×
20.02.2015
216.013.2787

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ ПРОГРАММНЫМ РАЗВОРОТОМ РАЗГОННОГО БЛОКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к ракетно-космической технике и может быть использовано для управления программным разворотом разгонного блока (РБ) с помощью неподвижных двигателей ориентации постоянной тяги. Набирают угловую скорость при разгоне и движении по инерции, уменьшают угловую скорость до нуля при торможении и импульсном включении двигателей ориентации, измеряют уровень наиболее влияющего на динамику разворота компонента топлива в баке, в процессе разворота периодически измеряют рассогласования по углам и угловые скорости разворота РБ и отклонения поверхности компонента топлива в баке от продольной оси РБ, выключают двигатели ориентации в конце участка разгона, включают двигатели ориентации в начале участка торможения. Изобретение позволяет обеспечить на участке работы двигателей поджатия разворот РБ с одновременным гашением колебаний компонентов топлива в баках. 6 ил.
Основные результаты: Способ управления программным разворотом разгонного блока с помощью неподвижных двигателей ориентации постоянной тяги, заключающийся в выполнении набора угловой скорости - разгоне, движении по инерции, уменьшении угловой скорости до нуля - торможении и импульсном включении двигателей ориентации при уменьшении угловой скорости ниже заданного уровня, отличающийся тем, что в случае осуществления программного разворота, совмещенного по времени с работой двигателей поджатия, перед разворотом измеряют уровень h наиболее влияющего на динамику разворота компонента топлива в баке, а в процессе разворота периодически измеряют рассогласование по углу Δϑ и угловую скорость разворота разгонного блока, угол s и угловую скорость отклонения поверхности указанного компонента топлива в баке от продольной оси разгонного блока, при этом выключение двигателей ориентации в конце участка разгона осуществляют при достижении параметром x значения ƒ(x'), включение двигателей ориентации в начале участка торможения осуществляют при достижении параметром x значения ƒ(x'), где ; функции переключения, а параметры x и x' задают в виде линейных функций измеренных углов и угловых скоростей x=k(kΔϑ+ks), с коэффициентами k, k, k, определяемыми по заранее рассчитанным зависимостям от уровня h компонента топлива в баке.

Изобретение относится к ракетно-космической технике, а именно к способам управления движением разгонных блоков (РБ), обеспечивающих довыведение космических аппаратов (КА) с опорной орбиты на целевую (как правило, геостационарную) орбиту, осуществление межорбитальных переходов и других операций с КА.

В космической технике известен выбранный в качестве прототипа способ управления программным разворотом разгонного блока с помощью неподвижных двигателей ориентации постоянной тяги, заключающийся в выполнении набора угловой скорости - разгоне, движении по инерции, уменьшении угловой скорости до нуля - торможении и импульсном включении двигателей ориентации при уменьшении угловой скорости ниже заданного уровня (см. [1]).

Известный способ управления программным разворотом позволяет осуществить плоский программный разворот РБ на заданный угол за заданное время с минимально возможным расходом топлива двигателями ориентации. При этом программный разворот, как правило, совершается на пассивном участке траектории выведения, когда компоненты топлива в баках РБ находятся в состоянии невесомости и не оказывают существенного влияния на динамику разворота. Однако известный способ управления не обеспечивает желаемого качества управления на активных участках, когда включены двигатели поджатия, создающие тягу в направлении продольной оси РБ. Циклограмма функционирования РБ предполагает многократное включение двигателей поджатия для осаждения компонентов топлива к днищам баков для проведения дренирования баков и запуска маршевых двигателей. При этом часто возникает необходимость осуществления программного разворота РБ на участке полета с работающими двигателями поджатия. В этом случае большие массы компонентов топлива оказываются поджатыми к нижним днищам топливных баков и во время выполнения программного разворота совершают поперечные колебания, оказывая на боковые стенки баков значительные силовые воздействия. Обычно баки располагаются в хвостовой части РБ, при этом центр масс РБ смещен к носовой части, в которой находится выводимый на орбиту достаточно массивный КА. Поэтому поперечные колебания компонентов топлива создают существенные возмущающие моменты, величины которых сравнимы с величиной управляющего момента, создаваемого двигателями ориентации. В результате процесс разворота при использовании известного способа управления сопровождается значительным «забросом» по углу (перерегулированием) и повышенной колебательностью, приводящими к увеличению расхода топлива двигателями ориентации.

