×
20.02.2015
216.013.2942

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ СТЕКЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к оптическому стеклу и может быть использовано для создания оптических усилителей в диапазоне длин волн второго окна прозрачности (1260-1360 нм) волоконных световодов на основе магнийалюмокварцевого стекла. Способ заключается в плавлении на воздухе смеси стеклообразующих оксидов, содержащей оксид кремния, оксид магния, оксид алюминия и оксид висмута. Дополнительно в смесь вводят активированный уголь в качестве основного восстановителя и картофельный крахмал в качестве демпфирующего восстановителя в количествах соответственно 1,5 и 33 масс.% от массы стеклообразующих оксидов с последующим плавлением смеси при температуре 1600°С. Изобретение позволяет уменьшить коэффициент поглощения стекла с люминесценцией с максимумом полосы в спектральном интервале 1260-1360 нм (во втором окне прозрачности), что приводит к уменьшению энергетических потерь в стекле. 4 ил., 1 табл.
Основные результаты: Способ получения стекла, заключающийся в плавлении в тигле на воздухе смеси стеклообразующих оксидов, содержащей оксид кремния, оксид магния, оксид алюминия и оксид висмута, отличающийся тем, что дополнительно в смесь вводят в качестве основного восстановителя активированный уголь и в качестве демпфирующего восстановителя - картофельный крахмал в количествах соответственно 1,5 и 33 масс.% от массы стеклообразующих оксидов с последующим плавлением смеси при температуре 1600°С.

Изобретение относится к оптическому стеклу и может быть использовано для создания оптических усилителей в диапазоне длин волн второго окна прозрачности (1260-1360 нм) волоконных световодов на основе магнийалюмокварцевого стекла.

Известно, что реальное оптическое усиление, т.е. превышение усиления над потерями, получено только в диапазоне 1150-1215 нм на алюмосиликатных волоконных световодах, легированных висмутом (ASB-световоды), спектр люминесценции которых охватывает диапазон длин волн 1100-1300 нм. При оптической накачке на длине волны λP=808 нм максимум люминесценции наблюдается на λmax=1100 нм, при накачке λP=1058 нм - λmax=1150 нм. С целью смещения полосы усиления легированных висмутом стекол и волоконных световодов на их основе дальше в ИК-область в полосу длин волн 1260-1700 нм [Е.М. Дианов, С.В. Фирстов, В.Ф. Хепин и др. Висмутовые волоконные лазеры и усилители, работающие в области 1,3 мкм // Квантовая электроника. - 2008. - т.38, №7. - С.615-617] [1] в качестве сердцевины волоконного световода были выбраны фосфорогерманосиликатные стекла, легированные висмутом и не содержащие Al2O3 (PGSB-стекла и световоды). Массовая концентрация висмута в стеклах была ниже 0,1%. Заготовки для PGSB-световодов изготавливались по MCVD технологии. В PGSB-стеклах и вытянутых из них световодах спектр люминесценции сдвинут в ИК-область существенно дальше, чем спектр ASB-световодов: при оптической накачке λP=1058 нм максимум люминесценции наблюдается на λmax=1250 нм.

Известно [RU 2463264, МПК С03С 4/12, С03С 3/12, опубл. 10.10.2012] [2] получение стекла из оксидов при 900-1200°С, содержащих Р2О5 и/или Ba2O3 в качестве стеклообразующих компонентов и висмут в субвалентном состоянии в качестве источника люминесценции. В данном случае стекла люминесцируют в области 1000-1700 нм с максимумом полосы люминесценции на ~1200-1300 нм при возбуждении излучением 500-900 нм и обеспечивают усиление оптического сигнала в диапазоне 1050-1500 нм и 1050-1300 нм. В зависимости от состава, технологических параметров и концентрации висмута спектр люминесценции таких стекол характеризуется двумя полосами с максимумами на 1200 и 1300 нм или одной широкой полосой с максимумом на 1250-1300 нм. Использовались очень высокие концентрации висмута (3-50 мол.% в пересчете на Bi2O3). При концентрации Bi2O3 в стекле, равной 0,001 мол.%, люминесценции в нем не наблюдалось. Данные о значениях коэффициента поглощения синтезированных стекол не приводятся.

Стекла, синтезированные в вышеприведенных источниках, содержащие в своем составе Р2О5 и Ва2О3, характеризуются низкой устойчивостью к воздействию высоких температур, влаги и химических реагентов, что значительно сужает область их применения.

