×
20.02.2015
216.013.2b7a

Результат интеллектуальной деятельности: МНОГОФАЗНЫЙ РАСХОДОМЕР И СПОСОБ ИЗМЕРЕНИЯ ПЛЕНКИ ЖИДКОСТИ

Вид РИД

Изобретение

№ охранного документа
0002542587
Дата охранного документа
20.02.2015
Аннотация: Предложенная группа изобретений относится к средствам измерения расхода смеси многофазной жидкости, содержащей по меньшей мере одну газовую фазу и одну жидкую фазу. Заявленный расходомер содержит участок трубы и измерительный участок, через которые поступает смесь. Расходомер также содержит устройство измерения фракции, адаптированное для оценки репрезентативной фракции газовой фазы и/или жидкой фазы смеси, проходящей на уровне измерительного участка. Кроме того, расходомер предпочтительно содержит по меньшей мере один ультразвуковой датчик, установленный для оценки характеристики, такой как толщина пленки жидкости или ее скорость, части жидкой фазы, поступающей в виде пленки жидкости вдоль стенки участка трубы. Характеристика предпочтительно используется для коррекции расчетной репрезентативной фракции газовой фазы и/или жидкой фазы, когда газовая фаза проходит в ядре участка трубы, часть жидкой фазы частично проходит в виде пленки жидкости вдоль стенки участка трубы, а другая часть жидкой фазы частично проходит в виде капель жидкости в ядре участка трубы. Указанный расходомер реализует соответствующий способ измерения расхода. Предложенная группа изобретений позволяет определить расход двухфазовой смеси без разделения потока на отдельные фазы. 2 н. и 18 з.п. ф-лы, 6 ил.

ОБЛАСТЬ ТЕХНИКИ

[0001] Аспект настоящего изобретения относится к расходомеру для измерения расхода смеси многофазной жидкости, имеющейпо меньшей мере газовую фазу и жидкую фазу. Другой аспект настоящего изобретения относится к способу измерения расхода смеси многофазной жидкости и коррекции измерения репрезентативной фракции газовой фазы и/или жидкой фазы с помощью измерения части пленки жидкости жидкой фазы. Такой расходомер и способ измерения могут использоваться, в частности, но не только в областях применения, связанных с месторождениями нефти, например, для измерения расхода углеводородного эффлюента, поступающего из геологического образования в скважину, пробуренную с целью разведки и добычи углеводородов.

УРОВЕНЬ ТЕХНИКИ

[0002] WO 99/10712 описывает способ измерения расхода, адаптированный к нефтесодержащим эффлюентам, состоящим из смесей многофазных жидкостей, содержащих воду, нефть и газ. Эффлюент пропускают через расходомер Вентури, в котором эффлюент испытывает падение давления ∆P, среднее значение <∆P> перепада давления определяется за период t1, соответствующий частоте f1, которая ниже частоты, при которой газ и жидкость чередуются в режиме пробкового потока, среднее значение <ρm> определяется для плотности жидкой смеси при сжатии расходомера Вентури в указанный период t1, а значение общего массового расхода <Q> выводится для рассматриваемого периода t1 из средних значений перепада давления и плотности.

[0003] GB2447490 описывает устройство расходомера и способ измерения газожидкостной смеси с помощью усовершенствованного центробежного разделения. Описанный расходомер содержит ультразвуковой датчик, расположенный в горлышке/сужении расходомера, способный проводить ультразвуковые измерения толщины и/или скорости слоя жидкости, создаваемого индуцированной силой центробежного разделения.

[0004] Такие измерения расхода многофазного потока являются более точными, если по расчетам распределение смеси потока является существенно однородным (как в WO 99/10712) или существенно разделенным (как в GB2447490). Смесь считается однородной, если ее несколько фаз достаточно смешаны и диспергированы, чтобы рассматривать поведение смеси как эквивалент однофазной жидкости, имеющей аналогичную плотность и свойства. Однако в действительности, в зависимости от места установки многофазного расходомера, поступающая смесь многофазного потока не всегда будет однородной. В таком случае смесь обычно гомогенизируют с помощью выпрямителя восходящего потока, расположенного над многофазным расходомером. Например, в связи с многочисленными многофазными расходомерами, в качестве выпрямителя потока, как правило, используют слепой Т-образный выпрямитель. И наоборот, техника разделения газожидкостной смеси на ее репрезентативные фазы необходима для получения завихренного потока с вихревым элементом восходящего потока над многофазным расходомером. Если поток однороден, расчет расхода на основе уравнения Бернулли является актуальным и может быть достаточно точным. Необходимо отметить, что в целом указанный расчет предполагает, что расход смеси многофазной жидкости пропорционален потере давления в горлышке Вентури, которая пропорциональна ускорению эквивалентной однофазной жидкости, как, например, жидкая смесь, проходящая через горлышко Вентури.

[0005] Распределение смеси потока связано с тем, каким образом газ и жидкость распространены/распределены в трубе. Измерительный участок Вентури определен между двумя напорными отверстиями, расположенными на входном участке и в горлышке расходомера. Эффективность выпрямителя потока не всегда идеальна, что приводит к менее однородной текучей смеси потока в расходомере. Кроме того, «степень однородности» многофазной смеси, ее эволюция в динамике и ее положение внутри измерительного участка также могут меняться в зависимости от различных параметров, например: свойств жидкости, предыстории потока, условий восходящего потока в расходомере и т.п. Для моделирования потока на основе однородности эти изменения должны оставаться ограниченными, что позволит применять такой подход с учетом определенных корректировок.

[0006] Если степень однородности смеси потока на входе или внутри многофазного расходомера становится слишком низкой или если степень разделения между соответствующими фазами проточной смеси также становится слишком низкой, тогда соответствующий подход к моделированию потоков является менее точным или больше не применимым. Кроме того, взаимосвязь между расходом и перепадом давления в измерительном звене расходомера Вентури не может быть правильно смоделирована. Как следствие, могут возникнуть ограничения точности таких измерений расхода многофазного потока, когда смесь многофазной жидкости не распределяется в соответствии с заданным подходом моделирования.

