×
27.02.2015
216.013.2c0d

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОДНОФАЗНОГО ЗАМЫКАНИЯ ФИДЕРА НА ЗЕМЛЮ

Вид РИД

Изобретение

№ охранного документа
0002542745
Дата охранного документа
27.02.2015
Аннотация: Использование: в области электроэнергетики. Технический результат - повышение точности. Согласно способу составляют модели двух частей фидера, первой - от места наблюдения до места предполагаемого замыкания и второй - от места предполагаемого замыкания до конца фидера, первую часть фидера моделируют по прямой и по нулевой последовательности, а вторую - только по нулевой последовательности, преобразуют в модели прямой последовательности безнулевые составляющие зафиксированных тока и напряжения поврежденной фазы в безнулевую составляющую напряжения поврежденной фазы в месте предполагаемого замыкания, преобразуют в модели нулевой последовательности первой части фидера нулевые составляющие зафиксированных токов и напряжений в напряжение нулевой последовательности в месте предполагаемого замыкания и в ток нулевой последовательности до этого места, суммируют два упомянутых напряжения, формируя напряжение поврежденной фазы в месте предполагаемого замыкания, подают напряжение нулевой последовательности в месте предполагаемого замыкания на вход модели нулевой последовательности второй части фидера и фиксируют ток на ее входе, который вычитают из тока нулевой последовательности до этого места, формируя ток предполагаемого замыкания, перемножают напряжение и ток в месте предполагаемого замыкания, формируя сигнал мгновенной мощности предполагаемого места замыкания, определяют знак этого сигнала и фиксируют реальное замыкание в том месте, где упомянутый сигнал в процессе своего изменения остается неотрицательным. 10 ил.
Основные результаты: Способ определения места однофазного замыкания фидера на землю с использованием его моделей по нулевой и прямой последовательности путем фиксации на входе фидера отсчетов фазных токов и напряжений, тока и напряжения нулевой последовательности, цифро-аналогового преобразования зафиксированных величин, выявления поврежденной фазы, определения безнулевых тока и напряжения этой фазы путем устранения из фазных величин нулевой последовательности, отличающийся тем, что составляют модели двух частей фидера, первой - от места наблюдения до места предполагаемого замыкания и второй - от места предполагаемого замыкания до конца фидера, первую часть фидера моделируют по прямой и по нулевой последовательности, а вторую - только по нулевой последовательности, преобразуют в модели прямой последовательности безнулевые составляющие зафиксированных тока и напряжения поврежденной фазы в безнулевую составляющую напряжения поврежденной фазы в месте предполагаемого замыкания, преобразуют в модели нулевой последовательности первой части фидера нулевые составляющие зафиксированных токов и напряжений в напряжение нулевой последовательности в месте предполагаемого замыкания и в ток нулевой последовательности до этого места, суммируют два упомянутых напряжения, формируя напряжение поврежденной фазы в месте предполагаемого замыкания, подают напряжение нулевой последовательности в месте предполагаемого замыкания на вход модели нулевой последовательности второй части фидера и фиксируют ток на ее входе, который вычитают из тока нулевой последовательности до этого места, формируя ток предполагаемого замыкания, перемножают напряжение и ток в месте предполагаемого замыкания, формируя сигнал мгновенной мощности предполагаемого места замыкания, определяют знак этого сигнала и фиксируют реальное замыкание в том месте, где упомянутый сигнал в процессе своего изменения остается неотрицательным.

Изобретение относится к электроэнергетике, а именно к релейной защите и автоматике распределительных сетей. Это сети, работающие, как правило, с изолированной или компенсированной нейтралью и характеризующиеся поэтому малым уровнем тока замыкания на землю.

Задача определения места повреждения линии электропередачи высокого и сверхвысокого напряжения, где применяется глухое заземление нейтрали и благодаря этому при замыкании на землю возникают большие токи, имеет общее решение. Наиболее общий способ определения места повреждения основан на применении моделей контролируемых объектов [1, 2]. Он разработан для высоковольтных сетей и оперирует токами и напряжениями установившегося процесса короткого замыкания. Именно это обстоятельство препятствует его применению в распределительных сетях, где установившийся ток замыкания на землю может быть сколь угодно малым, хотя в начальной стадии замыкания, пока не произошло затухания переходного процесса, уровень тока достаточно высок.