Известен способ получения стекла путем синтезирования из оксидов люминесцентное стекло состава: 57 SiO2, 30 MgO и 13 Al2O3, характеризующееся высокой температурой плавления, стойкостью к воздействию реагентов и влаги. В качестве активатора использовался Bi2O3 с концентрациями 0,025-0,25 мол.% сверх 100 мол.% стеклообразующих оксидов. Синтез и выливание стекла проводили в атмосфере азота в иридиевом тигле при температуре 1850°С, т.е. в восстановительных условиях, близких к условиям производства силикатных световодов [Denker B.I., Galagan B.I., Shulman I.L., Sverchkov S.E., Dianov E.M. Bismuth valence states and emission centers in Mg-Al-Silicate Glass. Applied Physics B: Lasers and Optics, 2011, vol.103, no.3, pp.681-685] [3].

Однако таким способом невозможно синтезировать стекло, обладающее необходимым сочетанием свойств: низким коэффициентом поглощения света (что является обязательным условием для получения усиления в световоде) и люминесценцией с максимумом полосы на ~1300 нм. При большой концентрации Bi2O3 (0,25 мол.% сверх 100 мол.%) стекло имело очень высокий коэффициент поглощения (непрозрачное), а при малой концентрации Bi2O3 (0,025 мол.% сверх 100 мол.% стеклообразующих оксидов) оно не люминесцировало.

Технический результат заключается в уменьшении коэффициента поглощения стекла с люминесценцией с максимумом полосы в спектральном интервале 1260-1360 нм (во втором окне прозрачности), что приводит к уменьшению энергетических потерь в стекле.

Сущность изобретения заключается в том, что в способе получения стекла, заключающемся в плавлении на воздухе смеси стеклообразующих оксидов, содержащей оксид кремния, оксид магния, оксид алюминия и оксид висмута, дополнительно в смесь вводят активированный уголь в качестве основного восстановителя и картофельный крахмал в качестве демпфирующего восстановителя в количествах соответственно 1,5 и 33 масс.% от массы стеклообразующих оксидов с последующим плавлением смеси при температуре 1600°С.

Способ осуществляют следующим образом. Была синтезирована серия образцов стекол состава: 55-57 SiO2, 30-28 MgO, 13-16 Al2O3. В шихту стеклообразующих оксидов добавляли Bi2O3 в небольших количествах: от 0,03 до 0,12 мол.% сверх 100 мол.% стеклообразующих оксидов и два восстановителя: в качестве основного - активированный уголь и в качестве демпфирующего - картофельный крахмал соответственно 1,5 и 3,3 масс.% от массы стеклообразующих оксидов.

Синтез осуществляют следующим образом. К смеси стеклообразующих оксидов и Bi2O3, взятых в определенных соотношениях добавляли оба восстановителя. Полученная шихта отсушивалась при 180°С примерно 2 часа, перемешивалась и активировалась в шаровой мельнице в течение 15-30 минут при 160-200 об/мин соответственно, помещалась в тигель и в печи сопротивления в течение 3-х часов нагревалась до 1600°С. При этой температуре выдерживалась 3 часа без перемешивания мешалкой. Синтезированное стекло сразу же выливают на массивную металлическую пластину, предварительно разогретую до 600°С. Остывшее стекло дополнительному отжигу для снятия в нем напряжений (500-600°С, 1 ч) не подвергалось.

Восстановители добавляли в шихту стеклообразующих оксидов, исходя из следующих соображений. В [1-3] считают, что источниками люминесценции с максимумом полосы в области 1260-1360 нм при фотовозбуждении люминесцирующих центров светом с длиной волны, равной 808 нм, являются ионы Bin+, где 0<n<3, т.е. восстановленные по сравнению с Bi3+. Но согласно проведенным термодинамическим расчетам с использованием данных [4-5], подтвержденным экспериментально, при концентрации Bi2O3<1 мол.% (сверх 100 мол.% стеклообразующих оксидов) реакция образования Bin+ (0<n<1) при 1450°С на воздухе становится термодинамически невозможной.

Однако экспериментально было установлено, что центры люминесценции с максимумом полосы в области 1260-1360 нм в стекле с малым содержанием Bi2O3, можно получить за счет реакции дефектообразования в Bi2O3, протекающей по уравнению

с образованием двухзарядной кислородной вакансии , двух электронов в решетке (расплаве) и выделением газообразного кислорода (О2) из узла решетки (Ох).