[0007] В случае применения подхода моделирования потоков на основе однородности могут возникать другие ограничения точности, если количество одной или нескольких фаз смеси становится очень низким. В частности, это может возникать, если объемная доля газа (ОДГ) в измерительном участке становится очень высокой, например, до 95%. На самом деле, в этом случае нельзя гарантировать надлежащее выпрямление потока смеси многофазной жидкости. В целом, некоторая часть жидкой фазы переносится потоком газа с той же скоростью, а некоторая часть жидкости прилипает к стенке трубы и движется с меньшей скоростью. Как следствие, можно наблюдать значительное разнообразие распределения жидкости, как, например, кольцевой поток, туманообразный поток или кольцевой туманообразный поток. Кроме того, жидкость проходит внутри измерительного участка с разными скоростями в зависимости от того, проходит ли она газовое ядро или находится на стенке трубы. С помощью современных инструментальных технологий, внедренных в различные расходомеры на основе перепада давления, трудно, если вообще возможно, прогнозировать расслоение жидкости между газовым ядром и стенкой трубы. Помимо этого, разделение жидкости между газовым ядром и стенкой трубы зависит от множества различных параметров, таких как свойства жидкости, расход, внутренняя геометрия и недостатки трубы.

[0008] Таким образом, существует необходимость в проведении более точных измерений расхода смеси многофазной жидкости, когда использование подхода моделирования потока на основе однородности не применимо (например, в условиях высокой объемной доли газа ОДГ) или когда использование разделения на основе центробежной силы и моделирования не представляется возможным.

КРАТКОЕ ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

[0009] Цель настоящего изобретения - представить расходомер и/или способ измерения расхода смеси многофазной жидкости, которые преодолевают одно или несколько ограничений существующего устройства и способов.

[0010] В соответствии с одним аспектомпо меньшей мере одного варианта воплощения настоящего изобретения предусмотрен расходомер для измерения расхода смеси многофазной жидкости, содержащейпо меньшей мере одну газовую фазу и одну жидкую фазу. Расходомер предпочтительно содержит участок трубы, через который проходит смесь многофазной жидкости, участок трубы содержит измерительный участок. Расходомер также предпочтительно содержит устройство измерения фракции, оценивающее репрезентативную фракциюпо меньшей мере одной газовой фазы и жидкой фазы смеси многофазной жидкости, проходящей измерительный участок. В соответствии с настоящим воплощением расходомер дополнительно содержитпо меньшей мере один ультразвуковой датчик, установленный для оценкипо меньшей мере одной характеристики части жидкой фазы, протекающей в виде пленки жидкости вдоль стенки участка трубы. По меньшей мере, одна характеристика используется для корректировки расчетной репрезентативной фракциипо меньшей мере одной газовой фазы и жидкой фазы, когда газовая фаза проходит в ядре участка трубы, часть жидкой фазы частично проходит в виде пленки жидкости вдоль стенки участка трубы, а другая часть жидкой фазы частично проходит в виде капель жидкости в ядре участка трубы.

[0011] Измерительный участок расходомера может быть определен как горлышко участка трубы и располагаться между частью восходящего потока и частью нисходящего потока, например, для создания перепада давления между частью восходящего потока и частью нисходящего потока.

[0012] По меньшей мере, одной характеристикой части жидкой фазы, протекающей в виде жидкой пленки вдоль стенки участка трубы, может быть (без ограничения) любая из нижеперечисленных: толщина пленки жидкости, скорость пленки жидкости, средняя скорость пленки жидкости, профиль скорости пленки жидкости, частота волн вдоль поверхности соприкосновения пленки жидкости и смеси многофазной жидкости, скорость волн, а также средняя высота волн.

[0013] По меньшей мере, один ультразвуковой датчик может быть расположен в горлышке или в измерительном участке. По меньшей мере, один ультразвуковой датчик может быть установлен на лицевой стороне участка трубы, которая не контактирует со смесью многофазной жидкости, или может быть установлен в стенке участка трубы. Кроме тогопо меньшей мере один ультразвуковой датчик может быть расположен по направлению к зоне участка трубы, где смесь многофазных потоков протекает в соответствии с условиями, аналогичными условиям, ожидаемым в измерительном участке. Кроме того, множество ультразвуковых датчиков может быть расположено на одной плоскости, перпендикулярной направлению потока смеси многофазной жидкости, например, для оценки среднего значенияпо меньшей мере одной характеристики части жидкой фазы, протекающей в виде пленки жидкости вдоль стенки участка трубы.

[0014] Устройством измерения фракции может быть гамма-денситометр. Соответственнопо меньшей мере один из ультразвуковых датчиков может быть расположен таким образом, чтобы ультразвуковые волны распространялись параллельно лучу гамма-денситометра.

[0015] Расходомер также может содержать устройства отбора давления ипо меньшей мере один датчик давления для измерения перепада давления смеси многофазной жидкости между частью восходящего потока и измерительным участком. Помимо этогопо меньшей мере один ультразвуковой датчик может быть расположен вблизи устройств отбора давления для определения плоскости, перпендикулярной направлению потока смеси многофазной жидкости.

[0016] Участок трубы может быть соединенпо меньшей мере на одном конце со слепым Т-образным участком трубы, адаптированным для выпрямления потока. Кроме того, смесью многофазной жидкости может быть углеводородный эффлюент, содержащий газ, нефть и воду.

[0017] В соответствии с другим аспектомпо меньшей мере одного варианта воплощения настоящего изобретения предлагается способ измерения расхода смеси многофазной жидкости, содержащей газовую фазу и жидкую фазу. Способ измерения расхода предпочтительно включает создание перепада давления между частью восходящего потока и частью нисходящего потока расходомера потоком смеси многофазной жидкости в участке трубы, имеющем измерительный участок, расположенный между частью восходящего потока и частью нисходящего потока. Этот способ также содержит подачу смеси многофазной жидкости для гамма-излучения, измерение поглощения гамма-лучейпо меньшей мере одной газовой фазой и жидкой фазой, проходящей в измерительном участке, и оценку репрезентативной фракциипо меньшей мере одной газовой фазы и жидкой фазы в смеси многофазной жидкости.