Задачей предлагаемого изобретения является разработка способа управления программным разворотом разгонного блока, обеспечивающего на участке работы двигателей поджатия выполнение разворота РБ на заданный угол без перерегулирования с одновременным гашением колебаний компонента топлива, оказывающего наибольшее влияние на динамику программного разворота. Например, для существующих в настоящее время и разрабатываемых криогенных разгонных блоков таким компонентом топлива является окислитель (жидкий кислород), масса которого в несколько раз превосходит массу горючего, при этом из-за особенностей конструктивного расположения бака окислителя создается большое плечо гидродинамической силы относительно центра масс РБ.

Техническим результатом предлагаемого изобретения является оптимизация циклограммы функционирования РБ за счет расширения возможностей системы управления в части совмещения различных полетных операций.

Указанный технический результат достигается тем, что в способе управления программным разворотом разгонного блока с помощью неподвижных двигателей ориентации постоянной тяги, заключающемся в выполнении набора угловой скорости - разгоне, движении по инерции, уменьшении угловой скорости до нуля - торможении и импульсном включении двигателей ориентации при уменьшении угловой скорости ниже заданного уровня, в соответствии с изобретением в случае осуществления программного разворота, совмещенного по времени с работой двигателей поджатия, перед разворотом измеряют уровень h наиболее влияющего на динамику разворота компонента топлива в баке, а в процессе разворота периодически измеряют рассогласование по углу Δϑ и угловую скорость разворота разгонного блока, угол sϑ и угловую скорость отклонения поверхности указанного компонента топлива в баке от продольной оси разгонного блока, при этом выключение двигателей ориентации в конце участка разгона осуществляют при достижении параметром x значения f1(x'), включение двигателей ориентации в начале участка торможения осуществляют при достижении параметром x значения f2(x'), где ; - функции переключения, а параметры x и x' задают в виде линейных функций измеренных углов и угловых скоростей x=k(k1Δϑ+k2sϑ), с коэффициентами k, k1, k2, определяемыми по заранее рассчитанным зависимостям от уровня h компонента топлива в баке.

Сущность предлагаемого изобретения иллюстрируется фиг.1-4.

Фиг.1 - Схема разгонного блока при осуществлении программного разворота.

Фиг.2 - Программа управления разворотом в функции безразмерного времени τ.

Фиг.3 - Линии переключения управления в фазовой плоскости безразмерной переменной x и ее производной x' по безразмерному времени τ.

Фиг.4 - Типовые переходные процессы при реализации программного разворота в соответствии с предлагаемым способом управления.

Для управления программным разворотом, совмещенным по времени с работой двигателей поджатия, в математической модели объекта управления необходимо учесть колебания жидких компонентов топлива. В качестве примера рассмотрим математическую модель плоского разворота РБ по тангажу с использованием маятниковой модели, описывающей колебания окислителя в баке. Уравнения пространственного движения РБ как твердого тела с n математическими маятниками выведены в работе [2]. В рассматриваемом случае плоского разворота с одним маятником эти уравнения имеют вид (в предположении малости угла отклонения маятника от положения равновесия)

где

ϑ - угол тангажа РБ;

sϑ - угол отклонения маятника от продольной оси РБ, равный углу отклонения нормали к поверхности окислителя от продольной оси бака;

u - команда на включение управляющих двигателей РБ, принимающая значения - 1, 0, 1;

Здесь (см. фиг.1)

m0 - масса РБ без учета массы колеблющегося окислителя (масса твердого тела);

IZ - момент инерции твердого тела;

m - масса материальной точки математического маятника, равная массе колеблющегося окислителя;

P0 - тяга двигателей поджатия, направленная вдоль продольной оси РБ;

P - тяга одного двигателя ориентации, перпендикулярная продольной оси РБ;

d - расстояние от точки подвеса маятника до центра масс твердого тела;

l - длина нити математического маятника;

xT - продольная координата центра масс твердого тела в базовой системе координат;

xD - продольная координата точек приложения сил тяги управляющих двигателей в базовой системе координат.

Система уравнений (1)-(2) имеет следующие начальные и конечные условия

где ϑ0, ϑK - соответственно заданные начальное и конечное значения угла тангажа;

tK - время окончания разворота.