Согласно литературным данным [6, 7] образовавшиеся кислородные вакансии захватывают 2 электрона, превращаясь в электрически нейтральные F-центры, которые при достаточно большой концентрации образуют ассоциаты, поглощающие на λ=500, 700, 800, ~1030 нм и окрашивающие стекло в красный цвет. Если концентрация F-центров недостаточна для образования ассоциатов, то стекло бесцветно. В случае образования F-центров с энергией ~2 эВ (λP=600 нм) стекло окрашено в голубой цвет. Центры люминесценции, поглощающие на 500, 700 нм, дают полосу люминесценции с максимумом на λ=1100-1150 нм, а поглощающие на 800 и 1000 нм дают полосу люминесценции с максимумом на λ=1260-1300 нм.

Равновесие реакции (1) вправо можно сдвинуть, добавив в реакционную смесь восстановитель, связывающий выделившийся кислород, например активированный уголь. Однако экспериментально установлено, что он является слишком жестким восстановителем, вызывающим образование нелюминесцирующих коллоидных частиц металлического висмута по реакции

При больших концентрациях Bi2O3 в шихте металлический Bi0 выделяется в виде отдельной фазы.

Чтобы не допустить образования Bi0? в качестве демпфирующего вещества вместе с активированным углем в шихту добавляется картофельный крахмал, при сгорании которого наряду с СО выделяется газообразная H2O, препятствующая образованию коллоидного висмута, окисляя его.

Оптические и люминесцентные характеристики синтезированных стекол представлены в таблице 1, исходя из рис 1-2.

Из таблицы 1 следует, что для получения стекла с максимумом люминесценции в области 1260-1360 нм и низким коэффициентом светопоглощения в смесь оксидов SiO2, MgO, Al2O3 следует добавить Bi2O3 в количестве 0,05-0,06 мол.% сверх 100 мол.% стеклообразующих оксидов, и смесь восстановителей: активированного угля и картофельного крахмала в количестве 1 масс.% и 33 масс.% соответственно.

Ниже приводятся примеры получения люминесцентных стекол.

Пример 1. Стекло, содержащее 0,12 мол.% Bi2O3.

К смеси 8,55 г SiO2, 3,00 г MgO, 3,60 г Al2O3 добавляли 0,15 г Bi2O3, 0,25 г активированного угля и 4,75 г картофельного крахмала. Шихту перемешивали и активировали в планетарной мельнице, отсушивали при ~180°С в течение 2 ч, помещали в тигель, в печь сопротивления, нагревали до 1600°С 3 ч, выдерживали при этой температуре. Расплав выливали на массивную металлическую подложку. Дополнительному отжигу при 600°С для снятия механических напряжений синтезированное стекло не подвергалось.

Пример 2. Стекло, содержащее 0,06 мол.% Bi2O3.

К смеси 8,55 г SiO2, 3,00 г MgO, 3,60 г Al2O3 добавляли 0,075 г Bi2O3, 0,25 г активированного угля и 4,75 г картофельного крахмала. Шихту перемешивали и активировали в планетарной мельнице, отсушивали при ~180°С в течение 2 ч, помещали в тигель, в печь сопротивления, нагревали до 1600°С 3 ч, выдерживали при этой температуре. Расплав выливали на массивную металлическую подложку. Дополнительному отжигу при 600°С для снятия механических напряжений синтезированное стекло не подвергалось.

Пример 3. Стекло, содержащее 0,05 мол.% Bi2O3.

К смеси 8,55 г SiO2, 3,00 г MgO, 3,60 г Al2O3 добавляли 0,070 г Bi2O3, 0,25 г активированного угля и 4,75 г покупного картофельного крахмала. Шихту перемешивали и активировали в планетарной мельнице, отсушивали при ~180°С в течение 2 ч, помещали в тигель, в печь сопротивления, нагревали до 1600°С 3 ч, выдерживали при этой температуре. Расплав выливали на массивную металлическую подложку. Дополнительному отжигу при 600°С для снятия механических напряжений синтезированное стекло не подвергалось.

Пример 4. Стекло, содержащее 0,03 мол.% Bi2O3.