[0018] Способ измерения расхода дополнительно включает оценкупо меньшей мере одной характеристики части жидкой фазы, протекающей в виде жидкой пленки вдоль стенки измерительного участка, с использованиемпо меньшей мере одного ультразвукового датчика и коррекцию расчетной репрезентативной фракциипо меньшей мере одной газовой фазы и жидкой фазы на основепо меньшей мере одной характеристики, когда газовая фаза проходит в ядре участка трубы, часть жидкой фазы частично проходит в виде пленки жидкости вдоль стенки участка трубы, а другая часть жидкой фазы частично проходит в виде капель жидкости в ядре участка трубы. Кроме того, указанный способ включает расчет расхода смеси многофазной жидкости на основе скорректированной репрезентативной фракциипо меньшей мере одной газовой фазы и жидкой фазы. Расходомер для измерения расхода смеси многофазной жидкости может измерять степень образования кольца смеси многофазной жидкости в расходомере. Таким образом, можно корректировать измерения газовой фракции с учетом размера пленки жидкости в участке трубы, где проводятся связанные с фракцией измерения; указанный размер рассчитывается с помощью ультразвуковых измерений.

[0019] Кроме того, ультразвуковые датчики могут быть адаптированы для полностью неинтрузивного функционирования, например, ультразвуковые сигналы, проходящие через толщину стенки трубы, вызывают лишь незначительное изменение внешней структуры трубы, что позволяет надежно устанавливать датчики, не создавая при этом какого-либо источника утечки жидкости.

[0020] Другие преимущества будут очевидными из нижеприведенного описания настоящего изобретения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0021] В помощь специалистам в данной области техники при создании и использовании предмета настоящего изобретения приведена ссылка на прилагаемые чертежи, которые не предназначены для вычерчивания в масштабе и в которых одинаковые номера позиций используются для обозначения аналогичных элементов для обеспечения согласованности. Для ясности следует отметить, что в каждом чертеже могут быть промаркированы не все компоненты.

[0022] Фиг.1 схематически демонстрирует расположение береговой скважины добычи углеводородов, иллюстрируя различные примеры развертывания варианта воплощения расходомера в соответствии с одним из аспектов настоящего изобретения.

[0023] Фиг.2 демонстрирует вид в поперечном сечении, схематически иллюстрирующий вариант воплощения многофазного расходомера настоящего изобретения в ситуации высокой объемной доли газа (ОДГ).

[0024] Фиг.3 демонстрирует вид сверху в поперечном сечении, схематически иллюстрирующий горлышко расходомера типа Вентури, сконструированного в соответствии с вариантом воплощения настоящего изобретения.

[0025] Фиг.4 демонстрирует вид сбоку в поперечном сечении вдоль линии 70 фиг.3.

[0026] Фиг.5 демонстрирует вид сверху в поперечном сечении в горлышке расходомера типа Вентури, иллюстрирующий теоретическую ситуацию высокой объемной доли газа ОДГ с пленкой жидкости на стенке горлышка и капли в ядре горлышка.

[0027] Фиг.6 схематично иллюстрирует способ коррекции измерений расхода в соответствии с одним из вариантов воплощения настоящего изобретения.

ПОДРОБНОЕ ОПИСАНИЕ

[0028] Фиг.1 схематически демонстрирует расположение береговой скважины для добычи углеводородов и оборудование 2 над геологическим образованием 3 углеводородов после проведения операции бурения, после запуска бурильных труб и, в конечном итоге, после проведения работ по цементированию, освоению и перфорации, а также после начала эксплуатации. Скважина начинает производить углеводороды, например, нефть и/или газ. На данном этапе ствол скважины содержит по существу вертикальную часть 4, а также может содержать горизонтальную или отклоненную части 5. Ствол скважины 4 представляет собой или не обсаженный ствол скважины, или обсаженный ствол скважины, или комбинацию не обсаженных и обсаженных частей.

[0029] Обсаженный ствол скважины содержит кольцо 6 и корпус 7. Кольцо 6 может быть заполнено цементом или материалом для заполнения открытого ствола, например, гравийной набивкой. Нисходящая скважина, первый 8 и второй 9 рабочие участки скважины обычно включают перфорации, эксплуатационные пакеры и насосно-компрессорные колонны 10, 11 на глубине, соответствующей резервуару, а именно нефтегазоносным зонам геологического образования 3 углеводородов. Жидкая смесь 13 поступает из вышеуказанных зон 8, 9 геологического образования 3 углеводородов. Жидкая смесь 13 представляет собой смесь 13 многофазной углеводородной жидкости, содержащей множество фракций жидкости (вода, нефть, газ) и множество составляющих элементов (воду, молекулы различных углеводородов, различные молекулы, растворенные в воде). Жидкая смесь 13 поступает из нисходящей скважины через насосно-компрессорные колонны 10, 11, а также из скважины, идущей из устья 14 скважины. Устье 14 скважины соединено с установкой 15 наземного производства с помощью наземного трубопровода 12. Установка 15 наземного производства, как правило, может содержать цепь соединенных вместе элементов, например, редуктор давления, теплообменник, насосную установку, сепаратор, бак, горелку и т.п. (подробно не показано). В одном варианте воплощения настоящего изобретения один или несколько многофазных расходомеров 1 для измеренияпо меньшей мере расхода смеси 13 многофазной жидкости могут быть установлены в жидкостной связи с насосно-компрессорными колоннами 10, связанными с первым рабочим участком 8, или в жидкостной связи с насосно-компрессорными колоннами 11, связанными со вторым рабочим участком 9 (как показано на фиг.1) или другими участками скважины (не представлено на фиг.1). В другом варианте воплощения настоящего изобретения один или несколько многофазных расходомеров 1 для измеренияпо меньшей мере расхода смеси 13 многофазной жидкости могут быть установлены в наземном трубопроводе 12.

[0030] Устройство 16 контроля и сбора данных соединено с многофазным расходомером 1 настоящего изобретения и/или другими датчиками нисходящей скважины (не показано), и/или устройствами активного освоения скважины, например, клапанами (не показано). Устройство 16 контроля и сбора данных может быть расположено на поверхности. Устройство 16 контроля и сбора данных может содержать компьютер. Оно также может содержать элемент спутниковой связи (не показан) для передачи данных в офис клиента. Его управление может осуществлять оператор.

[0031] Точный дизайн устройства для внутрискважинных работ и устройства наземного производства/контроля не относится к настоящему изобретению, и, следовательно, указанные устройства подробно здесь не описаны.