Перейдем к безразмерным переменным

где

Систему уравнений (1)-(2) и граничные условия (5)-(6) можно представить в виде

где символы ' и “ означают соответственно первую и вторую производные по безразмерному времени τ, а 2Т - безразмерное время разворота.

Сохраняя известную по способу-прототипу последовательность операций при выполнении программного разворота (разгон, движение по инерции, торможение), выберем временную программу управления в виде, показанном на фиг.2. При этом система (14) за безразмерное время 2Т перейдет из начальных условий (11) в конечные условия, определяемые формулами

где σ=signx0. Чтобы обеспечить выполнение конечных условий (16), достаточно выбрать в качестве безразмерного времени Т одно из значений последовательности

где i=1, 2, 3,…, при этом

Минимальное безразмерное время разворота обеспечивается при , где квадратные скобки обозначают целую часть числа. Однако при i=i* амплитуда переходного процесса по углу отклонения маятника, моделирующего колебания жидкости в баке, может достигнуть недопустимой величины. Для характерных значений параметров рассматриваемого в примере разгонного блока целесообразно выбрать значение i=2.

Полученные значения параметров T и ξ позволяют реализовать управление программным разворотом, показанное на фиг.2, как функцию времени. Однако для технической реализации целесообразно представить это же управление как функцию переменных состояния x и x', т.е. осуществить синтез управления с обратной связью. Наличие обратной связи, как известно, позволяет компенсировать влияние возмущений, связанных с влиянием внешних факторов, неточным знанием параметров объекта управления и регулятора, неучетом в математической модели второстепенных факторов и др. В предлагаемом способе управления программным разворотом разгонного блока как раз и используется принцип обратной связи. С этой целью были получены уравнения линий переключения в фазовой плоскости (x, x'). При этом отключение двигателя ориентации в конце участка разгона и включение противоположного двигателя ориентации в начале участка торможения осуществляются при достижении параметром x на фазовой плоскости соответственно первой и второй линий переключения (см. фиг.3). Уравнение первой линии переключения имеет вид (для характерных для рассматриваемого РБ значений безразмерного начального условия )

,

а уравнение второй линии переключения

.

Для реализации такого управления заранее перед полетом РБ вычисляют зависимости коэффициентов (13) линейных функций (8) и (9) от уровня h окислителя в баке. Для этого вначале расчетным путем или экспериментально определяют зависимости от h безразмерных параметров маятниковой модели поведения жидкости: квадрата безразмерной частоты колебаний маятника , безразмерной массы материальной точки маятника , безразмерного расстояния от нижнего полюса бака до точки подвеса маятника [3]. По этим данным определяют длину нити маятника , массу материальной точки маятника и расстояние от точки подвеса маятника до центра масс твердого тела , где R - характерный размер бака, ρ - плотность окислителя, xT0 - расстояние от центра масс твердого тела до нижнего полюса бака окислителя. Наконец, по формулам (3), (4), (13) определяют зависимости коэффициентов k, k1, k2 от уровня h окислителя в баке. Эти заранее рассчитанные зависимости используются в полете для определения значений коэффициентов. Для этого перед осуществлением программного разворота в соответствии с предлагаемым способом измеряют уровень h окислителя в баке.

Во время выполнения программного разворота периодически измеряют угол ϑ и угловую скорость разворота разгонного блока, а также угол sϑ и угловую скорость отклонения поверхности окислителя в баке от продольной оси разгонного блока, которые по формулам (8)-(10) пересчитываются в параметры управления x и x'. Измерение углов отклонения поверхности окислителя в баке в двух плоскостях можно осуществить, например, с использованием трех радиоволновых уровнемеров, расположенных на боковой стенке внутри цилиндрического бака под углами в 120°. В частности, могут использоваться уровнемеры «Микрорадар-216Н» [4], имеющие массу не более 3 кг и обеспечивающие измерение уровня жидкости в пределах от 0,5 м до 4 м с точностью ±2,5 мм и частотой выдачи измеренных значений уровня не менее 10 1/с. Угловая скорость отклонения поверхности окислителя в баке от продольной оси разгонного блока может быть получена численным дифференцированием измеренного угла отклонения.

