×
20.02.2015
216.013.2937

Результат интеллектуальной деятельности: ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ

Вид РИД

Изобретение

Аннотация: Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в снижении механической добротности, относительной диэлектрической проницаемости поляризованных образцов, в повышении пьезомодуля, пьезочувствительности, удельной чувствительности, коэффициента электромеханической связи планарной моды колебаний. Пьезоэлектрический керамический материал содержит следующие элементы, мас.%: NaO 8,77-8,84; KO 11,36-11,44; LiO 0,32-0,33; TaO 11,58-11,67; SbO 3,53-3,56; NbO 62,71-63,17; NiO 0,99-1,73. 3 табл., 3 пр.
Основные результаты: Пьезоэлектрический керамический материал на основе соединений натрия, калия, лития, включающий NaO, KO, LiO, отличающийся тем, что дополнительно содержит TaO, SbO, NbO, NiO при следующем соотношении компонентов, мас.%:

Изобретение относится к пьезоэлектрическим керамическим материалам на основе соединений натрия, калия, лития и может быть использовано в высокочастотных преобразователях, системах ультразвуковой сварки, устройствах неразрушающего контроля, дефектоскопии.

Для указанных применений материал должен обладать достаточно низким значением относительной диэлектрической проницаемости поляризованных образцов, , (700-800), достаточно высокими пьезомодулем d33 (≥140 пКл/Н), пьезочувствительностью, g33, (~20 мВ·м/Н), удельной чувствительностью, , (~5-6 пКл/Н), коэффициентом электромеханической связи планарной моды колебаний, Kp (~0.38), низкой механической добротностью, Qм, (<90).

Известен пьезоэлектрический керамический материал на основе соединений натрия, калия, лития, включающий Li2CO3, K2CO3, NaHCO3, Nb2O5 и Ta2O5. Состав материала отвечает химической формуле ((K0.5Na0.5)0.9Li0.1)(Nb0.8Ta0.2)O3. Материал имеет для лучших составов , g33≈11.9 мВм/Н, Qm=273.4, Kp=0.307 [1]. Для указанных применений материал имеет недостаточно низкую Qm и недостаточно высокие значения , Kp, g33.

Известен пьезоэлектрический керамический материал на основе соединений натрия, калия, лития, включающий Na2O, K2O, Li2O, Nb2O5, Ta2O5, CuO и MnO2. Материал имеет , g33≈22.2 мВм/Н [2]. Для указанных применений материал имеет слишком высокие значения .

Известен пьезоэлектрический керамический материал на основе соединений натрия, калия, лития, включающий Na(Nb, Ta, Sb)O3, K(Nb, Ta, Sb)O3, Li(Nb, Ta, Sb)O3 с добавками оксидов марганца (MnO2) и редкоземельного элемента - церия (CeO2). Состав материала отвечает химической формуле (Na0.475K0.475Li0.05)(Nb0.92Ta0.05, Sb0.03)O3+0.4%CeO2+0.4%MnO2, то есть включает оксиды Na2O, K2O, Li2O, Nb2O5, Ta2O5, Sb2O5, CeO2 и MnO2. Материал имеет (для лучших составов) , d33=200 пКл/Н, g33=19 пКл/Н, пКл/Н, Kp=0.43, Qм=80 [3]. Для указанных применений материал имеет слишком высокое значение . Кроме того, использование в составе редкоземельного элемента - церия (Ce) приводит к удорожанию материала и изделий из него, что препятствует их массовому применению.

Наиболее близким по технической сущности и достигаемому результату является пьезоэлектрический керамический материал на основе соединений натрия, калия, лития, включающий Na2O, K2O, Li2O, BaO, Bi2O3, TiO2. Состав материала отвечает химической формуле 0.885(Na0.5Bi0.5)TiO3-0.05(K0.5Bi0.5)TiO3-0.015(Li0.5Bi0.5)TiO3-0.05 BaTiO3. Материал имеет , d33=163 пКл/Н, g33=24 мВ·м/Н, пКл/Н, Kp=0328, Qм=142.1 [4] (Прототип). Для указанных применений материал имеет недостаточно низкое значение Qм.