[0032] Фиг.2 представляет собой поперечное сечение, схематически иллюстрирующее вариант воплощения многофазного расходомера 1 настоящего изобретения. Многофазный расходомер 1 измеряет скорость смешанных потоков различных фаз 13, например газа, нефти и воды, без разделения фаз. Многофазный расходомер проводит дополнительные измерения, в частности, на жидкой фазе.

[0033] Многофазный расходомер 1 предпочтительно содержит участок 21 трубы с внутренним диаметром, который постепенно уменьшается от части 23 восходящего потока к измерительному участку 24 или горлышку, формируя сходящийся расходомер Вентури, а затем постепенно увеличивается от горлышка 24 к части 25 нисходящего потока. Сходящийся расходомер Вентури вызывает падение давления между частью 23 восходящего потока и частью 25 нисходящего потока, огибая горлышко 24. Часть трубы вокруг горлышка 24 Вентури представляет собой измерительный участок. Участок 21 трубы может быть соединен с любой отводящей трубой 10, 11, 12 с помощью любого подходящего соединительного устройства, например, фланца 26 с системой болтовых отверстий и уплотнительным профилем (подробно не показано). Смесь 13 многофазной жидкости поступает через часть 23 восходящего потока, горлышко 24 и часть 25 нисходящего потока участка 21 трубы, как показано стрелкой. Кроме того, в то время как многофазный расходомер 1 описан здесь как расходомер Вентури из соображений лаконичности, следует понимать, что настоящее изобретение также может применяться к другим многофазным расходомерам, известным в данной области техники, например, расходомер с коническим V-образным телом, диафрагменный расходомер и т.п.

[0034] Участок 21 трубы многофазного расходомера 1 может быть соединен с первым выпрямителем потока в виде слепого T-образного участка 20 трубы в части 23 восходящего потока. Многофазный расходомер 1 также может быть соединен со вторым слепым T-образным участком 22 трубы в части 25 нисходящего потока. В одном аспекте настоящего изобретения первый слепой T-образный участок трубы адаптирован для достижения большей гомогенизации жидкой смеси 13, которая поступает в отверстие участка 21 трубы многофазного расходомера 1, по сравнению с жидкой смесью 13, поступающей в первый слепой T-образный участок 20 трубы. Второй слепой T-образный участок 22 трубы не играет какой-либо роли в выпрямлении потока жидкой смеси 13 в многофазном расходомере. Различные участки 20, 21, 22 трубы могут быть соединены друг с другом вышеуказанным фланцем 26.

[0035] Кроме того, многофазный расходомер 1 содержит различные датчики для измерения различных характерных значений смеси 13 многофазной жидкости, поступающей в участок 21 трубы.

[0036] В одном варианте воплощения настоящего изобретения датчик представляет собой расходомер Вентури, оценивающий общий расход многофазной жидкости 13 на основе измерения перепада давления. Участок 21 трубы снабжен устройствами 28, 29 отбора давления. Первое устройство 28 отбора давления может располагаться в части 23 восходящего потока. Первый датчик 31 давления связан с первым устройством 28 отбора давления для измерения давления смеси 13 многофазной жидкости, поступающей в часть 23 восходящего потока. Второе устройство 29 отбора давления может располагаться в горлышке 24. Второй датчик 32 давления связан со вторым устройством 29 отбора давления для измерения давления смеси 13 многофазной жидкости, поступающей в горлышко 24. Таким образом, можно измерять падение давления смеси 13 многофазной жидкости между частью 23 восходящего потока и горлышком с помощью сходящегося расходомера Вентури. Тем не менее, специалист в данной области техники должен понимать, что датчик перепада давления (не показан) может быть расположен между первым устройством 28 отбора давления и вторым устройством 29 отбора давления так, чтобы измерять перепад давления смеси 13 многофазной жидкости между частью 23 восходящего потока и горлышком, частью 23 восходящего потока и частью 25 нисходящего потока или горлышком 24 и частью 25 нисходящего потока.

[0037] В другом варианте воплощения настоящего изобретения датчик представляет собой устройство измерения фракции, например, гамма-денситометр, содержащий источник 33 гамма-излучения и детектор 34 гамма-излучения. Гамма-денситометр измеряет поглощение гамма-излучения каждой фазой смеси 13 многофазной жидкости и оценивает плотность смеси 13 многофазной жидкости и скорость движения каждой фазы. Источник 33 гамма-излучения и детектор 34 гамма-излучения диаметрально расположены на каждой противоположной стороне горлышка 24 или вблизи к горлышку.

[0038] Источник 33 гамма-излучения может представлять собой источник 133 радиоизотопа бария или любое разнообразие ядерных источников, известных в области техники многофазного измерения. Такой источник 33 гамма-излучения генерирует фотоны, энергия которых распределяется в спектре с несколькими пиками. Основные пики источника 133 радиоизотопа бария имеют три различных уровня энергии, а именно 32 кэВ, 81 кэВ и 356 кэВ. В качестве другого примера, как альтернатива источнику 33 гамма-излучения, может быть использована известная рентгеновская трубка.

[0039] Детектор 34 гамма-излучения может содержать сцинтиллирующий кристалл (например, NalTI) и фотоэлектронный умножитель. Детектор 34 гамма-излучения измеряет скорость счета (количества распознанных фотонов) в различных каналах регистрации излучения, соответствующих ослабленным гамма-лучам, которые прошли через смесь 13 многофазной жидкости в горлышке. Точнее, скорости счета измеряются в каналах регистрации излучения, которые связаны с пиками энергетического спектра гамма-фотонов при 32 кэВ, 81 кэВ и 356 кэВ.

[0040] Измерения скорости счета в каналах регистрации излучения при 32 кэВ и 81 кэВ в основном чувствительны к жидким фракциям жидкой смеси 13 и составляющим элементам (композиции) за счет фотоэлектрического эффекта и эффекта Комптона при этих уровнях энергии. Измерения скорости счета в канале регистрации излучения при 356 кэВ проявляют значительную чувствительность к плотности составляющих элементов за счет эффекта Комптона только на этом уровне энергии. На основе этих измерений поглощения и калибровочных измерений можно рассчитать скорость движения каждой фазы и плотность смеси 13 многофазной жидкости. Такой расчет был подробно описан в нескольких документах, в частности, в WO 02/50522, и не будет подробно описан здесь ниже.

[0041] В качестве альтернативы измерительным устройствам на основе фракции ядерного источника, например, гамма-денситометра, можно использовать другие фракционные измерительные приборы, например, микроволновый или рентгеновский фракционный измерительный прибор.