Результаты математического моделирования процесса управления программным разворотом с использованием предлагаемого способа, представленные на фиг.4 (а, б, в) показывают хорошее качество управления как при номинальных значениях характеристик разгонного блока (а), так и при 5%-ных разбросах на значения моментов инерции РБ и тяги двигателей поджатия (б, в).

Таким образом, благодаря реализации предложенного в изобретении технического решения, решается задача управления программным разворотом разгонного блока, обеспечивающего на участке работы двигателей поджатая выполнение разворота РБ на заданный угол без перерегулирования с одновременным гашением колебаний компонентов топлива в баках.

Источники информации

1. Б.В. Раушенбах, Е.Н. Токарь. Управление ориентацией космических аппаратов. М., «Наука», 1974 г., стр.191-194.

2. А.Ш. Альтшулер, В.А. Лобанов. Математические модели пространственных колебаний жидких компонентов топлива в баках ракеты космического назначения на активных участках полета. Авиакосмическая техника и технология. 2010 г., №2, стр.39-46.

3. К.С. Колесников. Динамика ракет. М. «Машиностроение», 2003 г.

4. Уровнемер радиоволновой «Микрорадар-21611» ТУ BY 190460725.003-2009. Руководство по эксплуатации РЭ216Н.000-06. http://www.microradartest.com, , market@microradar.com.

Способ управления программным разворотом разгонного блока с помощью неподвижных двигателей ориентации постоянной тяги, заключающийся в выполнении набора угловой скорости - разгоне, движении по инерции, уменьшении угловой скорости до нуля - торможении и импульсном включении двигателей ориентации при уменьшении угловой скорости ниже заданного уровня, отличающийся тем, что в случае осуществления программного разворота, совмещенного по времени с работой двигателей поджатия, перед разворотом измеряют уровень h наиболее влияющего на динамику разворота компонента топлива в баке, а в процессе разворота периодически измеряют рассогласование по углу Δϑ и угловую скорость разворота разгонного блока, угол s и угловую скорость отклонения поверхности указанного компонента топлива в баке от продольной оси разгонного блока, при этом выключение двигателей ориентации в конце участка разгона осуществляют при достижении параметром x значения ƒ(x'), включение двигателей ориентации в начале участка торможения осуществляют при достижении параметром x значения ƒ(x'), где ; функции переключения, а параметры x и x' задают в виде линейных функций измеренных углов и угловых скоростей x=k(kΔϑ+ks), с коэффициентами k, k, k, определяемыми по заранее рассчитанным зависимостям от уровня h компонента топлива в баке.
СПОСОБ УПРАВЛЕНИЯ ПРОГРАММНЫМ РАЗВОРОТОМ РАЗГОННОГО БЛОКА
СПОСОБ УПРАВЛЕНИЯ ПРОГРАММНЫМ РАЗВОРОТОМ РАЗГОННОГО БЛОКА
СПОСОБ УПРАВЛЕНИЯ ПРОГРАММНЫМ РАЗВОРОТОМ РАЗГОННОГО БЛОКА
СПОСОБ УПРАВЛЕНИЯ ПРОГРАММНЫМ РАЗВОРОТОМ РАЗГОННОГО БЛОКА
СПОСОБ УПРАВЛЕНИЯ ПРОГРАММНЫМ РАЗВОРОТОМ РАЗГОННОГО БЛОКА
СПОСОБ УПРАВЛЕНИЯ ПРОГРАММНЫМ РАЗВОРОТОМ РАЗГОННОГО БЛОКА
СПОСОБ УПРАВЛЕНИЯ ПРОГРАММНЫМ РАЗВОРОТОМ РАЗГОННОГО БЛОКА
СПОСОБ УПРАВЛЕНИЯ ПРОГРАММНЫМ РАЗВОРОТОМ РАЗГОННОГО БЛОКА
СПОСОБ УПРАВЛЕНИЯ ПРОГРАММНЫМ РАЗВОРОТОМ РАЗГОННОГО БЛОКА
СПОСОБ УПРАВЛЕНИЯ ПРОГРАММНЫМ РАЗВОРОТОМ РАЗГОННОГО БЛОКА
Источник поступления информации: Роспатент

Показаны записи 31-40 из 104.
10.03.2014
№216.012.aa10

Запорное устройство соединения магистралей

Изобретение относится к ракетной технике и может быть использовано для подачи рабочего тела в агрегаты в процессе полета. Техническим результатом изобретения является повышение надежности работы и эксплуатационных возможностей. Запорное устройство соединения магистралей содержит корпус с...
Тип: Изобретение
Номер охранного документа: 0002509251
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.ab92

