×
20.02.2015
216.013.2a40

СПОСОБ ПОЛУЧЕНИЯ ТИТАНАТА ЛИТИЯ СО СТРУКТУРОЙ ШПИНЕЛИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение может быть использовано при получении электродных материалов для литий-ионных химических источников тока. Для получения титаната лития состава LiTiO со структурой шпинели готовят раствор соли титана. В качестве соли титана используют хлорид и/или сульфат. В раствор соли титана вводят гидроксид аммония с получением в твердой фазе гидратированного титаната аммония. Твердую и жидкую фазы разделяют фильтрацией. Гидратированный титанат аммония обрабатывают раствором гидроксида лития при мольном отношении Li:Ti=(1,0-1,04):1,0 и температуре 75-95°С в течение не более 1 часа с получением литийтитансодержащего соединения. Выделение этого соединения проводят фильтрацией, а затем прокаливают его при температуре 650-800°С в течение 0,5-2,0 часов. Полученный титанат лития промывают деионизированной водой. Изобретение позволяет уменьшить расход гидроксида лития, снизить длительность и энергоемкость процесса получения высокочистого титаната лития, обеспечить высокие характеристики электродов литиевых аккумуляторов, стабильных при многократном числе циклов «заряд-разряд». 2 з.п. ф-лы, 5 пр.
Реферат Свернуть Развернуть

Изобретение относится к технологии соединений на основе переходных металлов и может быть использовано при получении электродных материалов для литий-ионных химических источников тока.

Одним из наиболее перспективных электродных материалов является титанат лития состава Li4Ti5O12 со структурой шпинели. Для обеспечения высоких и стабильных характеристик литий-ионных аккумуляторов по емкости и количеству рабочих циклов в режиме "заряд-разряд" необходимы монофазные, наноразмерные порошки титаната лития стехиометрического состава, заданной структуры и узких гранулометрических классов. Однако известные способы синтеза таких порошков не обеспечивают всего комплекса необходимых характеристик - монофазности, стехиометричности состава, требуемой структуры порошков, их нанодисперсности и отсутствия нежелательных примесей. Кроме того, эти способы длительны, энерго- и реагентно-затратны, что определяет необходимость разработки более эффективных технических решений.

Известен способ получения титаната лития со структурой шпинели (см. Сибиряков Р.В., Кудрявцев Е.Н., Агафонов Д.В., Нараев В.Н., Бобыль А.В. Синтез анодного материала Li4Ti5O12 в среде этиленгликоля // Фундаментальные исследования. 2012. № 9(3). С. 707-713), согласно которому осуществляют жидкофазной синтез титаната лития состава Li4Ti5O12 путем обработки тетрахлорида титана, предварительно растворенного в этиленгликоле, насыщенным (3 моль/л) раствором гидроксида лития. Синтез ведут при температуре кипения смеси в течение 24 или 120 часов с последующей обработкой реакционной смеси соответственно соляной кислотой до слабощелочной реакции и полиакриламидом для коагуляции осадка или в течение 8 часов разбавленным раствором аммиака. Образовавшийся осадок отделяют фильтрацией, промывают до отрицательной реакции на хлорид-ион и сушат сначала при температуре 80°С в течение 4 часов, а затем при 120°С в течение 3 часов. После сушки осадок прокаливают на воздухе при температуре 500°С в течение 3 часов с получением продукта в виде титаната лития со структурой шпинели.

Недостатком данного способа является наличие в полученном титанате лития примесей, содержащих карбонат лития Li2СО3, метатитанат лития Li2TiO3и хлорид-ион, что нарушает монофазность и стехиометрию целевого продукта. Все это приводит к снижению функциональных характеристик химического источника тока с анодом, изготовленным из полученного продукта: при многократном числе циклов "заряд-разряд" емкость источника тока снижается и не превышает 95 мА·ч/г.