Задачей изобретения является снижение Qм (до значений 70-90) при сохранении достаточно низких значений (700-800), высоких Kp (0.36-0.38), g33 (~20 мВм/Н), , (~5-6 пКл/Н).

Указанные результаты достигаются тем, что пьезоэлектрический керамический материал на основе соединений натрия, калия, лития дополнительно содержит Ta2O5, Sb2O5, NiO, Nb2O5 при следующем соотношении компонентов, мас.%:

Na2O 8.77-8.84
K2O 11.36-11.44
Li2O 0.32-0.33
Ta2O5 11.58-11.67
Sb2O5 3.53-3.56
NiO 0.99-1.73
Nb2O5 62.71-63.17

Состав материала отвечает формуле:

LiaKbNacNbdTamSbnO3+zNiO, где a=0.04, b=0.4416, c=0.5184, d=0.864, m=0.096, n=0.04, a+b+c=1, d+m+n=1, 0.01≤z≤0.00175.

Комбинированное модифицирование материала на основе соединений натрия, калия и лития разновалентными катионами приводит к усложнению структуры материала, в частности, за счет усиления кристаллохимического беспорядка в A- и B-позициях исходного соединения, и появлению катионных вакансий. Последнее, способствуя облегчению доменных переориентаций, увеличивает подвижность доменной структуры, усиливает внутреннее трение при большой мобильности доменных стенок и, как следствие, уменьшает Qm, так как последняя обратно пропорциональна внутреннему трению [5]. Кроме того, образование при неизовалентных замещениях ионов новых структурных элементов - точечных дефектов (вакансий), участвующих в массопереносе и усиливающих диффузионные процессы при синтезе и спекании объектов, а также высокая стереохимическая активность и эмиссионная способность Ni(II) (обусловленные его малоразмерностью и особенностями электронной структуры), усиленные в многокомпонентных системах микродефектностью составов [6], способствуют улучшенной спекаемости керамик.

1. Пример изготовления пьезоэлектрического керамического материала.

Материал изготавливался по обычной керамической технологии следующим образом. В качестве исходных реагентов использовались гидрокарбонаты, карбонаты и оксиды следующих квалификаций: NaHCO3 - «чда», KHCO3 - «ч», Nb2O5 - «NbO-PT», Li2CO3 - «хч», Ta2O5 - «TaO-1», Sb2O5 - «хч», NiO - «ч». Синтез осуществлялся путем однократного обжига смесей сырьевых компонентов: NaHCO3, KHCO3, Nb2O5, Li2CO3, Ta2O5, Sb2O5, NiO, взятых в количествах (мас.%, в случае NaHCO3, KHCO3, Li2CO3 в пересчете на соответствующие оксиды): Na2O=8.84; K2O=11.44; Nb2O5=63.17; Li2O=0.33; Ta2O5=11.67; Sb2O5=3.56, NiO=0.99 с промежуточным помолом синтезированного продукта. Температура обжига при синтезе, Тсинт=1223 К, длительность изотермической выдержки, τсинт=5 ч. Спекание образцов в виде столбиков ⌀12 мм, высотой 15-18 мм осуществлялось при Тсп=1413 К, длительность изотермической выдержки, τсп=1.5 ч. Металлизация (нанесение электродов) производилась путем нанесения на плоские поверхности предварительно сошлифованных до толщины 1 мм образцов серебросодержащей пасты и последующего ее вжигания при температуре Твжиг=1070 К в течение 0.5 ч. Образцы поляризовали в полиэтиленсилоксановой жидкости при температуре 410 К в течение 40 мин в постоянном электрическом поле напряженностью 4 кВ/см.

2. Пример изготовления пьезоэлектрического керамического материала.