В упомянутых способах принципиально важную роль, помимо моделей, играют критерии замыкания, которые исходят из принципа резистивности замыкания, говорящего о том, что в месте замыкания энергия либо только потребляется, либо равна нулю [3]. Если электрические величины изменяются по синусоидальному закону, то критерий замыкания сводится к контролю реактивной мощности предполагаемого повреждения: в месте реального замыкания она равна нулю.

Известен способ определения места замыкания линии электропередачи, в котором критерий замыкания обобщается с таким расчетом, чтобы он стал пригоден для сетей с любым режимом заземления нейтрали [4]. В этом способе на входе линии (фидера) регистрируются, т.е. наблюдаются и фиксируются, фазные токи и напряжения, а также ток и напряжение нулевой последовательности. В микропроцессорных терминалах релейной защиты считываются и запоминаются отсчеты электрических величин. Модель фидера строится в расчете на обработку аналоговых величин, в связи с чем отсчеты зафиксированных величин подвергаются цифроаналоговому преобразованию. Поврежденная фаза фидера легко выявляется по снижению уровня фазного напряжения, что не требует применения моделей фидера. Применение моделей относится к задаче локации, т.е. поиску места замыкания. Модели для составляющих нулевой последовательности и безнулевых составляющих, которые получаются после устранения из фазных величин нулевой последовательности, имеют разные параметры и, возможно, различные структуры. По указанной причине из фазных аналоговых величин перед преобразованием в моделях вычитаются составляющие нулевой последовательности.

В обсуждаемом способе подготовка сигналов к преобразованию в моделях завершается, тем не менее, фильтрацией составляющих основной частоты, что в конечном счете сводит на нет все усилия повысить точность локации в распределительных сетях. Важно заметить, что к переходным режимам понятие реактивной мощности неприменимо, что вынуждает искать новые критерии замыкания в распределительных сетях.

Цель изобретения заключается в повышении точности определения места замыкания за счет кардинального изменения критерия повреждения и введению таких операций обработки наблюдаемых напряжений и токов, которые инвариантны к их форме, т.е. сохраняют эффективность не только в установившемся режиме замыкания в сети. Поставленная цель достигается тем, что новый способ основывается на усовершенствованном критерии повреждения и на более гибком подходе к моделированию фидера. В качестве критерия повреждения предлагается принять положение о том, что в месте повреждения не может происходить генерирования мгновенной мощности. Как и в прототипе, используется понятие о месте предполагаемого замыкания. В качестве такового может быть принята любая точка фидера, но предположение нуждается в подтверждении. Предлагается применять не одну общую модель фидера, а автономные модели двух его частей. Первая часть - та, что идет от места наблюдения до места предполагаемого замыкания. Вторая - от места предполагаемого замыкания до конца фидера. Для первой части составляют модели как по прямой, так и по нулевой последовательности. В модели прямой последовательности преобразуют безнулевые составляющие тока и напряжения поврежденной фазы. На выходе получают безнулевую составляющую напряжения поврежденной фазы в месте предполагаемого замыкания. Аналогично в модели нулевой последовательности первой части фидера преобразуют нулевые составляющие зафиксированных токов и напряжений в напряжение нулевой последовательности в месте предполагаемого замыкания. Располагая в этом месте безнулевой составляющей и напряжением нулевой последовательности, получают путем их суммирования напряжение поврежденной фазы в месте предполагаемого замыкания. В некоторых случаях, например, при металлическом замыкании, по величине напряжения в разных местах предполагаемого замыкания можно судить о том, где реально произошло замыкание. Однако этот критерий не носит всеобщего характера и может использоваться только для прогнозирования наиболее вероятного участка фидера, где случилось замыкание. Предлагаемый способ предназначен для более точного определения места замыкания. Последующая операция имеет целью определение еще и тока в месте предполагаемого замыкания. Здесь учитывается то существенное обстоятельство, что по нулевой последовательности фидер, работающий в режиме с изолированной нейтралью, находится в режиме холостого хода. Чтобы определить ток нулевой последовательности на входе второй части поврежденного фидера, напряжение нулевой последовательности в месте предполагаемого замыкания подают на вход модели нулевой последовательности и фиксируют ток на ее входе. Остающиеся операции реализуют принятый в данном способе предельно общий критерий замыкания. Определенный последним ток на входе модели второй части фидера вычитают из ранее определенного тока нулевой последовательности до места предполагаемого замыкания. Известно, что в месте однофазного замыкания на землю протекает от провода к земле ток, равный утроенному значению своей составляющей нулевой последовательности. Следовательно, найденный данным способом разностный ток нулевой последовательности при поиске места реального замыкания правомерно принять пропорциональным току предполагаемого повреждения. Перемножая напряжение и ток в месте предполагаемого замыкания, формируют сигнал мгновенной мощности предполагаемого замыкания и контролируют знак этого сигнала. В месте реального замыкания мгновенная мощность может только потребляться или, в крайнем случае, быть равной нулю, но ее генерация физически невозможна. Таким образом, реальное замыкание фиксируют в том месте, где сигнал мгновенной мощности в процессе своего изменения остается неотрицательным.