К смеси 8,55 г SiO2, 3,00 г MgO, 3,60 г Al2O3 добавляли 0,034 г Bi2O3, 0,25 г активированного угля и 4,75 г покупного картофельного крахмала. Шихту перемешивали и активировали в планетарной мельнице, отсушивали при ~180°С в течение 2 ч, помещали в тигель, в печь сопротивления, нагревали до 1600°С 3 ч, выдерживали при этой температуре. Расплав выливали на массивную металлическую подложку. Дополнительному отжигу при 600°С для снятия механических напряжений синтезированное стекло не подвергалось. Люминесценции с максимумом полосы на 1300 нм в синтезированном стекле не наблюдалось.

По сравнению с известными решениями предлагаемое позволяет получить стекло, обладающее одновременно малым коэффициентом поглощения и люминесценцией с максимумом полосы в спектральном интервале 1260-1360 нм (во втором окне прозрачности).

Таблица 1
№ п/п Концентрация Bi2O3, в шихте (сверх 100 мол.% стеклообразующих оксидов) Природа и количество восстановителя / Цвет синтезированного стекла Наличие максимумов полос поглощения в спектре на Коэффициент поглощения стекла k, см-1 Наличие максимумов полос люминесценции на
λ=500 нм λ=700 нм λ=800 нм λ=900 нм λ=1000 нм λ=1100-1150 нм λ=1260-1300 нм
1 0,12 Активированный уголь 1 масс.% + Крахмал 33 масс.% / Оранжевое + + + + + 0,7 + +
2 0,06 Активированный уголь 1 масс.% + Крахмал 33 масс.% / Светло-оранжевое + + + + + 0,1 + +
3 0,05 Активированный уголь 1 масс.% + Крахмал 33 масс.% / Бледно-оранжевое + + + + + 0,07 + -
4 0,03 Активированный уголь 1 масс.% + Крахмал 33 масс.% / Бесцветное - - - - - + -
Примечание. Величина k стекол, представленных в таблице 1, определялась на длине волны максимума кривой поглощения стекла (λmax=500 нм). Люминесценция возбуждалась светом с λP=500 нм (максимум полосы на λ=1100 нм) и λP=800 нм (максимум полосы на λ=1260-1300 нм).

Литература

1. Е.М. Дианов, С.В. Фирстов, В.Ф. Хепин и др. Висмутовые волоконные лазеры и усилители, работающие в области 1,3 мкм // Квантовая электроника. - 2008. - Т.38, №7. - С.615-617.

2. Сулимов В.Б., Романов А.Н., Фаттахова З.Т. и др. Оптическое стекло, обладающее способностью к люминесценции в диапазоне 1000 - 1700 нм. Способы получения такого стекла (варианты) и волоконный световод // Патент России № RU 2463264 от 10.10.2012. Бюл. №28.

3. Denker B.I., Galagan B.I., Shulman I.L., Sverchkov S.E., Dianov Е.М. Bismuth valence states and emission centers in Mg-Al-Silicate Glass. Applied Physics B: Lasers and Optics, 2011, vol.103, no.3, pp.681-685.

4. Г.К. Моисеев, Н.А. Ватолин, Н.В. Белоусова. Расчет термохимических свойств Bi2O5 и BiO2 // Журнал физической химии. - 2000. - Т.74, №12. - С.2124-2128.

5. Карапетьянц М.Х., Карапетьянц М.Л. Основные термодинамические константы неорганических и органических веществ. - М.: Химия, 1968. - 472 с.

6. Мойжес Б.Я. Физические процессы в оксидном катоде. - М.: Наука, 1968. - 400 с.

7. Никонов Б.П. Оксидный катод. - М.: Энергия, 1979. - 240 с.

Способ получения стекла, заключающийся в плавлении в тигле на воздухе смеси стеклообразующих оксидов, содержащей оксид кремния, оксид магния, оксид алюминия и оксид висмута, отличающийся тем, что дополнительно в смесь вводят в качестве основного восстановителя активированный уголь и в качестве демпфирующего восстановителя - картофельный крахмал в количествах соответственно 1,5 и 33 масс.% от массы стеклообразующих оксидов с последующим плавлением смеси при температуре 1600°С.
СПОСОБ ПОЛУЧЕНИЯ СТЕКЛА
СПОСОБ ПОЛУЧЕНИЯ СТЕКЛА
СПОСОБ ПОЛУЧЕНИЯ СТЕКЛА
СПОСОБ ПОЛУЧЕНИЯ СТЕКЛА
Источник поступления информации: Роспатент