Известен также принятый в качестве прототипа способ получения титаната лития со структурой шпинели (см. заявку 102969491, Китай, МПК Н01М 4/485 (2010.01), 2013), согласно которому проводят растворение соли титанилсульфата в деионизированной воде при температуре 25-70°С в течение 3-28 часов с получением 10-25% водного раствора титанилсульфата и его фильтрацию с отделением нерастворенных примесей. В полученный раствор добавляют раствор гидроксида лития в мольном соотношении Li:Ti=l,16:l,0, вводят в количестве 0,3-0,8% стабилизирующий агент, выбранный из группы, содержащей полиоксиальдегид, органический амин, многоатомный спирт, альдегид, органическую кислоту. Взаимодействие компонентов ведут в течение 2-5 часов при температуре 50-90°С и значении рН 2-6 с образованием золя, который выделяют путем высушивания в вакуумной печи при температуре 60-100°С в течение одной ночи с получением сухого порошка литийтитансодержащего соединения. Высушенный порошок измельчают и прокаливают при температуре 700-900°С в течение 10-20 часов с получением титаната лития состава Li4Ti5O12, имеющего структуру шпинели.

Недостатком известного способа является отсутствие промывки титаната лития, что приводит к наличию в целевом продукте посторонних соединений и примесей, содержащих анионы, присутствовавшие в исходных растворах. Это ухудшает электрохимические характеристики получаемых электродов литиевых аккумуляторов и приводит к снижению емкости аккумуляторов при многократном числе циклов "заряд-разряд". Данный способ характеризуется повышенным расходом гидроксида лития, является энергоемким (700-900°С в течение 10-20 часов), длительным (до 2,5 суток) и требует использования дорогостоящих органических реагентов.

Настоящее изобретение направлено на достижение технического результата, заключающегося в повышении эффективности способа за счет уменьшения расхода гидроксида лития, снижения длительности и энергоемкости процесса с получением высокочистого наноразмерного порошка титаната лития со структурой шпинели. Технический результат также заключается в обеспечении высоких электрохимических характеристик получаемых электродов литиевых аккумуляторов, стабильных при многократном числе циклов "заряд-разряд".

Технический результат достигается тем, что в способе получения титаната лития со структурой шпинели, включающем приготовление раствора соли титана, фильтрацию с разделением жидкой и твердой фаз, обработку раствором гидроксида лития при заданном мольном отношении лития к титану и повышенной температуре с образованием литийтитансодержащего соединения, выделение этого соединения и его прокаливание, согласно изобретению перед фильтрацией в раствор соли титана вводят гидроксид аммония с получением в твердой фазе гидратированного титаната аммония, который и обрабатывают раствором гидроксида лития при мольном отношении Li:Ti=(l,0-l,04):l,0 и температуре 75-95°С в течение не более 1 часа, выделение литийтитансодержащего соединения производят фильтрацией, его прокаливание ведут при температуре 650-800°С в течение 0,5-2,0 часов, после чего осуществляют промывку титаната лития деионизированной водой.

Достижению технического результата способствует то, что в качестве соли титана используют его хлорид и/или сульфат.

Достижению технического результата способствует также то, что промывку титаната лития деионизированной водой ведут при отношении Т:Ж=1:(5-10) в течение 0,25-0,5 часа.

Существенные признаки заявленного изобретения, определяющие объем правовой охраны и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.

Введение перед фильтрацией в раствор соли титана гидроксида аммония позволяет получить в твердой фазе гидратированный титанат аммония и отделить основную часть примесных компонентов, содержащихся в исходном растворе. Это позволяет получить высокочистый прекурсор, обеспечивающий эффективное замещение катионов аммония на ионы лития.

Обработка гидратированного титаната аммония раствором гидроксида лития при мольном отношении Li:Ti=(l,0-l,04):l,0 обеспечивает образование литийтитансодержащего соединения с мольным отношением лития к титану, соответствующим стехиометрическому, при пониженном по сравнению с прототипом расходе лития. Обработка раствором гидроксида лития при мольном отношении Li:Ti менее 1,0 ведет к нарушению стехиометрии и гидролизу титаната аммония, а обработка при мольном отношении Li:Ti более 1,04 также ведет к нарушению стехиометрии и повышенному расходу гидроксида лития. В обоих случаях при выходе за указанные предельные значения соотношения получаемый целевой продукт в виде порошка титаната лития содержит примесные фазы.

Обработка гидратированного титаната аммония раствором гидроксида лития при 75-95°С в течение не более 1 часа обеспечивает эффективный синтез литийтитансодержащего соединения с отношением содержания лития и титана, соответствующим требуемой стехиометрии.