Способ фрикционной сварки перемешиванием

Изобретение может быть использовано при изготовлении каркасно-панельных конструкций, а также конструкций типа тел вращения, например баков и обечаек. Предварительно погруженный в свариваемый стык вращающийся сварочный инструмент 1 перемещают по линии стыка соединяемых деталей 2. Осуществляют...
Тип: Изобретение
Номер охранного документа: 0002509637
Дата охранного документа: 20.03.2014
27.03.2014
№216.012.ae9b

Газогенератор

Изобретение относится к теплоэнергетике, а именно к устройствам для получения энергетического газа путем смешения водоугольного топлива и воздуха с последующим горением этой смеси. Газогенератор выполнен в виде единой камеры 2 с футеровкой, несколькими группами 4, 5, 9 двухкомпонентных форсунок...
Тип: Изобретение
Номер охранного документа: 0002510414
Дата охранного документа: 27.03.2014
10.04.2014
№216.012.af5b

Устройство установки агрегатов на изделии

Изобретение относится к средствам установки оборудования на летательном, преимущественно космическом, аппарате (КА), где требуется точная угловая и линейная регулировка положения агрегатов на изделии (в т.ч. при летно-конструкторских испытаниях). Устройство установки агрегатов (1) на изделии...
Тип: Изобретение
Номер охранного документа: 0002510606
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.bb20

Способ контроля уровня расположения поверхности жидких компонентов топлива в баках ракет-носителей и система для его осуществления

Изобретения относятся к области ракетно-космической техники и могут найти применение при осуществлении контроля уровня расположения поверхности жидких компонентов топлива в баках ракет-носителей. Технический результат - повышение точности контроля уровня заправки и энергетических характеристик...
Тип: Изобретение
Номер охранного документа: 0002513632
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c064

Регулирующий узел

Изобретение относится к разъемным соединениям, а именно к узлам для углового регулирования конструкций. Регулирующий узел содержит втулку сферическую, дренажное отверстие в ней, внутреннюю полость втулки сферической, резьбовую часть втулки сферической, конический упор, а также сферическую...
Тип: Изобретение
Номер охранного документа: 0002515001
Дата охранного документа: 10.05.2014
27.06.2014
№216.012.d82b

Способ защиты от аварии многоканальных систем управления ракет

Изобретение относится к ракетно-космической технике и может быть использовано в автоматах стабилизации ракет, управление угловым движением которых осуществляется путем поворота нескольких камер сгорания двигателей с помощью рулевых приводов. Способ защиты от аварии многоканальных систем...
Тип: Изобретение
Номер охранного документа: 0002521117
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.db2e

Устройство для крепления и последующего разделения ступеней ракеты-носителя пакетной схемы

Изобретение относится к космической технике и может быть использовано для крепления и разделения ступеней ракеты-носителя пакетной схемы. Устройство для крепления и последующего разделения ступеней ракеты-носителя пакетной схемы содержит пневмотолкатель, узлы крепления, замок. Пневмотолкатель...
Тип: Изобретение
Номер охранного документа: 0002521888
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.db5e

Планер летательного аппарата

Изобретение относится к крылатым летательным аппаратам, в которых используется криогенное топливо, и касается ракетных блоков многоразового использования. Планер летательного аппарата включает корпус с криогенным цилиндрическим баком, крыло, элементы крепления крыла. Крыло закреплено...
Тип: Изобретение
Номер охранного документа: 0002521936
Дата охранного документа: 10.07.2014
10.09.2014
№216.012.f12d

Способ фрикционной сварки с перемешиванием на опорном ролике с профильной канавкой

Изобретение может быть использовано для фрикционной сварки с перемешиванием. Стык свариваемых заготовок 1 и 2 размещают на опорном ролике 5 с профильной канавкой 4. Сварное соединение получают путем перемещения рабочего стержня 6 сварочного инструмента 7 с формированием корня сварного шва. В...
Тип: Изобретение
Номер охранного документа: 0002527563
Дата охранного документа: 10.09.2014
Показаны записи 31-40 из 83.
10.03.2014
№216.012.aa10