Материал изготавливался по обычной керамической технологии следующим образом. В качестве исходных реагентов использовались гидрокарбонаты, карбонаты и оксиды следующих квалификаций: NaHCO3 - «чда», KHCO3 - «ч», Nb2O5 - «NbO-PT», Li2CO3 - «хч», Ta2O5 - «TaO-1», Sb2O5 - «хч», NiO - «ч». Синтез осуществлялся путем однократного обжига смесей сырьевых компонентов: NaHCO3, KHCO3, Nb2O5, Li2CO3, Ta2O5, Sb2O5, NiO, взятых в количествах (мас.%, в случае NaHCO3, KHCO3, Li2CO3 в пересчете на соответствующие оксиды): Na2O=8.82; K2O=11.41; Nb2O5=63.02; Li2O=0.32; Ta2O5=11.64; Sb2O5=3.55, NiO=1.24 с промежуточным помолом синтезированного продукта. Температура обжига при синтезе, Тсинт=1223 К, длительность изотермической выдержки, τсинт=5 ч. Спекание образцов в виде столбиков ⌀12 мм, высотой 15-18 мм осуществлялось при Тсп=1413 К, длительность изотермической выдержки, τсп=1.5 ч. Металлизация (нанесение электродов) производилась путем нанесения на плоские поверхности предварительно сошлифованных до толщины 1 мм образцов серебросодержащей пасты и последующего ее вжигания при температуре Твжиг=1070 К в течение 0.5 ч. Образцы поляризовали в полиэтиленсилоксановой жидкости при температуре 410 К в течение 40 мин. в постоянном электрическом поле напряженностью 4 кВ/см.

3. Пример изготовления пьезоэлектрического керамического материала

Материал изготавливался по обычной керамической технологии следующим образом. В качестве исходных реагентов использовались гидрокарбонаты, карбонаты и оксиды следующих квалификаций: NaHCO3 - «чда», KHCO3 - «ч», Nb2O5 - «NbO-PT», Li2CO3 - «хч», Ta2O5 - «TaO-1», Sb2O5 - «хч», NiO - «ч». Синтез осуществлялся путем однократного обжига смесей сырьевых компонентов: NaHCO3, KHCO3, Nb2O5, Li2CO3, Ta2O5, Sb2O5, NiO, взятых в количествах (мас.%, в случае NaHCO3, KHCO3, Li2CO3 в пересчете на соответствующие оксиды): Na2O=8.77; K2O=11.36; Nb2O5=62.71; Li2O=0.32; Ta2O5=11.58; Sb2O5=3.53, NiO=1.73 с промежуточным помолом синтезированного продукта. Температура обжига при синтезе, Тсинт=1203 К, длительность изотермической выдержки, τсинт=5 ч. Спекание образцов в виде столбиков ⌀12 мм, высотой 15-18 мм осуществлялось при Тсп.=1413 K, длительность изотермической выдержки τсп=1.5 ч. Металлизация (нанесение электродов) производилась путем нанесения на плоские поверхности предварительно сошлифованных до толщины 1 мм образцов серебросодержащей пасты и последующего ее вжигания при температуре Твжиг=1070 К в течение 0,5 ч. Образцы поляризовали в полиэтиленсилоксановой жидкости при температуре 410 К в течение 40 мин в постоянном электрическом поле напряженностью 4 кВ/см.

Электрофизические характеристики определяли в соответствии с ОСТ 11.0444-87. Измерялись относительная диэлектрическая проницаемость поляризованных образцов, 0 - диэлектрическая постоянная), пьезомодули, |d31| и d33, коэффициент электромеханической связи планарной моды колебаний, Kp, механическая добротность, Qm, скорость звука, . Пьезомодуль, d33 определяли квазистатическим методом. Измерение экспериментальной плотности образцов, ρэксп, осуществляли методом гидростатического взвешивания в октане. Пьезочувствительность на толщинной моде колебаний, g33, рассчитывали по формуле ; удельную чувствительность - по формуле ; акустический импеданс, Za, по формуле .