[0042] Многофазный расходомер 1 также может включать датчик температуры (не показан) для измерения температуры смеси 13 многофазной жидкости.

[0043] В другом варианте воплощения настоящего изобретения оба вышеуказанных датчика можно объединить для расчета общего расхода смеси 13 многофазной жидкости, плотности смеси 13 многофазной жидкости и скорости движения каждой фазы смеси 13 многофазной жидкости.

[0044] Кроме того, многофазный расходомер 1 содержитпо меньшей мере один ультразвуковой датчик 35, 36, 37, 38. Каждый ультразвуковой датчик используется для оценкипо меньшей мере одной характеристики пленки жидкости, поступающей вдоль стенки участка трубы неинтрузивным способом. Примеры такой характеристики могут включать, но не должны ограничиваться толщиной пленки жидкости, скоростью пленки жидкости, средней скоростью пленки жидкости, профилем скорости пленки жидкости, частотой волн вдоль поверхности соприкосновения между пленкой жидкости и смесью (13) многофазной жидкости, скоростью волн, а также средней высотой волн. Использование методик, известных в данной области техники для измерения скорости жидкости пленки, например, таких методик, как импульсный ультразвуковой доплер, описанный в GB2447490 (включенном в настоящее описание в качестве ссылки), может повышать точность измерения расхода многофазной жидкости при реализации в соответствии с вариантами воплощения настоящего изобретения. Хотя здесь представлено подробное описание, касающееся измерения толщины пленки, специалисту в данной области техники будет понятно, что такое описание может также относиться к другим характеристикам пленки жидкости.

[0045] Измерения толщины проводятся локально, в том смысле, что можно оценивать только толщину пленки жидкости, проходящей в передней части ультразвукового датчика. Ультразвуковые датчики могут представлять собой пьезоэлектрические преобразователи, работающие последовательно в условиях излучения и приема, как известно в данной области техники. Различные датчики 35, 36, 37 могут быть установлены или вставлены на внешней стороне стенки участка 21 трубы многофазного расходомера 1 в различных местах, например, рядом с частью 23 восходящего потока и/или горлышком 24, и/или частью 25 нисходящего потока, соответственно. Кроме тогопо меньшей мере еще один датчик 38 может быть расположен на внешней стороне стенки первого слепого T-образного участка 20 трубы, например, рядом с местом, где участок 21 трубы соединен с первым слепым T-образным участком 20 трубы. Возможно, будет удобным любое другое положение датчика перед зоной трубы, где смесь 13 многофазной жидкости поступает в соответствии с условиями потока, аналогичными условиям, которые ожидаются в горлышке Вентури. Ультразвуковой датчик может быть расположен в слепом отверстии с внешней стороны стенки участка трубы, отделенной от смеси многофазной жидкости стенкой трубы, керамикой, пластиком или любым типом материала, пригодного для удерживания давления потока, и, желательно, материалом с сопротивлением, подходящим для ультразвуковых измерений смеси 13 многофазной жидкости. Таким образом, ультразвуковой датчик может быть вкручен или прикреплен на внешней стороне стенки участка трубы. Каждый ультразвуковой датчик может быть расположен таким образом, чтобы ультразвуковые колебания/волны распространялись перпендикулярно направлению потока смеси 13 многофазной жидкости (изображено в виде стрелки) или стенке участка трубы, или параллельно лучу прибора измерения фракции (например, гамма-денситометра). Таким образом, расположение указанных датчиков не влияет на расположение других датчиков, герметичность и общий дизайн многофазного расходомера 1. Как подробно описано ниже, эти датчики могут точно измерять толщину пленки жидкости и эволюцию пленки жидкости вдоль участка трубы, в частности, на измерительном участке.

[0046] Следует отметить, что устройства 28, 29 отбора давления, датчики 31, 32 давления, источник 33 гамма-излучения и детектор 34, а также ультразвуковые датчики 35, 36, 37, 38 были изображены на фиг.2 в одной плоскости исключительно для упрощения чертежа. Специалистам в данной области техники может быть очевидным, что указанные объекты могут быть расположены вокруг участка трубы в разных плоскостях, как, например, изображено на фиг.3.

[0047] Датчики 31, 32 давления, датчик температуры (не показан), детектор 34 гамма-излучения и ультразвуковые датчики 35, 36, 37, 38 соединены с устройством 16 контроля и сбора данных. Интерфейс (не показан) может быть соединен между различными датчиками и устройством 16 контроля и сбора данных. Такой интерфейс может включать средства аналого-цифрового преобразователя, средства мультиплексирования, средства проводной или беспроводной коммуникации и средства обеспечения электропитания.

[0048] Устройство 16 контроля и сбора данных может определять общую скорость потока, скорости движения отдельных фаз смеси 13 многофазной жидкости, плотность смеси 13 многофазной жидкости, температуру и другие показатели на основе измерений, обеспечиваемых различными датчиками и детекторами.

[0049] Фиг.3 представляет собой вид сверху, схематически иллюстрирующий горлышко расходомера Вентури в поперечном сечении в соответствии с конкретным вариантом воплощения настоящего изобретения. В этом варианте воплощения четыре ультразвуковых датчика 361, 362, 363, 364 расположены вокруг горлышка, а именно в том же самом поперечном сечении, что и источник 33 гамма-излучения и детектор 34 гамма-излучения. Указанные датчики 361, 362, 363, 364 могут измерять локальные характеристики пленки. Например, среднее значение характеристики (например, толщина и/или скорость) может быть оценено на основе измерений, проводимых четырьмя ультразвуковыми датчиками 361, 362, 363, 364. Эту оценку можно считать достаточно точной оценкой характеристики пленки в луче 60 гамма-денситометра.

[0050] Обе фиг.3 и 4 схематически иллюстрируют ситуацию высокой объемной доли газа ОДГ. В такой ситуации основной поток 40 влажного газа с каплями нефти и воды 51 поступает в ядро участка 21 трубы, в то время как пленка жидкости, содержащая нефть и воду 50 с пузырьками газа 41, поступает вдоль стенки участка 21 трубы. При высокой объемной доле газа ОДГ точность гамма-денситометра может резко снижаться. Считается, что высокая объемная доля газа ОДГ смеси 13 многофазной жидкости составляетпо меньшей мере 90%.