Выделение литийтитансодержащего соединения фильтрацией обеспечивает снижение длительности и энергоемкости способа, позволяет повысить чистоту продукта вследствие отделения литийтитансодержащего соединения от раствора с остаточным содержанием лития для последующей регенерации раствора и использования лития.

Прокаливание литийтитансодержащего соединения при температуре 650-800°С в течение 0,5-2,0 часов снижает энергоемкость и длительность способа, обеспечивает получение наноразмерного кристаллического порошка титаната лития со структурой шпинели. Прокаливание литийтитансодержащего соединения при температуре ниже 650°С и времени менее 0,5 часа приводит к недостаточной сформированности кристаллической структуры, а при температуре ниже 650°С и времени более 2 часов ведет к неоправданному увеличению продолжительности времени синтеза. Прокаливание литийтитансодержащего соединения при температуре выше 800°С и времени более 2 часов помимо повышенного расхода энергии и увеличения продолжительности времени синтеза ведет к чрезмерному укрупнению частиц порошкового материала, что снижает проводимость получаемого порошка титаната лития. Прокаливание литийтитансодержащего соединения при температуре выше 800°С и времени менее 0,5 часа ведет к недостаточной сформированности кристаллической структуры продукта.

Промывка титаната лития деионизированной водой обеспечивает отмывку целевого продукта от остаточных примесей, содержавшихся в исходном растворе соли титана, что позволяет улучшить электрохимические характеристики синтезируемого материала.

Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в повышении эффективности способа за счет уменьшения расхода гидроксида лития, снижения длительности и энергоемкости процесса с получением высокочистого наноразмерного порошка титаната лития со структурой шпинели, а также в обеспечении высоких электрохимических характеристик получаемых электродов литиевых аккумуляторов, стабильных при многократном числе циклов "заряд-разряд".

В частных случаях осуществления изобретения предпочтительны следующие конкретные операции и режимные параметры.

Использование в качестве соли титана его хлорида и/или сульфата обеспечивает полный и быстрый гидролиз с получением гидратированного титаната аммония, расширяет диапазон применяемых исходных реагентов.

Промывка титаната лития деионизированной водой при отношении Т:Ж=1:(5-10) в течение 0,25-0,5 часа обеспечивает оптимальные условия удаления примесей из целевого продукта. При количественном содержании жидкой фазы менее 5 по отношению к твердой фазе и промывке в течение менее 0,25 часа не обеспечивается полнота отмывки от примесей, а промывка в течение более 0,5 часа при содержании жидкой фазы более 10 по отношению к твердой фазе приводит к неоправданному расходу деионизированной воды и излишним затратам времени без улучшения качества продукта.

Вышеуказанные частные признаки изобретения позволяют осуществить способ в оптимальном режиме с получением высокочистого наноразмерного порошка титаната лития со структурой шпинели, обеспечивающего высокие электрохимические характеристики электродов литиевых аккумуляторов, стабильных при многократном числе циклов "заряд-разряд".

Сущность и преимущества заявленного способа могут быть проиллюстрированы следующими Примерами.

Пример 1. Берут 100 г хлорида титана (TiCl4) и растворяют в 1000 мл 3 моль/л раствора соляной кислоты с получением 1000 мл раствора хлорида титана с концентрацией 0,53 моль/л в пересчете на ТiO2. В раствор хлорида титана вводят 446,8 мл 24%-ного раствора гидроксида аммония с получением в твердой фазе 57,6 г гидратированного титаната аммония, содержание титана в котором составляет 73,6% в пересчете на ТiO2. Твердую и жидкую фазы разделяют фильтрацией, при этом примесные компоненты в виде хлорид-ионов остаются в растворе. Гидратированный титанат аммония обрабатывают 176,7 мл 3 моль/л раствора гидроксида лития (мольное отношение Li:Ti=l:l). Обработку раствором гидроксида лития проводят при 95°С в течение 1 часа с образованием 53,3 г литийтитансодержащего соединения, которое выделяют фильтрацией и прокаливают при температуре 650°С в течение 2 часов. После этого осуществляют промывку титаната лития деионизированной водой при отношении Т:Ж=1:5 в течение 0,25 часа. Получают 48,7 г порошка титаната лития крупностью 50-70 нм. Длительность синтеза титаната лития, включая две операции фильтрации, составила 5,1 часа. По данным химического анализа полученное соединение является высокочистым и имеет состав Li4Ti5O12, а рентгенофазовый анализ свидетельствует о том, что порошок титаната лития - монофазный и имеет структуру шпинели. Химический источник тока с анодом, изготовленным из полученного продукта, имеет емкость 156 мА·ч/г, которая остается неизменной при числе циклов "заряд-разряд", равном 30.