Показаны записи 21-30 из 86.
20.05.2014
№216.012.c6a2

Способ определения теплового сопротивления переход-корпус транзисторов с полевым управлением

Изобретение относится к измерению тепловых параметров компонентов силовой электроники. Сущность: прибор нагревают путем пропускания через него тока произвольной формы в открытом состоянии. В процессе нагрева в моменты времени прерывают протекание греющего тока и, пропуская через прибор...
Тип: Изобретение
Номер охранного документа: 0002516609
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c7f8

Способ профилактики посттравматического артроза коленного сустава

Изобретение относится к медицине, а именно к травматологии, и может быть использовано для профилактики посттравматического артроза коленного сустава. Для этого после моделирования у крыс травмы коленного сустава внутрисуставным путем вводят антиоксидант этоксидол в дозе 5 мг/кг через день в...
Тип: Изобретение
Номер охранного документа: 0002516951
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c8fe

Способ оценки тяжести гипоксии новорожденных

Изобретение относится к медицине, а именно к педиатрии и неонатологии, и может быть использовано в качестве одного из диагностических критериев определения степени выраженности гипоксии новорожденных. Сущность способа: выполняют исследование крови методом РАМАН-спектроскопии с записью кривых...
Тип: Изобретение
Номер охранного документа: 0002517220
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c986

Способ снижения нелинейных искажений тока в нелинейной комплексной нагрузке и устройство для его осуществления

Изобретение относится к области электронной техники и может быть использовано на производстве при технологическом контроле изделий, представляющих собой нелинейные комплексные нагрузки. Достигаемый технический результат- снижение уровня нелинейных искажений тока, протекающего в цепи с...
Тип: Изобретение
Номер охранного документа: 0002517356
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.ce59

Звукопоглощающий слоистый материал

Изобретение относится к изоляционным звукопоглощающим материалам для использования в автомобильной, авиационной промышленности, судостроении, вагоностроении, машиностроении, строительстве и касается звукопоглощающего слоистого материала. Звукопоглощающий слоистый материал включает основу,...
Тип: Изобретение
Номер охранного документа: 0002518596
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d360

Рабочий орган почвообрабатывающей фрезы

Изобретение относится к сельскохозяйственному машиностроению, в частности к фрезерным почвообрабатывающим орудиям. Рабочий орган фрезы содержит основной вал, водило с осями. На осях подвижно установлены стойки. Одни концы стоек выполнены в виде ножей, а на других их концах установлены...
Тип: Изобретение
Номер охранного документа: 0002519883
Дата охранного документа: 20.06.2014
20.06.2014
№216.012.d495

Сборная сферическая оболочка

Изобретение относится к области строительства и может быть использовано в качестве сборной сферической оболочки покрытий зданий различного назначения. Технический результат изобретения заключается в упрощении изготовления оболочки. Сборная сферическая оболочка содержит шестиугольные панели,...
Тип: Изобретение
Номер охранного документа: 0002520192
Дата охранного документа: 20.06.2014
20.07.2014
№216.012.e16d

Способ получения древесностружечных плит

Изобретение относится к области производства строительных материалов. Для получения древесностружечных плит путем прессования древесностружечных отходов предварительно древесностружечные отходы в виде опилок размером 1-3 мм перемешивают с хлоридом железа (III) в количестве 16,5 - 22% от веса...
Тип: Изобретение
Номер охранного документа: 0002523495
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e1dc

Штамм gluconacetobacter sucrofermentans -продуцент бактериальной целлюлозы

Изобретение относится к биотехнологии. Штамм Gluconacetobacter sucrofermentans H - 110 является продуцентом бактериальной целлюлозы. Штамм депонирован во Всероссийской Коллекции Промышленных Микроорганизмов под регистрационным номером штамм Gluconacetobacter sucrofermentans ВКПМ В-11267 и...
Тип: Изобретение
Номер охранного документа: 0002523606
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.ece6

Способ получения тонкодисперсного аморфного микрокремнезема

Изобретение относится к строительным материалам, а именно к производству модифицированных добавок для бетонов, строительных растворов, сухих строительных смесей, теплоизоляционных материалов. Способ включает предварительное размельчение и растирание в агатовой ступке до состояния пудры...
Тип: Изобретение
Номер охранного документа: 0002526454
Дата охранного документа: 20.08.2014
Показаны записи 21-30 из 89.
20.05.2014
№216.012.c6a2