[0051] На фиг.4 изображен боковой вид поперечного сечения вдоль линии 70 фиг.3, иллюстрирующий принцип измерения пленки жидкости.

[0052] Каждый ультразвуковой датчик 361, 363 в режиме передачи производит акустические сигналы (колебания/волны) 61, которые отражаются любой поверхностью соприкосновения, возникшей на их пути. Отраженные звуковые сигналы (колебания/волны) порождают эхо, которое измеряется ультразвуковым датчиком 361, 363 в режиме приема. Первый отраженный акустический сигнал 62 порождается акустическими сигналами 61, частично отраженными на поверхности соприкосновения между стенкой участка трубы и пленкой 50 жидкости на стенке. Второй отраженный звуковой сигнал 63 порождается акустическими сигналами 61, частично отраженными на поверхности соприкосновения между пленкой 50 жидкости и газовым потоком 40.

[0053] Таким образом, акустические сигналы пересекают, во-первых, толщину металла 71, а затем толщину жидкости 72. Какие-либо значительные или измеримые эха в газовом потоке 40 отсутствуют из-за дисперсии акустических сигналов в газовой фазе. Два эха и их соответствующие эффекты из-за многократных отражений принимаются и учитываются в ультразвуковом датчике. Эти эха обрабатываются, и рассчитывается два времени переноса. Эти данные о времени переноса конвертируют в толщину металла 71 и толщину жидкости 72, используя данные о плотности каждого материала и скорости ультразвукового сигнала в каждом материале.

[0054] Фиг.5 представляет собой вид сверху горлышка расходомера Вентури в поперечном сечении, изображающий теоретическую ситуацию высокой объемной доли газа ОДГ с пленкой жидкости на стенке горлышка и каплями в ядре горлышка с целью иллюстрации различных измерений приведенных ниже формул.

[0055] В примере с высокой объемной долей газа ОДГ, изображенном на фиг.5, смесь 13 жидкости, поступающая через горлышко расходомера Вентури, содержит газовое ядро с каплями и пленкой жидкости на стенке. Диаметр ядра в этом примере составляет приблизительно 75% от общего диаметра горлышка. Таким образом, предположив, что чистое газовое ядро, газовая фракция составляет около 50%, и глядя на распределение жидкости в пределах луча, можно увидеть, что газовое ядро занимает гораздо больше чем 50% общей площади луча. Таким образом, доля газа, измеренного в луче, будет значительно выше, чем истинная доля газа в трубе. Эффект этой ошибки снижается при наличии капель жидкости, находящейся в ядре (как показано).

[0056] Предполагается, что толщина пленки 72 или среднее значение толщины пленки (см. вариант воплощения настоящего изобретения, представленный на фиг.3) измеряется в месте, где фракции измеряют с помощью гамма-денситометра. Предполагается, что пленка жидкости в этом примере представляет собой идеальное кольцо.

[0057] Кроме того, в целях упрощения предполагается, что геометрия носит двухмерный характер 2-D, т.е. луч 60 гамма-денситометра представляет собой не цилиндр, а поперечное сечение в самой широкой его части. Полный трехмерный 3-D расчет возможен, но существенно не повлияет на полученные результаты.

[0058] Горлышко расходомера Вентури имеет радиус RT. Ядро, которое по расчетам представляет собой однородную смесь газа и капель жидкости, имеет радиус RC. Радиус луча - а.

[0059] Площадь ядра (капли+газ) в луче АВС можно рассчитать по формуле:

,

[0060] которую можно решить как стандартный интеграл, а именно:

.

[0061] Аналогично общую площадь (ядро+пленка) в луче AB можно рассчитать по формуле:

,

[0062] которую можно решить как стандартный интеграл, а именно:

.

[0063] Площадь, занимаемая пленкой ABC, представляет собой разницу этих двух площадей:

.

[0064] Указанный расчет предполагает, что диаметр ядра превышает диаметр луча. ABCD - площадь, занимаемая в луче каплями.

[0065] Фракция жидкости, измеряемая лучом гамма-денситометра:

.

[0066] Площадь, занимаемая каплями внутри луча:

.

[0067] Кроме того, предполагается, что капли 51 равномерно распределены внутри ядра. Следовательно, долю капель, проходящих через луч, можно рассматривать как эквивалентную доле капель, проходящих через горлышко. Доля капель, проходящих через площадь горлышка:

.

[0068] Фактическая доля жидкости в виде пленки, проходящая через стенку горлышка:

.

[0069] И, наконец, фактическая доля жидкости, проходящая через горлышко:

.

[0070] Таким образом, зная размер горлышка Вентури и размер луча (оба значения известны с соответствующим допуском в процессе производства многофазного расходомера) и измерив толщину пленки 72, можно корректировать жидкую фракцию и, следовательно, газовую фракцию, измеряемую гамма-денситометром.

[0071] Фиг.6 схематично иллюстрирует способ расчета измерений расхода для настоящего изобретения.

[0072] В первом шаге S1 проводят различные измерения в соответствии с вышеприведенным подробным описанием в связи с фиг.2, а именно:

измерения перепада давления (∆P);

измерения затухания гамма-лучей (γ);

ультразвуковые измерения (УЗ); а также

измерения давления (P) и температуры (T).

[0073] Во втором шаге S2 проводят две серии расчетов. Во-первых, фракцию газа αG и фракцию жидкости αL рассчитывают, например, на основе измерений затухания, проведенных с помощью гамма-денситометра. Во-вторых, фракцию жидкости в виде пленки на горлышке αL-горлышко/пленка можно рассчитать на основе ультразвуковых измерений.

[0074] В третьем шаге S3 расчетную фракцию газа αG и фракцию жидкости αL можно скорректировать на основе расчетной фракции жидкости в виде пленки на горлышке αL-горлышко/пленка. Рассчитывают скорректированную фракцию газа αG-COR И скорректированную фракцию жидкости αL-COR. Фракцию жидкости в виде капель на горлышке αL-горлышко/капли можно рассчитать с помощью уравнения:

.