В табл.1 приведены основные характеристики материала в зависимости от состава, а в табл.2 приведены основные электрофизические характеристики оптимальных составов предлагаемого материала.

Полученные экспериментальные данные (табл.1, примеры 3-5) свидетельствуют о том, что пьезоэлектрический керамический материал предлагаемого состава обладает оптимальными, с точки зрения решаемой технической задачи, характеристиками в указанном интервале концентраций компонентов, выход за пределы которого приводит к ухудшению параметров.

Данные, приведенные в табл.1-2, подтверждают преимущества предлагаемого пьезоэлектрического керамического материала по сравнению с материалом - прототипом, а именно снижение Qm (почти вдвое) до значений ~70-90 при сохранении достаточно низких значений относительной диэлектрической проницаемости , достаточно высоких значений пьезомодуля d33~(130-150) пКл/Н, пьезочувствительности g33~20 мВ·м/Н, удельной чувствительностью пКл/Н, коэффициента электромеханической связи планарной моды колебаний Kp~0.36-0.38.

Эффект снижения Qm достигается, по существу, дополнительным введением в материал, включающий Na2O, K2O, Li2O, оксидов Ta2O5, Sb2O5, Nb2O5, NiO.

Достаточно низкое значение относительной диэлектрической проницаемости предлагаемого пьезоэлектрического керамического материала определяет основное его назначение - использование в высокочастотных преобразователях. Это следует, прежде всего, из того, что твердые растворы на основе ниобатов щелочных металлов (НЩМ) могут использоваться в качестве резонансных элементов пьезоэлектрических преобразователей в высокочастотных (ВЧ) (3.0-30.0) МГц и очень высокочастотных (ОВЧ) (30.0-300.0) МГц диапазонах. Классификация электромагнитных волн по частотным диапазонам представлена в [7]. При условии согласования преобразователя с нагрузкой (Ri=Rн) (обычно реализуемое в выпускаемой промышленностью радиоэлектронной аппаратуре выходное сопротивление Rн~50 Ом для высоких частот), используя формулу для емкостного сопротивления преобразователя: Ri=1/ωC, где Ri - емкостное сопротивление преобразователя, Ом; ω - круговая частота, Гц; C - емкость, Ф; можно приблизительно оценить интервалы значений емкости C=1/27πfRi; для указанных диапазонов частот, а следовательно, и относительной диэлектрической проницаемости поляризованных элементов, , где k - коэффициент, зависящий от размеров элементов, ε0=8.85·10-12 Ф - диэлектрическая проницаемость вакуума; при k=1, .

В таблице 3 приведены значения относительной диэлектрической проницаемости, , реализуемые в объемных керамических образцах в ВЧ-диапазоне. Там же (*) приведен комментарий к таблице. Таким образом, при частотах 3.98-4.55 МГц необходимы значения для снижения сопротивления преобразователя, что улучшает его согласование с нагрузкой.

Достаточно высокие значения Kp (~0.38), d33 (≥140 пКл/Н), g33 (~20 мВ·м/Н), (~5-6 пКл/Н), достаточно низкие значения (700-800) и низкая Qм, (<90) позволяют использовать представленный материал в ультразвуковых преобразователях систем ультразвуковой сварки, устройств неразрушающего контроля и дефектоскопии.

Высокая анизотропия пьезосвойств (d33/|d31|~3) в сочетании с низкой Qm способствует повышению отношение сигнал/шум и подавлению паразитных резонансов (ложных колебаний), искажающих форму рабочего сигнала и ухудшающих характеристики изготовленных из этого пьезокерамического материала устройств.

Кроме того, снижению Тсп с 1443 К (прототип) до 1413 К (предлагаемый материал) позволяет сохранить стехиометрический состав керамики за счет снижения возможности улетучивания легких малоразмерных катионов Na, Li, а процесс изготовления материала при этом становится менее затратным.