Пример 2. Берут 100 г сульфата титана TiOSO4·2H2O и растворяют в 300 мл 3 моль/л раствора серной кислоты с получением 300 мл раствора сульфата титана с концентрацией 1,7 моль/л в пересчете на ТiO2. В раствор сульфата титана вводят 260,5 мл 24%-ного раствора гидроксида аммония с получением в твердой фазе 54,2 г гидратированного титаната аммония, содержание титана в котором составляет 75,3% в пересчете на ТiO2. Твердую и жидкую фазы разделяют фильтрацией, при этом примесные компоненты в виде сульфат-ионов остаются в растворе. Гидратированный титанат аммония обрабатывают 176,7 мл 3 моль/л раствора гидроксида лития (мольное отношение Li:Ti=l,04:1,0). Обработку раствором гидроксида лития проводят при 75°С в течение 0,5 часа с образованием 50,1 г литийтитансодержащего соединения, которое выделяют фильтрацией и прокаливают при температуре 800°С в течение 1 часа. После этого осуществляют промывку титаната лития деионизированной водой при отношении Т:Ж=1:10 в течение 0,5 часа. Получают 46,9 г порошка титаната лития крупностью 180-220 нм. Длительность синтеза титаната лития, включая две операции фильтрации, составила 4,8 часа. По данным химического анализа полученное соединение является высокочистым и имеет состав Li4Ti5O12, а рентгенофазовый анализ свидетельствует о том, что порошок титаната лития - монофазный и имеет структуру шпинели. Химический источник тока с анодом, изготовленным из полученного продукта, имеет емкость 140 мА·ч/г, которая остается неизменной при числе циклов "заряд-разряд", равном 55.

Пример 3. Берут 100 г хлорида титана (TiCl4) и растворяют в 1000 мл 3 моль/л раствора соляной кислоты, затем берут 100 г сульфата титана TiOSO4·2H2O и растворяют в 300 мл 3 моль/л раствора серной кислоты. Растворы смешивают с получением 1300 мл раствора хлорида и сульфата титана с концентрацией 0,8 моль/л в пересчете на TiO2. В раствор хлорида и сульфата титана вводят 707,3 мл 24%-ного раствора гидроксида аммония с получением в твердой фазе 111,6 г гидратированного титаната аммония, содержание титана в котором составляет 74,5% в пересчете на ТiО2. Твердую и жидкую фазы разделяют фильтрацией, при этом примесные компоненты в виде хлорид- и сульфат-ионов остаются в растворе. Гидратированный титанат аммония обрабатывают 357,2 мл 3 моль/л раствора гидроксида лития (мольное отношение Li:Ti=l,03:l,0). Обработку раствором гидроксида лития проводят при 80°С в течение 0,8 часа с образованием 103,2 г литийтитансодержащего соединения, которое выделяют фильтрацией и прокаливают при температуре 700°С в течение 1,5 часа. После этого осуществляют промывку титаната лития деионизированной водой при отношении Т:Ж=1:8 в течение 0,4 часа. Получают 95,6 г порошка титаната лития крупностью 120-160 нм. Длительность синтеза титаната лития, включая две операции фильтрации, составила 4,5 часа. По данным химического анализа полученное соединение является высокочистым и имеет состав Li4Ti5O12, а рентгенофазовый анализ свидетельствует о том, что порошок титаната лития - монофазный и имеет структуру шпинели. Химический источник тока с анодом, изготовленным из полученного продукта, имеет емкость 144 мА·ч/г, которая остается неизменной при числе циклов "заряд-разряд", равном 40.

