовано при электрохимической обработке длинномерных деталей. В способе размерную электрохимическую обработку детали осуществляют электродом-инструментом, содержащим токопроводящий корпус с...
Тип: Изобретение
Номер охранного документа: 0002489234
Дата охранного документа: 10.08.2013
27.01.2014
№216.012.9d11

Электронный генератор электроэнергии

Электронный генератор электроэнергии относится к электротехнике, а именно к производству электроэнергии. Электронный генератор электроэнергии содержит реактор электронной плазмы (1), заполненный рабочей средой (разреженный инертный газ с примесью материалов с малой энергией ионизации), в...
Тип: Изобретение
Номер охранного документа: 0002505915
Дата охранного документа: 27.01.2014
27.02.2014
№216.012.a710

Гидростатическая опора

Изобретение относится к области машиностроения и может найти применение в шпиндельных узлах, а также в других ответственных узлах с гидростатическими, аэростатическими или комбинированными опорами скольжения. Опора состоит из корпуса (1), вала (2), втулки (3) и плавающего кольца (4). В корпусе...
Тип: Изобретение
Номер охранного документа: 0002508483
Дата охранного документа: 27.02.2014
20.03.2014
№216.012.ad77

Способ создания электродинамической тяги

Изобретение относится к области электротехники и может быть использован при создании аэрокосмических транспортных средств и аппаратов, а также приводов наземного транспорта. Технический результат - увеличение тягового усилия, повышение КПД за счет уменьшения потерь электроэнергии....
Тип: Изобретение
Номер охранного документа: 0002510122
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.affb

Способ создания электродинамической тяги

Изобретение относится к электротехнике и может быть использовано при создании аэрокосмических транспортных средств и аппаратов, а также приводов наземного транспорта. Электродинамическую тягу в направлении вектора импульса силы, создают взаимодействием вектора магнитного потока замкнутого...
Тип: Изобретение
Номер охранного документа: 0002510766
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.b9f0

Многофункциональный композиционный материал

Изобретение относится к терморегулирующим материалам, эксплуатирующимся в составе космической техники, в частности в качестве внешнего слоя экранно-вакуумной теплоизоляции на наружных поверхностях космических аппаратов (КА) с электрическим заземлением на корпус КА или в качестве...
Тип: Изобретение
Номер охранного документа: 0002513328
Дата охранного документа: 20.04.2014
27.06.2014
№216.012.d656

Способ определения крутильной податливости гидромеханической трансмиссии

Изобретение относится к способу определения крутильной податливости гидромеханической трансмиссии. Способ включает нагружение слоя грунта траками гусеничного трактора с гидромеханической трансмиссией, неподвижно зафиксированного посредством силоизмерительного устройства, плавное увеличение...
Тип: Изобретение
Номер охранного документа: 0002520648
Дата охранного документа: 27.06.2014
+ добавить свой РИД