Источники информации

1. EP 1032057 A1, JP 2000042095, C04B 35/00, H01L 41/187, дата публикации 30.08.2000.

2. EP 2113952 A2, JP 2008090331, H01L 41/08, C04B 35/495, H01L 41/187, дата публикации 04.11.2009.

3. Т. Lee, K.W. Kwok, H.L. Li, H.L.W. Chan. Lead-free alkaline niobate-based transducer for ultrasonic wirebonding applications. // Sensor and Actuators A. 2009. №150. P.268.

4. H.L.W. Chan, S.H. Choy, C.P. Chong, H.L. Li, P.C.K. Liu. Bismuth sodium titanate based lead-free ultrasonic transducer for microelectronics wirebonding applications. // Ceramics International 2008. №34. P. 774-775 (Прототип).

5. А.Я. Данцигер, O.H. Разумовская, Л.А. Резниченко и др. Многокомпонентные системы сегнетоэлектрических сложных оксидов: физика, кристаллохимия, технология. Аспекты дизайна пьезоэлектрических материалов. Ростов-на-Дону. Изд-во Рост. Ун-та. 2001. Т.1. - 408 с.

6. Л.А. Резниченко, О.Н. Разумовская, С.И. Дудкина. Аномальное поведение диэлектрической проницаемости в сегнетопьезоэлектрических материалах на основе ЦТС с участием Ni (II) и Cd (II) - содержащих компонентов. // Сб-к трудов Международной научно-практической конференции "Фундаментальные проблемы пьезоэлектрического приборостроения" ("Пьезотехника-99"). Ростов-на-Дону, Азов. - 1999. - Т.1. -С 109-123.

7. Носов Ю.Н., Кукаев А.А. Энциклопедия отечественных антенн. Справочное издание. М., 2001, с.49.

Таблица 2
N п/п Материал Kp |d31|, пКл/Н d33′, пКл/Н , пм/В QM , м/с g33 мВ·м/Н Za, mrayl
1 Прототип 766 0,328 - 163 5.88 142.1 24.01 26.41
2 Предлагаемый материал (пример №5 из табл.1) 759 0.37 49 138 5.00 73 4.498 20.52 20.33

Таблица 3
Высокие и очень высокие частоты: при Rн=Ri=50 Ом
f, МГц 15.92-10.61 10.61-7.95 7.95-6.37 6.37-5.31 5.31-4.55 4.55-3.98 3.98-3.53 3.53-3.18
200-300 300-400 400-500 500-600 600-700 700-800 800-900 900-1000
* - частотный диапазон (4.55-3.98) МГц может быть реализован использованием пьезокерамических материалов на основе НЩМ со значениями без дополнительной согласующей аппаратуры

Пьезоэлектрический керамический материал на основе соединений натрия, калия, лития, включающий NaO, KO, LiO, отличающийся тем, что дополнительно содержит TaO, SbO, NbO, NiO при следующем соотношении компонентов, мас.%:
Источник поступления информации: Роспатент

Показаны записи 21-25 из 25.
10.04.2016
№216.015.3004

Способ изготовления сегнетоэлектрического керамического материала на основе феррита висмута

Изобретение относится к технологии производства сегнетоэлектрических керамических материалов на основе феррита висмута и может быть использовано для создания новых материалов, применяемых в устройствах записи, хранения и обработки информации. Технический результат - снижение относительной...
Тип: Изобретение
Номер охранного документа: 0002580114
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3107

Сегнетоэлектрический керамический материал

Изобретение относится к сегнетоэлектрическим керамическим материалам на основе феррита висмута и может быть использовано при создании емкостных магнитоэлектрических элементов головок записи и считывания информации. Технический результат - снижение значений относительной диэлектрической...
Тип: Изобретение
Номер охранного документа: 0002580117
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31d4

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам на основе титаната свинца. Технический результат изобретения заключается в повышении значений относительной диэлектрической проницаемости при сохранении высоких значений пьезомодуля |d|=131-156 пКл/Н и коэффициента...
Тип: Изобретение
Номер охранного документа: 0002580116
Дата охранного документа: 10.04.2016
13.01.2017
№217.015.6c9f