Пример 4. Берут 100 г хлорида титана (TiCl4) и растворяют в 1000 мл 3 моль/л раствора соляной кислоты с получением 1000 мл раствора хлорида титана с концентрацией 0,53 моль/л в пересчете на ТiО2. В раствор хлорида титана вводят 446,8 мл 24%-ного раствора гидроксида аммония с получением в твердой фазе 59,9 г гидратированного титаната аммония, содержание титана в котором составляет 73,1% в пересчете на ТiО2. Твердую и жидкую фазы разделяют фильтрацией, при этом примесные компоненты в виде хлорид-ионов остаются в растворе. Гидратированный титанат аммония обрабатывают 180 мл 3 моль/л раствора гидроксида лития (мольное отношение Li:Ti=l,02:l,0). Обработку раствором гидроксида лития проводят при 85°С в течение 0,3 часа с образованием 52,9 г литийтитансодержащего соединения, которое выделяют фильтрацией и прокаливают при температуре 800°С в течение 0,5 часа. После этого осуществляют промывку титаната лития деионизированной водой при отношении Т:Ж=1:6 в течение 0,5 часа. Получают 48,7 г порошка титаната лития крупностью 100-140 нм. Длительность синтеза титаната лития, включая две операции фильтрации, составила 4,6 часа. По данным химического анализа полученное соединение является высокочистым и имеет состав Li4Ti5O12, а рентгенофазовый анализ свидетельствует о том, что порошок титаната лития - монофазный и имеет структуру шпинели. Химический источник тока с анодом, изготовленным из полученного продукта, имеет емкость 148 мА·ч/г, которая остается неизменной при числе циклов "заряд-разряд", равном 60.

Пример 5. Берут 100 г сульфата титана TiOS04-2H20 и растворяют в 300 мл 3 моль/л раствора серной кислоты с получением 300 мл раствора сульфата титана с концентрацией 1,7 моль/л в пересчете на ТiO2. В раствор сульфата титана вводят 260,5 мл 24%-ного раствора гидроксида аммония с получением в твердой фазе 53,8 г гидратированного титаната аммония, содержание титана в котором составляет 75,8% в пересчете на ТiO2. Твердую и жидкую фазы разделяют фильтрацией, при этом примесные компоненты в виде сульфат-ионов остаются в растворе. Гидратированный титанат аммония обрабатывают 170 мл 3 моль/л раствора гидроксида лития (мольное отношение Li:Ti=l:l). Обработку раствором гидроксида лития проводят при 75°С в течение 1 часа с образованием 49,7 г литийтитансодержащего соединения, которое выделяют фильтрацией и прокаливают при температуре 650°С в течение 2 часов. После этого осуществляют промывку титаната лития деионизированной водой при отношении Т:Ж=1:5 в течение 0,25 часа. Получают 46,9 г порошка титаната лития крупностью 60-90 нм. Длительность синтеза титаната лития, включая две операции фильтрации, составила 5,2 часа. По данным химического анализа полученное соединение является высокочистым и имеет состав Li4Ti5O12, а рентгенофазовый анализ свидетельствует о том, что порошок титаната лития - монофазный и имеет структуру шпинели. Химический источник тока с анодом, изготовленным из полученного продукта, имеет емкость 151 мА·ч/г, которая остается неизменной при числе циклов "заряд-разряд", равном 35.

Из приведенных Примеров видно, что заявляемый способ обеспечивает получение высокочистого наноразмерного порошка титаната лития состава Li4Ti5O12 со структурой шпинели. По сравнению с прототипом предлагаемое изобретение позволяет отделить основную часть примесных компонентов на начальной стадии процесса, обеспечивает уменьшение расхода гидроксида лития и снижение длительности синтеза титаната лития до 5,2 часов и менее. Прокаливание литийтитансодержащего соединения ведут в более низком интервале температур (650-800°С) в течение времени, в 10 раз меньшего, чем в прототипе, что свидетельствует о пониженной энергоемкости способа. Химический источник тока с анодом, изготовленным из порошка титаната лития, полученного согласно изобретению, имеет емкость 140-156 мА·ч/г, которая стабильна при многократном числе циклов "заряд-разряд". Способ по изобретению относительно прост и может быть реализован в промышленных условиях.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 65.
20.01.2013
№216.012.1bd1