[0075] В четвертом шаге S4 скорость потока газовой фазы QG, скорость потока жидкой фазы QL, скорость потока жидкости в виде пленки QL-пленка и/или скорость потока жидкости в виде капель QL-капли можно рассчитать на основе измерений перепада давления ∆P, скорректированной фракции газа αG-COR, фракции пленки жидкости αL-горлышко/пленка и фракции жидких капель αL-горлышко/капли. В этом расчете также можно учитывать свойства жидкости, включая, но не ограничиваясь плотностью, вязкостью и поверхностным натяжением, которые связаны с исходными данными газа ING или жидкости INL, известными или полученными при калибровке многофазного расходомера, и/или эффектом фактического давления P и температурных условий Т смеси 13 многофазной жидкости во время измерений. Таким образом, можно улучшить производительность многофазного расходомера.

[0076] Следует отметить, что варианты воплощения настоящего изобретения не ограничиваются береговыми скважинами для добычи углеводородов и могут использоваться в море. Кроме того, хотя некоторые варианты воплощения настоящего изобретения имеют чертежи, демонстрирующие горизонтальный ствол скважины и вертикальный ствол скважины, указанные варианты воплощения настоящего изобретения могут также применяться к отклоненным стволам скважин. Все варианты воплощения настоящего изобретения в равной степени применимы к обсаженным и не обсаженным стволам скважины (в открытом стволе). Хотя конкретные приложения настоящего изобретения относятся к нефтедобывающей промышленности, также возможны другие способы применения в других отраслях, например, в горнодобывающей промышленности и т.п. Аппарат настоящего изобретения применим к различным способам применения, связанным с разведкой и добычей углеводородов, например, постоянный мониторинг скважин, в котором несколько многофазных расходомеров расположены в различных местах в скважине.

[0077] Хотя настоящее изобретение описано в связи с расходомером Вентури, важно обеспечить перепад давления при прохождении смеси 13 многофазной жидкости через многофазный расходомер. Как упоминалось выше, этот эффект может быть обеспечен при использовании расходомера с коническим телом или диафрагменного расходомера.

[0078] Вышеприведенные чертежи и их описание иллюстрируют, а не ограничивают настоящее изобретение.

[0079] Хотя чертежи демонстрируют различные функциональные объекты в качестве различных блоков, это отнюдь не исключает реализаций, в которых один объект выполняет несколько функций или в которых несколько объектов выполняют одну функцию. В связи с этим чертежи носят исключительно схематический характер.

[0080] Любую ссылочную позицию в формуле изобретения нельзя рассматривать как ограничивающую формулу изобретения. Слово «содержащий» не исключает наличия других элементов, помимо элементов, указанных в формуле изобретения. Единственное число элементов не исключает наличия множества таких элементов.


МНОГОФАЗНЫЙ РАСХОДОМЕР И СПОСОБ ИЗМЕРЕНИЯ ПЛЕНКИ ЖИДКОСТИ
МНОГОФАЗНЫЙ РАСХОДОМЕР И СПОСОБ ИЗМЕРЕНИЯ ПЛЕНКИ ЖИДКОСТИ
МНОГОФАЗНЫЙ РАСХОДОМЕР И СПОСОБ ИЗМЕРЕНИЯ ПЛЕНКИ ЖИДКОСТИ
МНОГОФАЗНЫЙ РАСХОДОМЕР И СПОСОБ ИЗМЕРЕНИЯ ПЛЕНКИ ЖИДКОСТИ
МНОГОФАЗНЫЙ РАСХОДОМЕР И СПОСОБ ИЗМЕРЕНИЯ ПЛЕНКИ ЖИДКОСТИ
МНОГОФАЗНЫЙ РАСХОДОМЕР И СПОСОБ ИЗМЕРЕНИЯ ПЛЕНКИ ЖИДКОСТИ
Источник поступления информации: Роспатент

Показаны записи 281-290 из 327.
20.04.2019
№219.017.355c

Системы и способы гидратации

По существу непрерывный поток текучей среды на водной основе и по существу непрерывный поток геля, имеющего первую концентрацию, соединяют для создания по существу непрерывного потока геля, имеющего вторую концентрацию. Вторая концентрация значительно ниже первой концентрации. Гель, имеющий...
Тип: Изобретение
Номер охранного документа: 0002685307
Дата охранного документа: 17.04.2019
27.04.2019
№219.017.3d70

Нижний стабилизирующий рычаг для буровой установки

Группа изобретений относится к нижним стабилизирующим рычагам для буровой установки. Технический результат заключается в уменьшении времени на спуско-подъемные операции, в устранении вероятности опасного воздействия на рабочего на уровне пола буровой установки. Нижний стабилизирующий рычаг...
Тип: Изобретение
Номер охранного документа: 0002686220
Дата охранного документа: 24.04.2019
27.04.2019
№219.017.3dd2

Водные растворы и способ их использования

Группа изобретений относится к способам обработки подземной формации кислотными растворами. Технический результат - замедление реакции между кислотой и подземной формацией и как следствие увеличение проницаемости и продуктивности подземной формации. Водная композиция для обработки и...
Тип: Изобретение
Номер охранного документа: 0002686210
Дата охранного документа: 24.04.2019
29.04.2019
№219.017.439a

Оценка параметров продуктивного пласта при бурении

Изобретение относится к технологиям оценки заглубленных пластов. Техническим результатом является выборочный доступ к камерам пробоотборника, изоляция от ударов, колебаний, циклических деформаций и/или других скважинных напряжений, предохранение герметизирующего механизма камеры пробоотборника....
Тип: Изобретение
Номер охранного документа: 0002416720
Дата охранного документа: 20.04.2011
29.04.2019
№219.017.4465

Система для направленного бурения

Изобретение относится к нефтегазовой промышленности, а именно к системе, предназначенной для направленного бурения. Содержит компоновку (18) низа буровой колонны, включающую в себя верхнюю секцию (22) и секцию (24) управления. Через верхнюю секцию проходит вертлюг (26), позволяющий регулировку...
Тип: Изобретение
Номер охранного документа: 0002452839
Дата охранного документа: 10.06.2012
09.05.2019
№219.017.4c1d

Способы и устройство для формирования изображения подповерхностных трещин

Изобретение относится к области обработки геофизических данных для формирования изображения подповерхностных трещин с использованием плоскости, отражающей медленность (ST плоскость). Сущность: формируют и принимают акустические волны для формирования акустических данных. Оценивают углы падения...
Тип: Изобретение
Номер охранного документа: 0002346297
Дата охранного документа: 10.02.2009
09.05.2019
№219.017.4dae