На фиг.1 показана схема контролируемого объекта - трехфазного фидера, в одной из фаз которого произошло замыкание на землю. На фиг.2 показана модель первой части фидера по нулевой последовательности, на фиг.3 - модель той же части фидера по прямой последовательности, на фиг.4 - модель второй части фидера по нулевой последовательности; фиг.5 служит иллюстрацией операции формирования напряжения поврежденной фазы в месте предполагаемого замыкания, фиг.6 иллюстрирует операцию формирования сигнала мгновенной мощности предполагаемого замыкания, а фиг.7 - операцию контроля знака этого сигнала во всех местах предполагаемого замыкания на протяжении всего интервала наблюдения процесса замыкания в распределительной сети.

На фиг.8, 9 и 10 приведены конкретные примеры тех моделей частей фидера, которые показаны в общем виде на фиг.2, 3 и 4. В моделях первой части фидера (фиг.8, 9) потери учитываются двумя сосредоточенными сопротивлениями на концах участка фидера с распределенными емкостью и индуктивностью. А в модели второй части фидера потери учтены тремя сосредоточенными сопротивлениями, что продиктовано технической необходимостью, так как вторая часть находится в режиме холостого хода.

Рассматривается фидер длиной l, в фазе A которого произошло замыкание на землю. Предлагаемый способ решает задачу определения координаты места замыкания xf. На входе фидера наблюдаются токи ivs и напряжения uvs, v=A, B, C. Фидер можно условно разделить на две части 1 и 2 - до и после места предполагаемого замыкания. Нагрузка фидера 3 в предполагаемом способе роли не играет, так как не имеет связи с землей. На фиг.1 использованы также следующие обозначения: uAf - напряжение поврежденной фазы в месте замыкания, iAf=3i0f - ток замыкания на землю, i0g и i0h - токи нулевой последовательности до и после места замыкания. Все величины в месте xf, показанные на фиг.1, неизвестны; они всего лишь поясняют дальнейшие обозначения.

Обозначение относится к месту предполагаемого замыкания и в общем случае не совпадает с xf. Модели 4 и 5 также принадлежат первой части фидера, но не части 1, так как длины этих первых частей разные: часть фидера 1 простирается до фиксированного места xf, а модели 4 и 5 - до произвольного места xf. Точно так же модель 6 второй части фидера начинается в этом произвольном месте , а реальная вторая часть 2 - в фиксированном, но неизвестном месте xf.

В операциях, иллюстрируемых фиг.5, 6, 7, задействованы сумматор 7, умножитель 8 и нуль-индикатор 9.

Действие предлагаемого способа заключается в следующем. Токи и напряжения ivs, uvs, v=A, B, C, регистрируемые в виде отсчетов с определенной частотой дискретизации, подвергаются цифроаналоговому преобразованию в непрерывные величины ivs(t), uvs(t), v=A, B, C. Из трехфазной системы величин выделяются составляющие нулевой последовательности

,

,

после чего определяются безнулевые составляющие

,

.

Аналоговая модель 4 преобразует ток i0s(t) и напряжение u0s(t) в выходные величины , . Модель составляется для произвольного места предполагаемого повреждения . Если модель выполнена в виде цепи с распределенными параметрами (фиг.8), то соответствующее преобразование имеет вид, вытекающий из разностных уравнений длинной линии [5], идеально точных для линии без потерь, а что касается потерь, то они учитываются приближенно сосредоточенными сопротивлениями. В модели по фиг.8 с двумя сопротивлениями выходные величины выражаются через входные, взятые как с опережением, так и с запаздыванием во времени

где - волновое сопротивление фидера нулевой последовательности, - время пробега волны нулевой последовательности вдоль первой части фидера, , ; , , - первичные параметры фидера нулевой последовательности.