Способ изготовления композиционного строительного изделия

Изобретение относится к области строительства, а именно к способам изготовления композиционных строительных изделий. Изобретение позволит повысить прочность сцепления конструкционного и теплоизоляционного слоев изделия при сокращении продолжительности тепло-влажностной обработки. Способ...
Тип: Изобретение
Номер охранного документа: 0002472615
Дата охранного документа: 20.01.2013
27.04.2013
№216.012.3a78

Способ переработки скрапа анодов танталовых оксидно-полупроводниковых конденсаторов

Изобретение относится к области переработки скрапа анодов танталовых оксидно-полупроводниковых конденсаторов. Способ включает очистку кислотной обработкой скрапа с удалением диоксида марганца. Затем ведут раскисление очищенного скрапа, его гидрирование, размол, дегидрирование при повышенной...
Тип: Изобретение
Номер охранного документа: 0002480529
Дата охранного документа: 27.04.2013
10.05.2013
№216.012.3cd7

Способ автоматического управления процессом жидкостной экстракции в вибрационной колонне

Изобретение относится к способу автоматического управления процессом жидкостной экстракции в экстракционных колоннах, преимущественно вибрационных, и может быть использовано в гидрометаллургических, нефтехимических, радиохимических и других производствах. Способ включает в себя регулирование...
Тип: Изобретение
Номер охранного документа: 0002481142
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3d57

Способ получения основного хлорида алюминия

Изобретение относится к области химии. Берут активный гидроксид алюминия с удельным объемом пор не менее 0,2 см/г и средним диаметром пор не менее 2,5 нм и обрабатывают его газообразной соляной кислотой при массовом соотношении HCl:HO в газовой фазе 1-15:1 до достижения молярного отношения...
Тип: Изобретение
Номер охранного документа: 0002481270
Дата охранного документа: 10.05.2013
10.06.2013
№216.012.4883

Способ получения титанового дубителя

Изобретение относится к технологии минеральных дубителей и может быть использовано при получении титанового дубителя из титансодержащего сырья, в частности из гидроксида титана. Берут гидроксид титана, содержащий 30-80% TiO, смешивают его с сульфатом аммония при массовом отношении 1:0,05-0,2 в...
Тип: Изобретение
Номер охранного документа: 0002484143
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b91

Способ получения порошка ниобия

Изобретение относится к цветной металлургии и может быть использовано при металлотермическом получении нанокристаллических порошков ниобия преимущественно для электролитических конденсаторов. Предложен способ получения порошка ниобия. Проводят восстановление парами магния или кальция оксидного...
Тип: Изобретение
Номер охранного документа: 0002484927
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c98

Способ переработки никелевого штейна

Изобретение относится к способу переработки никелевого штейна. Способ включает выщелачивание штейна сернокислым никелевым раствором при повышенных давлении и температуре с получением раствора сульфата никеля. Раствор сульфата никеля очищают от примесей железа, меди и кобальта и извлекают никель...
Тип: Изобретение
Номер охранного документа: 0002485190
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.53e8

Способ переработки фосфогипса

Изобретение может быть использовано в химической промышленности для получения концентрата редкоземельных элементов (РЗЭ), а также фосфогипса, пригодного для производства гипсовых строительных материалов и цемента. Способ переработки фосфогипса включает выщелачивание фосфогипса, содержащего РЗЭ...
Тип: Изобретение
Номер охранного документа: 0002487083
Дата охранного документа: 10.07.2013
10.08.2013
№216.012.5d49

Способ конверсии хлорида металла в его сульфат

Изобретение относится к гидрометаллургии и может быть использовано для получения сульфатов металлов из растворов их хлоридов, образующихся при гидрохлоридной переработке природного или вторичного сырья, в частности к способу конверсии хлорида металла в его сульфат. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002489502
Дата охранного документа: 10.08.2013
10.08.2013
№216.012.5d4a

Способ переработки кианитового концентрата

Изобретение относится к способу переработки кианитового концентрата и может быть использовано при производстве глинозема, корундовых огнеупоров, керамики, силумина и алюминия. Способ включает смешение концентрата, углеродистого восстановителя и поризующей добавки в виде сульфата аммония,...
Тип: Изобретение
Номер охранного документа: 0002489503
Дата охранного документа: 10.08.2013
Показаны записи 1-10 из 81.
20.01.2013
№216.012.1bd1