Запорное устройство соединения магистралей

Изобретение относится к ракетной технике и может быть использовано для подачи рабочего тела в агрегаты в процессе полета. Техническим результатом изобретения является повышение надежности работы и эксплуатационных возможностей. Запорное устройство соединения магистралей содержит корпус с...
Тип: Изобретение
Номер охранного документа: 0002509251
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.ab92

Способ фрикционной сварки перемешиванием

Изобретение может быть использовано при изготовлении каркасно-панельных конструкций, а также конструкций типа тел вращения, например баков и обечаек. Предварительно погруженный в свариваемый стык вращающийся сварочный инструмент 1 перемещают по линии стыка соединяемых деталей 2. Осуществляют...
Тип: Изобретение
Номер охранного документа: 0002509637
Дата охранного документа: 20.03.2014
27.03.2014
№216.012.ae9b

Газогенератор

Изобретение относится к теплоэнергетике, а именно к устройствам для получения энергетического газа путем смешения водоугольного топлива и воздуха с последующим горением этой смеси. Газогенератор выполнен в виде единой камеры 2 с футеровкой, несколькими группами 4, 5, 9 двухкомпонентных форсунок...
Тип: Изобретение
Номер охранного документа: 0002510414
Дата охранного документа: 27.03.2014
10.04.2014
№216.012.af5b

Устройство установки агрегатов на изделии

Изобретение относится к средствам установки оборудования на летательном, преимущественно космическом, аппарате (КА), где требуется точная угловая и линейная регулировка положения агрегатов на изделии (в т.ч. при летно-конструкторских испытаниях). Устройство установки агрегатов (1) на изделии...
Тип: Изобретение
Номер охранного документа: 0002510606
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.bb20

Способ контроля уровня расположения поверхности жидких компонентов топлива в баках ракет-носителей и система для его осуществления

Изобретения относятся к области ракетно-космической техники и могут найти применение при осуществлении контроля уровня расположения поверхности жидких компонентов топлива в баках ракет-носителей. Технический результат - повышение точности контроля уровня заправки и энергетических характеристик...
Тип: Изобретение
Номер охранного документа: 0002513632
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c064

Регулирующий узел

Изобретение относится к разъемным соединениям, а именно к узлам для углового регулирования конструкций. Регулирующий узел содержит втулку сферическую, дренажное отверстие в ней, внутреннюю полость втулки сферической, резьбовую часть втулки сферической, конический упор, а также сферическую...
Тип: Изобретение
Номер охранного документа: 0002515001
Дата охранного документа: 10.05.2014
27.06.2014
№216.012.d82b

Способ защиты от аварии многоканальных систем управления ракет

Изобретение относится к ракетно-космической технике и может быть использовано в автоматах стабилизации ракет, управление угловым движением которых осуществляется путем поворота нескольких камер сгорания двигателей с помощью рулевых приводов. Способ защиты от аварии многоканальных систем...
Тип: Изобретение
Номер охранного документа: 0002521117
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.db2e

Устройство для крепления и последующего разделения ступеней ракеты-носителя пакетной схемы

Изобретение относится к космической технике и может быть использовано для крепления и разделения ступеней ракеты-носителя пакетной схемы. Устройство для крепления и последующего разделения ступеней ракеты-носителя пакетной схемы содержит пневмотолкатель, узлы крепления, замок. Пневмотолкатель...
Тип: Изобретение
Номер охранного документа: 0002521888
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.db5e

Планер летательного аппарата

Изобретение относится к крылатым летательным аппаратам, в которых используется криогенное топливо, и касается ракетных блоков многоразового использования. Планер летательного аппарата включает корпус с криогенным цилиндрическим баком, крыло, элементы крепления крыла. Крыло закреплено...
Тип: Изобретение
Номер охранного документа: 0002521936
Дата охранного документа: 10.07.2014
10.09.2014
№216.012.f12d

Способ фрикционной сварки с перемешиванием на опорном ролике с профильной канавкой

Изобретение может быть использовано для фрикционной сварки с перемешиванием. Стык свариваемых заготовок 1 и 2 размещают на опорном ролике 5 с профильной канавкой 4. Сварное соединение получают путем перемещения рабочего стержня 6 сварочного инструмента 7 с формированием корня сварного шва. В...
Тип: Изобретение
Номер охранного документа: 0002527563
Дата охранного документа: 10.09.2014
+ добавить свой РИД