Модель 5 преобразует безнулевые составляющие тока и напряжения поврежденной фазы A в соответствующую выходную величину - безнулевую составляющую напряжения поврежденной фазы A в месте предполагаемого повреждения. Если модель имеет вид схемы по фиг 9, то

где - волновое сопротивление фидера прямой последовательности, - время пробега волны прямой последовательности вдоль первой части фидера, , ; , , - первичные параметры фидера прямой последовательности.

Модель 6 второй части фидера функционирует принципиально иначе, чем модели первой части. На вход модели 6 подается напряжение , определяемое, например, операцией (2), а реакцией, подлежащей определению, служит входной ток . Модель 6, выполненная по схеме фиг.10, реализует операцию, в которой ток определяется значением приложенного напряжения в текущий момент времени и в два запаздывающих момента, а также собственными запаздывающими значениями

где , , - время пробега волны нулевой последовательности вдоль второй части фидера.

Сумматор 7 образует на выходе напряжение поврежденной фазы в месте

.

Слагаемые и могут быть сформированы операциями (2) и (3). Ток предполагаемого однофазного замыкания образуется из двух токов нулевой последовательности и

,

т.е. для его формирования достаточно операций (1) и (4). Наконец, умножитель 8 создает сигнал мгновенной мощности, поступающей в поперечную ветвь однофазного замыкания

Нуль-индикатор 9 контролирует знак этого сигнала. Согласно физической природе замыкания в месте реального события знак сигнала (5) не должен быть отрицателен. Поскольку все места фидера проверяются этим условием, то изменяется в пределах от начала до конца фидера , а время наблюдения сигнала (5) ограничивается временем прохождения интенсивного переходного процесса , но может быть продолжено и далее, если ток сохраняет ощутимое значение.

Таким образом, предложенный способ опирается на предельно общие закономерности и не вносит собственной методической погрешности в определение координаты места замыкания фидера на землю.

Источники информации

1. Патент РФ №2033622, G01R 31/11, H02H 3/28, 1989.

2. Патент РФ №2033623, G01R 31/11, H02H 3/28, 1989.

3. Патент РФ №2066511, H02H 3/40, G01R 31/08, 1992.

4. Патент РФ №2073876, H02H 3/40, G01R 31/08, 1992.

5. Караев Р.И., Лямец Ю.Я. О применении уравнений длинной линии. - Электричество, 1972, №11, С.28-36.

Способ определения места однофазного замыкания фидера на землю с использованием его моделей по нулевой и прямой последовательности путем фиксации на входе фидера отсчетов фазных токов и напряжений, тока и напряжения нулевой последовательности, цифро-аналогового преобразования зафиксированных величин, выявления поврежденной фазы, определения безнулевых тока и напряжения этой фазы путем устранения из фазных величин нулевой последовательности, отличающийся тем, что составляют модели двух частей фидера, первой - от места наблюдения до места предполагаемого замыкания и второй - от места предполагаемого замыкания до конца фидера, первую часть фидера моделируют по прямой и по нулевой последовательности, а вторую - только по нулевой последовательности, преобразуют в модели прямой последовательности безнулевые составляющие зафиксированных тока и напряжения поврежденной фазы в безнулевую составляющую напряжения поврежденной фазы в месте предполагаемого замыкания, преобразуют в модели нулевой последовательности первой части фидера нулевые составляющие зафиксированных токов и напряжений в напряжение нулевой последовательности в месте предполагаемого замыкания и в ток нулевой последовательности до этого места, суммируют два упомянутых напряжения, формируя напряжение поврежденной фазы в месте предполагаемого замыкания, подают напряжение нулевой последовательности в месте предполагаемого замыкания на вход модели нулевой последовательности второй части фидера и фиксируют ток на ее входе, который вычитают из тока нулевой последовательности до этого места, формируя ток предполагаемого замыкания, перемножают напряжение и ток в месте предполагаемого замыкания, формируя сигнал мгновенной мощности предполагаемого места замыкания, определяют знак этого сигнала и фиксируют реальное замыкание в том месте, где упомянутый сигнал в процессе своего изменения остается неотрицательным.
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОДНОФАЗНОГО ЗАМЫКАНИЯ ФИДЕРА НА ЗЕМЛЮ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОДНОФАЗНОГО ЗАМЫКАНИЯ ФИДЕРА НА ЗЕМЛЮ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОДНОФАЗНОГО ЗАМЫКАНИЯ ФИДЕРА НА ЗЕМЛЮ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОДНОФАЗНОГО ЗАМЫКАНИЯ ФИДЕРА НА ЗЕМЛЮ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОДНОФАЗНОГО ЗАМЫКАНИЯ ФИДЕРА НА ЗЕМЛЮ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОДНОФАЗНОГО ЗАМЫКАНИЯ ФИДЕРА НА ЗЕМЛЮ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОДНОФАЗНОГО ЗАМЫКАНИЯ ФИДЕРА НА ЗЕМЛЮ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОДНОФАЗНОГО ЗАМЫКАНИЯ ФИДЕРА НА ЗЕМЛЮ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОДНОФАЗНОГО ЗАМЫКАНИЯ ФИДЕРА НА ЗЕМЛЮ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОДНОФАЗНОГО ЗАМЫКАНИЯ ФИДЕРА НА ЗЕМЛЮ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 30.
25.08.2017
№217.015.b1cd