Крыльчатка измерительного устройства для сбора данных в потоке

Изобретение предназначено для измерения потока многофазной текучей среды (нефть, газ, вода) в углеводородных скважинах. Крыльчатка выполнена литой из термопластика. Лопасти и ступица крыльчатки отлиты со шпинделем и по меньшей мере одним магнитом, которые заключены внутри ступицы. Измерительное...
Тип: Изобретение
Номер охранного документа: 0002339003
Дата охранного документа: 20.11.2008
09.05.2019
№219.017.4ef4

Способ замедления повреждения вскрытой поверхности пласта в нефтяных и газовых скважинах (варианты) и система для его осуществления

Группа изобретений относится к замедлению повреждения вскрытой поверхности пласта в нефтяных и газовых скважинах. Обеспечивает предотвращение локальной дестабилизации неустойчивого пласта. Сущность изобретения: способ содержит следующие этапы: спуск колонны в ствол скважины, проходящей, по...
Тип: Изобретение
Номер охранного документа: 0002470145
Дата охранного документа: 20.12.2012
09.05.2019
№219.017.4f38

Элемент привода и статор и ротор электродвигателя с перемещающейся полостью и способы изготовления статора и ротора

Изобретение относится к изготовлению и использованию высокотемпературных элементов двигателя или насоса с перемещающейся полостью и, более конкретно, к изготовлению и использованию двигателя или насоса, статоров или роторов, содержащих полимерную поверхность. Изобретение предлагает элемент...
Тип: Изобретение
Номер охранного документа: 0002459088
Дата охранного документа: 20.08.2012
18.05.2019
№219.017.560c

Компактное устройство для измерения скорости и направления вращения объекта и магнитная система для сбора данных

Изобретение предназначено для работы в условиях высоких температур и давлений, а также коррозионной текучей среды, в частности, в нефтяной промышленности. Устройство размещено вблизи объекта измерения и содержит магнитное измерительное устройство, которое вырабатывает в ответ на вращение...
Тип: Изобретение
Номер охранного документа: 0002346243
Дата охранного документа: 10.02.2009
Показаны записи 231-239 из 239.
20.01.2018
№218.016.1a3e

Флюиды и способ, включающие наноцеллюлозу

Изобретение относится к флюидам, применяемым при обработке нефтегазоносной формации. Флюид для обработки подземной формации, содержащий водную двухфазную систему, включающую первую водную фазу и вторую водную фазу, где первая фаза содержит нанокристаллическую целлюлозу - NCC, включающую...
Тип: Изобретение
Номер охранного документа: 0002636526
Дата охранного документа: 23.11.2017
20.01.2018
№218.016.1ce7

Способ обработки скважины с отведением с помощью способного разлагаться материала

Изобретение относится к выполнению многостадийной обработки скважин, пронизывающих подземные формации. Способ разрыва с отведением с помощью способного разлагаться материала, содержащий этапы, на которых осуществляют: нагнетание скважинной обрабатывающей текучей среды в скважину, пронизывающую...
Тип: Изобретение
Номер охранного документа: 0002640618
Дата охранного документа: 10.01.2018
13.02.2018
№218.016.2687

Способ расчета локального геомагнитного возмущающего поля и его практическое применение

Группа изобретений относится к геомагнитной съемке для многочисленных применений, таких как навигация, определение ориентации управления движущимися объектами, в частности направленное бурение. Техническим результатом является повышение точности получения результатов геомагнитной съемки для...
Тип: Изобретение
Номер охранного документа: 0002644179
Дата охранного документа: 08.02.2018
17.02.2018
№218.016.2af3

Конфигурация плавающего промежуточного электрода для устройств скважинного генератора ядерных излучений

Изобретение относится к области генерирования радиации в скважинах для ядерного каротажа. Генератор ядерного излучения для функционирования в скважинах содержит источник заряженных частиц, материал мишени и ускорительную колонну между источником заряженных частиц и материалом мишени....
Тип: Изобретение
Номер охранного документа: 0002642835
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2bc0

Содержание асфальтенов в тяжелой нефти

Группа изобретений относится к способам определения содержания асфальтенов в подземном пласте. Способ включает: перемещение скважинного инструмента в стволе скважины, проходящей в подземном пласте, причем подземный пласт содержит флюид различной вязкости; извлечение флюида в скважинный...
Тип: Изобретение
Номер охранного документа: 0002643391
Дата охранного документа: 01.02.2018
17.02.2018
№218.016.2c7e

Способ и устройство для определения характеристик пластовых флюидов

Изобретение относится к способу определения типа пробы пластового флюида. Техническим результатом является повышение точности определения характеристик пластовых флюидов. Способ включает измерение поглощательной способности пробы пластового флюида на множестве длин волны электромагнитного...
Тип: Изобретение
Номер охранного документа: 0002643531
Дата охранного документа: 02.02.2018
04.04.2018
№218.016.2fd4

Система и способ доставки нефтепромысловых материалов

Изобретение относится к мобильной опорной конструкции для по меньшей мере одного модульного бункера для нефтепромысловых материалов. Нефтепромысловый материал хранится по меньшей мере в одном бункере, что дает возможность использовать силу тяжести для подачи нефтепромыслового материала в...
Тип: Изобретение
Номер охранного документа: 0002644738
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.3204

Аппаратура контроллера, система и/или способ для регулирования давления в системе управления текучей средой

Система управления текучей средой содержит корпус с входным каналом, находящимся в гидравлическом сообщении с выходным каналом. Положение дроссельного поршня в корпусе управляет потоком текучей среды от входного канала к выходному каналу. Контроллер, присоединенный к корпусу, имеет...
Тип: Изобретение
Номер охранного документа: 0002645310
Дата охранного документа: 20.02.2018
04.04.2018
№218.016.322d

Битумные эмульсии для применения в нефтедобывающей промышленности

Изобретение относится к интенсификации притока в скважину для увеличения нефтегазодобычи. В способе борьбы с фильтрационными потерями в формации, содержащем закачивание водной жидкости, содержащей эмульсию, стабилизированную поверхностно-активным веществом и имеющую внутреннюю битумную фазу, в...
Тип: Изобретение
Номер охранного документа: 0002645320
Дата охранного документа: 20.02.2018
+ добавить свой РИД