Способ определения теплового сопротивления переход-корпус транзисторов с полевым управлением

Изобретение относится к измерению тепловых параметров компонентов силовой электроники. Сущность: прибор нагревают путем пропускания через него тока произвольной формы в открытом состоянии. В процессе нагрева в моменты времени прерывают протекание греющего тока и, пропуская через прибор...
Тип: Изобретение
Номер охранного документа: 0002516609
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c7f8

Способ профилактики посттравматического артроза коленного сустава

Изобретение относится к медицине, а именно к травматологии, и может быть использовано для профилактики посттравматического артроза коленного сустава. Для этого после моделирования у крыс травмы коленного сустава внутрисуставным путем вводят антиоксидант этоксидол в дозе 5 мг/кг через день в...
Тип: Изобретение
Номер охранного документа: 0002516951
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c8fe

Способ оценки тяжести гипоксии новорожденных

Изобретение относится к медицине, а именно к педиатрии и неонатологии, и может быть использовано в качестве одного из диагностических критериев определения степени выраженности гипоксии новорожденных. Сущность способа: выполняют исследование крови методом РАМАН-спектроскопии с записью кривых...
Тип: Изобретение
Номер охранного документа: 0002517220
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c986

Способ снижения нелинейных искажений тока в нелинейной комплексной нагрузке и устройство для его осуществления

Изобретение относится к области электронной техники и может быть использовано на производстве при технологическом контроле изделий, представляющих собой нелинейные комплексные нагрузки. Достигаемый технический результат- снижение уровня нелинейных искажений тока, протекающего в цепи с...
Тип: Изобретение
Номер охранного документа: 0002517356
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.ce59

Звукопоглощающий слоистый материал

Изобретение относится к изоляционным звукопоглощающим материалам для использования в автомобильной, авиационной промышленности, судостроении, вагоностроении, машиностроении, строительстве и касается звукопоглощающего слоистого материала. Звукопоглощающий слоистый материал включает основу,...
Тип: Изобретение
Номер охранного документа: 0002518596
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d360

Рабочий орган почвообрабатывающей фрезы

Изобретение относится к сельскохозяйственному машиностроению, в частности к фрезерным почвообрабатывающим орудиям. Рабочий орган фрезы содержит основной вал, водило с осями. На осях подвижно установлены стойки. Одни концы стоек выполнены в виде ножей, а на других их концах установлены...
Тип: Изобретение
Номер охранного документа: 0002519883
Дата охранного документа: 20.06.2014
20.06.2014
№216.012.d495

Сборная сферическая оболочка

Изобретение относится к области строительства и может быть использовано в качестве сборной сферической оболочки покрытий зданий различного назначения. Технический результат изобретения заключается в упрощении изготовления оболочки. Сборная сферическая оболочка содержит шестиугольные панели,...
Тип: Изобретение
Номер охранного документа: 0002520192
Дата охранного документа: 20.06.2014
20.07.2014
№216.012.e16d

Способ получения древесностружечных плит

Изобретение относится к области производства строительных материалов. Для получения древесностружечных плит путем прессования древесностружечных отходов предварительно древесностружечные отходы в виде опилок размером 1-3 мм перемешивают с хлоридом железа (III) в количестве 16,5 - 22% от веса...
Тип: Изобретение
Номер охранного документа: 0002523495
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e1dc

Штамм gluconacetobacter sucrofermentans -продуцент бактериальной целлюлозы

Изобретение относится к биотехнологии. Штамм Gluconacetobacter sucrofermentans H - 110 является продуцентом бактериальной целлюлозы. Штамм депонирован во Всероссийской Коллекции Промышленных Микроорганизмов под регистрационным номером штамм Gluconacetobacter sucrofermentans ВКПМ В-11267 и...
Тип: Изобретение
Номер охранного документа: 0002523606
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.ece6

Способ получения тонкодисперсного аморфного микрокремнезема

Изобретение относится к строительным материалам, а именно к производству модифицированных добавок для бетонов, строительных растворов, сухих строительных смесей, теплоизоляционных материалов. Способ включает предварительное размельчение и растирание в агатовой ступке до состояния пудры...
Тип: Изобретение
Номер охранного документа: 0002526454
Дата охранного документа: 20.08.2014
+ добавить свой РИД