Способ определения места замыкания в электрической системе

Использование: в области электроэнергетики. Технический результат - расширение функциональных возможностей способа. Согласно способу выделяют две подсистемы, соприкасающиеся в месте замыкания. Для первой подсистемы составляют преобразовательную модель, а для второй - имитационную. Входы...
Тип: Изобретение
Номер охранного документа: 0002613158
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.c25e

Способ релейной защиты трансформатора

Изобретение относится к области электроэнергетики и направлено на построение универсальной защиты трансформатора, использующей имеющуюся информацию в максимально полном объекте. Поставленная задача решается путем использования моделей обмоток трансформатора, а также моделей его магнитопровода....
Тип: Изобретение
Номер охранного документа: 0002617714
Дата охранного документа: 26.04.2017
26.08.2017
№217.015.d673

Способ дистанционной защиты линии электропередачи

Использование: в области электроэнергетики. Технический результат - повышение распознающей способности защиты по отношению к короткому замыканию в защищаемой зоне. Согласно способу входные комплексные величины преобразуют и вторые группы токов и напряжений, которые далее в модели неповрежденной...
Тип: Изобретение
Номер охранного документа: 0002622895
Дата охранного документа: 21.06.2017
29.12.2017
№217.015.f88d

Способ интервального определения места повреждения линии электропередачи

Использование: в области электротехники. Технический результат - расширение функциональных возможностей и повышение достоверности способа локации повреждений. Способ заключается в фиксации отсчетов токов и напряжений, наблюдаемых в линии в текущем и в предшествующем режимах, преобразовании...
Тип: Изобретение
Номер охранного документа: 0002639718
Дата охранного документа: 22.12.2017
29.12.2017
№217.015.fb37

Способ релейной защиты генератора

Использование: в области электротехники и электроэнергетики. Технический результат заключается в расширении функциональных возможностей и в упрощении способа. Генератор наблюдают со стороны линейных и нулевых выводов. Фиксируют момент смены предшествующего режима текущим режимом....
Тип: Изобретение
Номер охранного документа: 0002640290
Дата охранного документа: 27.12.2017
29.12.2017
№217.015.fc9c

Способ релейной защиты энергообъекта

Использование – в области электротехники. Технический результат – расширение функциональных возможностей обучаемой релейной защиты. Согласно способу релейной защиты энергообъекта в составе электрической сети путем преобразования информации об энергообъекте в двумерные сигналы, отображаемые...
Тип: Изобретение
Номер охранного документа: 0002638300
Дата охранного документа: 13.12.2017
29.12.2017
№217.015.fea9

Способ релейной защиты дальнего резервирования

Использование: в области электроэнергетики. Технический результат - повышение чувствительности и расширение функциональных возможностей способа дальнего резервирования. Согласно способу фиксируют токи и напряжения в начале линии, используют передающую модель линии со входом в месте наблюдения и...
Тип: Изобретение
Номер охранного документа: 0002638548
Дата охранного документа: 14.12.2017
13.02.2018
№218.016.23b9