Способ изготовления композиционного строительного изделия

Изобретение относится к области строительства, а именно к способам изготовления композиционных строительных изделий. Изобретение позволит повысить прочность сцепления конструкционного и теплоизоляционного слоев изделия при сокращении продолжительности тепло-влажностной обработки. Способ...
Тип: Изобретение
Номер охранного документа: 0002472615
Дата охранного документа: 20.01.2013
27.04.2013
№216.012.3a78

Способ переработки скрапа анодов танталовых оксидно-полупроводниковых конденсаторов

Изобретение относится к области переработки скрапа анодов танталовых оксидно-полупроводниковых конденсаторов. Способ включает очистку кислотной обработкой скрапа с удалением диоксида марганца. Затем ведут раскисление очищенного скрапа, его гидрирование, размол, дегидрирование при повышенной...
Тип: Изобретение
Номер охранного документа: 0002480529
Дата охранного документа: 27.04.2013
10.05.2013
№216.012.3cd7

Способ автоматического управления процессом жидкостной экстракции в вибрационной колонне

Изобретение относится к способу автоматического управления процессом жидкостной экстракции в экстракционных колоннах, преимущественно вибрационных, и может быть использовано в гидрометаллургических, нефтехимических, радиохимических и других производствах. Способ включает в себя регулирование...
Тип: Изобретение
Номер охранного документа: 0002481142
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3d57

Способ получения основного хлорида алюминия

Изобретение относится к области химии. Берут активный гидроксид алюминия с удельным объемом пор не менее 0,2 см/г и средним диаметром пор не менее 2,5 нм и обрабатывают его газообразной соляной кислотой при массовом соотношении HCl:HO в газовой фазе 1-15:1 до достижения молярного отношения...
Тип: Изобретение
Номер охранного документа: 0002481270
Дата охранного документа: 10.05.2013
10.06.2013
№216.012.4883

Способ получения титанового дубителя

Изобретение относится к технологии минеральных дубителей и может быть использовано при получении титанового дубителя из титансодержащего сырья, в частности из гидроксида титана. Берут гидроксид титана, содержащий 30-80% TiO, смешивают его с сульфатом аммония при массовом отношении 1:0,05-0,2 в...
Тип: Изобретение
Номер охранного документа: 0002484143
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b91

Способ получения порошка ниобия

Изобретение относится к цветной металлургии и может быть использовано при металлотермическом получении нанокристаллических порошков ниобия преимущественно для электролитических конденсаторов. Предложен способ получения порошка ниобия. Проводят восстановление парами магния или кальция оксидного...
Тип: Изобретение
Номер охранного документа: 0002484927
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c98

Способ переработки никелевого штейна

Изобретение относится к способу переработки никелевого штейна. Способ включает выщелачивание штейна сернокислым никелевым раствором при повышенных давлении и температуре с получением раствора сульфата никеля. Раствор сульфата никеля очищают от примесей железа, меди и кобальта и извлекают никель...
Тип: Изобретение
Номер охранного документа: 0002485190
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.53e8

Способ переработки фосфогипса

Изобретение может быть использовано в химической промышленности для получения концентрата редкоземельных элементов (РЗЭ), а также фосфогипса, пригодного для производства гипсовых строительных материалов и цемента. Способ переработки фосфогипса включает выщелачивание фосфогипса, содержащего РЗЭ...
Тип: Изобретение
Номер охранного документа: 0002487083
Дата охранного документа: 10.07.2013
10.08.2013
№216.012.5d49

Способ конверсии хлорида металла в его сульфат

Изобретение относится к гидрометаллургии и может быть использовано для получения сульфатов металлов из растворов их хлоридов, образующихся при гидрохлоридной переработке природного или вторичного сырья, в частности к способу конверсии хлорида металла в его сульфат. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002489502
Дата охранного документа: 10.08.2013
10.08.2013
№216.012.5d4a

Способ переработки кианитового концентрата

Изобретение относится к способу переработки кианитового концентрата и может быть использовано при производстве глинозема, корундовых огнеупоров, керамики, силумина и алюминия. Способ включает смешение концентрата, углеродистого восстановителя и поризующей добавки в виде сульфата аммония,...
Тип: Изобретение
Номер охранного документа: 0002489503
Дата охранного документа: 10.08.2013
+ добавить свой РИД