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам на основе титаната свинца. Технический результат - снижение значений коэффициента электромеханической связи радиальной моды колебаний до K=0.06-0.07, повышение механической добротности до Q=1539-2135 при сохранении высоких...
Тип: Изобретение
Номер охранного документа: 0002597352
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7199

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в повышении значений относительной диэлектрической проницаемости, снижении диэлектрических потерь, механической добротности и коэффициента электромеханической связи радиальной моды...
Тип: Изобретение
Номер охранного документа: 0002596837
Дата охранного документа: 10.09.2016
Показаны записи 31-36 из 36.
15.05.2023
№223.018.5cf6

Низкочастотный пьезоэлектрический керамический материал на основе ниобата натрия

Изобретение может быть использовано в ультразвуковой дефектоскопии для создания электромеханических преобразователей, работающих в интервале частот 130–170 кГц. Пьезоэлектрический керамический материал содержит следующие компоненты, мас. %: NaО 0,84–2,53; KO 16,65–19,16; CdO 6,96–6,98; NbO...
Тип: Изобретение
Номер охранного документа: 0002751323
Дата охранного документа: 13.07.2021
15.05.2023
№223.018.5cf7

Низкочастотный пьезоэлектрический керамический материал на основе ниобата натрия

Изобретение может быть использовано в ультразвуковой дефектоскопии для создания электромеханических преобразователей, работающих в интервале частот 130–170 кГц. Пьезоэлектрический керамический материал содержит следующие компоненты, мас. %: NaО 0,84–2,53; KO 16,65–19,16; CdO 6,96–6,98; NbO...
Тип: Изобретение
Номер охранного документа: 0002751323
Дата охранного документа: 13.07.2021
15.05.2023
№223.018.5d0d

Высокочастотный пьезоэлектрический керамический материал на основе ниобата натрия

Изобретение предназначено для создания устройств пьезотехники, работающих в высокочастотном диапазоне в интервале рабочих частот 4,0÷7,0 МГц. Пьезоэлектрический керамический материал содержит, мас.%: NaO 7,05-7,99. KO 13,49-14,73, CdO 1,83-1,84, NbO 75,56-76,15, SiO 0,53-0,83. Материал...
Тип: Изобретение
Номер охранного документа: 0002751324
Дата охранного документа: 13.07.2021
15.05.2023
№223.018.5d0e

Высокочастотный пьезоэлектрический керамический материал на основе ниобата натрия

Изобретение предназначено для создания устройств пьезотехники, работающих в высокочастотном диапазоне в интервале рабочих частот 4,0÷7,0 МГц. Пьезоэлектрический керамический материал содержит, мас.%: NaO 7,05-7,99. KO 13,49-14,73, CdO 1,83-1,84, NbO 75,56-76,15, SiO 0,53-0,83. Материал...
Тип: Изобретение
Номер охранного документа: 0002751324
Дата охранного документа: 13.07.2021
15.05.2023
№223.018.5d36

Сегнетоэлектрический керамический материал на основе титаната бария-стронция

Изобретение относится к бессвинцовым сегнетоэлектрическим керамическим материалам с нелинейной зависимостью диэлектрической постоянной от напряженности приложенного электрического поля и может быть использовано для изготовления низкочастотных электронных устройств различного назначения....
Тип: Изобретение
Номер охранного документа: 0002751527
Дата охранного документа: 14.07.2021
15.05.2023
№223.018.5d37

Сегнетоэлектрический керамический материал на основе титаната бария-стронция

Изобретение относится к бессвинцовым сегнетоэлектрическим керамическим материалам с нелинейной зависимостью диэлектрической постоянной от напряженности приложенного электрического поля и может быть использовано для изготовления низкочастотных электронных устройств различного назначения....
Тип: Изобретение
Номер охранного документа: 0002751527
Дата охранного документа: 14.07.2021
+ добавить свой РИД