Способ распознавания повреждённых фаз линий электропередачи при неполнофазном замыкании на землю

Изобретение относится к релейной защите высоковольтных линий электропередачи, которые работают в режиме с глухозаземленной нейтралью, в частности к распознаванию поврежденных фаз. Техническим результатом является упрощение и повышение распознающей способности способа фазовой селекции. Способ...
Тип: Изобретение
Номер охранного документа: 0002642506
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.2abf

Способ релейной защиты линии электропередачи с ответвлениями

Использование: в области электротехники. Технический результат – расширение функциональных возможностей и повышение чувствительности защиты. Согласно способу предполагается двухстороннее наблюдение электропередачи с обменом информации между двумя полукомплектами релейной защиты, установленными...
Тип: Изобретение
Номер охранного документа: 0002642844
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2cfd

Способ релейной защиты трансформатора

Использование: в области электротехники. Технический результат – повышение точности разграничения режимов повреждения трансформатора и альтернативных им режимов. Согласно способу релейной защиты трансформатора осуществляют наблюдение токов и напряжений на зажимах его обмоток, преобразование...
Тип: Изобретение
Номер охранного документа: 0002643779
Дата охранного документа: 06.02.2018
Показаны записи 31-37 из 37.
10.05.2018
№218.016.3ab9

Способ определения интервалов однородности (сегментации) электрической величины

Использование: в области электротехники. Технический результат – устранение проблемы нелинейного искажения тока короткого замыкания вследствие насыщения трансформаторов тока. Сегментация призвана выделить интервалы правильной трансформации, возникающие в те промежутки времени, когда...
Тип: Изобретение
Номер охранного документа: 0002647484
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3aeb

Способ релейной защиты линии электропередачи при двухстороннем наблюдении

Использование: в области электроэнергетики. Технический результат - упрощение способа и повышение чувствительности защиты. Полукомплекты микропроцессорной защиты синхронно фиксируют токи и напряжения на обеих сторонах линии, а оптоволоконный канал связи передает информацию от одного комплекта к...
Тип: Изобретение
Номер охранного документа: 0002647485
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.40b9

Способ восстановления тока при насыщении трансформатора

Использование: в области электротехники. Технический результат - расширение функциональных возможностей и адаптивности способа. Параметры модели трансформатора, подверженные изменению в ходе эксплуатации, подлежат определению в реальном времени, что в структурной схеме, реализующей предлагаемый...
Тип: Изобретение
Номер охранного документа: 0002648991
Дата охранного документа: 29.03.2018
29.05.2018
№218.016.54a3

Способ релейной защиты энергообъекта

Использование: в области электроэнергетики. Технический результат - расширение функциональных возможностей способа и повышение быстродействия релейной защиты, которая его реализует. В способе релейной защиты все режимы сети разделяют на две группы. На первую группу защита призвана реагировать,...
Тип: Изобретение
Номер охранного документа: 0002654056
Дата охранного документа: 16.05.2018
29.05.2018
№218.016.5594

Способ интервального определения места однофазного замыкания в фидере

Изобретение относится к релейной защите и автоматике распределительных сетей. Сущность: наблюдаются фазные напряжения и токи на входе фидера. Наблюдаемые величины преобразуют в передающей модели фидера в фазные напряжения и хотя бы один опорный ток в произвольном месте предполагаемого...
Тип: Изобретение
Номер охранного документа: 0002654368
Дата охранного документа: 17.05.2018
09.06.2018
№218.016.5bd5

Способ релейной защиты трехфазного трансформатора

Использование: в области электроэнергетики. Технический результат – расширение функциональных возможностей способа. Операции способа ориентированы на наиболее распространенный тип силовых трансформаторов с первичными обмотками, соединенными по схеме «звезда с нулем», и вторичными обмотками,...
Тип: Изобретение
Номер охранного документа: 0002655920
Дата охранного документа: 30.05.2018
03.07.2019
№219.017.a451

Способ релейной защиты синхронной электрической машины

Использование: в области электроэнергетики и электротехники. Технический результат - расширение функциональных возможностей способа. Согласно способу релейной защиты синхронной электрической машины наблюдают токи статора, ток ротора, фазные напряжения на выводах статора и напряжение нейтрали....
Тип: Изобретение
Номер охранного документа: 0002693031
Дата охранного документа: 01.07.2019
+ добавить свой РИД