×
10.02.2015
216.013.268a

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ЗАГОТОВКИ СВЕТООТРАЖАЮЩЕГО ЭЛЕМЕНТА ДЛЯ ОПТИЧЕСКИХ СИСТЕМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу изготовления заготовки светоотражающего элемента для оптических систем, включающему предварительную химико-механическую обработку поверхности сложнопрофильных деталей, формирование металлизированного отражающего слоя. При этом формирование металлизированного светоотражающего слоя на основе иридия производят после снятия реплики, после нанесения последовательно подслоя химического цинка, нанесения никель-фосфорного слоя толщиной до 200 мкм, который подвергают термообработке в диапазоне температур 110-400°C и высокоинтенсивной полировке до 6-8 Å с получением дублируемой поверхности матрицы, с последующим формированием несущего слоя гальванического никеля из сульфаминового электролита следующего состава (г/л): никель сульфаминовый 300-400; никель двухлористый 12-15; кислота борная 25-40; натрий лаурилсульфат 0,01-0,1; сахарин 0,008 при плотности тока 2,5 А/дм, температуре 55-60°C в течение 8 часов, после чего полученную металлизированную реплику снимают с матрицы методом термоудара, а собственно светоотражающий слой иридия наносят методом высокоточного катодного напыления на внутреннюю поверхность никелевой реплики с образованием тонкостенного светоотражающего элемента для последующей установки его в оптическую систему. Использование настоящего способа позволяет обеспечить повышение оптических и геометрических показателей, показателей адгезии никель-фосфорного покрытия к матрице и его механической прочности. 1 пр., 1 ил.
Основные результаты: Способ изготовления заготовки светоотражающего элемента для оптических систем, включающий предварительную химико-механическую обработку поверхности сложнопрофильных деталей, формирование металлизированного отражающего слоя, отличающийся тем, что формирование металлизированного светоотражающего слоя на основе иридия производят после снятия реплики, после нанесения последовательно подслоя химического цинка, нанесения никель-фосфорного слоя толщиной до 200 мкм, который подвергают термообработке в диапазоне температур 110-400°C и высокоинтенсивной полировке до 6-8 Å с получением дублируемой поверхности матрицы, с последующим формированием несущего слоя гальванического никеля из сульфаминового электролита следующего состава (г/л): при плотности тока 2,5 А/дм, температуре 55-60°C в течение 8 часов, после чего полученную металлизированную реплику снимают с матрицы методом термоудара, а собственно светоотражающий слой иридия наносят методом высокоточного катодного напыления на внутреннюю поверхность никелевой реплики с образованием тонкостенного светоотражающего элемента для последующей установки его в оптическую систему.

Предлагаемое изобретение относится к области технологии изготовления светоотражающих элементов сложной формы (сферической или конусовидной) для оптических систем и может быть использовано для получения высокоточных светоотражающих оптических элементов астрономических зеркал.

Известен из предшествующего уровня техники способ изготовления светоотражающих элементов оптических систем (патент РФ №02156487, МПК G02B 26/02, публ. 20.09.2000 г.), согласно которому предварительно подготовленную отполированную подложку (матрицу) покрывают металлодиэлектрическим покрытием и слоем высокоотражающего металла (серебром или золотом) толщиной 0,03-0,06 мкм, что обеспечивает высокие светоотражающие свойства готового зеркала.

Известен способ получения отражающих элементов оптических систем на основе покрытия, содержащего серебро, благородные металлы, иридий и другие металлы при суммарном их содержании не более 20 ат.%, которое в течение длительного времени сохраняет высокий коэффициент отражения (патент WO №2006132417, МПК8 C22C 5/06, публ. 14.12.2006 г.).

Известен в качестве прототипа заявляемого способа способ получения светоотражающих элементов для оптических систем термическим газофазным разложением соединений благородных металлов (золота и платины) (патент РФ №01840420, МПК C23C 14/00, публ. 20.03.2007 г.), которое проводят в смешанном газовом потоке, осаждение металла ведут при температуре подложки 190÷250°C с одновременным отводом из зоны реакции органических продуктов разложения, что обеспечивает повышение коэффициента отражения покрытия готового изделия, адгезии, чистоты и стойкости к механическим воздействиям.

К недостаткам аналогов относится проблематичность изготовления деталей (снимаемых реплик) с высокой степенью точности воспроизводимого в реплике сложной формы профиля матрицы и соблюдение требований по чистоте обработки поверхности и минимизации массы готовых изделий.

Задачей авторов изобретения является разработка способа изготовления тонкостенного светоотражающего элемента сложного профиля для оптических систем, обеспечивающего высокие оптические (коэффициент светоотражения) и геометрические показатели (толщина стенки реплики и точность воспроизведение профиля матрицы в снимаемой металлизированной реплике), заданные показатели адгезии покрытия к матрице и механической прочности, достаточные для реализации этапов высокоинтенсивной механической обработки матрицы и последующего снятия реплики.

Новый технический результат, обеспечиваемый при использовании предлагаемого изобретения, заключается в обеспечении повышения оптических (коэффициента светоотражения) и геометрических показателей (равнотолщинность реплики и точность дублирования профиля матрицы в снимаемой металлизированной реплике), показателей адгезии никель-фосфорного покрытия к матрице и его механической прочности, достаточных для проведения высокоинтенсивной механической обработки матрицы с покрытием и возможности последующего снятия формируемой реплики.

Указанные задача и новый технический результат обеспечиваются тем, что в известном способе изготовления заготовки светоотражающего элемента для оптических систем, включающем предварительную химико-механическую обработку поверхности сложнопрофильных деталей, формирование металлизированного отражающего слоя, согласно изобретению формирование металлизированного светоотражающего слоя на основе иридия производят после снятия реплики, после нанесения последовательно подслоя химического цинка, нанесения никель-фосфорного слоя толщиной до 200 мкм, который подвергают термообработке в диапазоне температур 110-400°C и высокоинтенсивной полировке до 6-8 Å с получением дублируемой поверхности матрицы, с последующим формированием несущего слоя гальванического никеля из сульфаминового электролита следующего состава (г/л):

никель сульфаминовый 300-400
никель двухлористый 12-15
кислота борная 25-40
натрий лаурилсульфат 0,01-0,1
сахарин 0,008

при плотности тока 2,5 А/дм2, температуре 55-60°C в течение 8 часов, после чего полученную металлизированную реплику снимают с матрицы методом термоудара, а собственно светоотражающий слой иридия наносят методом высокоточного катодного напыления на внутреннюю поверхность никелевой реплики с образованием тонкотонкостенного светоотражающего элемента для последующей установки его в оптическую систему.

Предлагаемый способ поясняется следующим образом.

Первоначально подготавливают поверхность заготовки (матрицы заданного геометрического профиля) для сложнопрофильных деталей традиционными методами химико-механической обработки, обезжиривания в водном растворе, состоящем из смеси тринатрийфосфата 45-55 г/л с кальцинированной содой 45-55 г/л при температуре 50-60°C в течение необходимого операционного времени. После промывки в воде заготовки и нанесения последовательно удаляемого подслоя химического цинка методом химического осаждения из многосоставного цинксодержащего раствора наносят неудаляемый слой цинка и формируют никель-фосфорный слой толщиной до 200 мкм. Затем изделия подвергают высокоинтенсивной полировке до 6-8 Å с получением высокоточной дублируемой поверхности матрицы.

Формирование удаляемого слоя цинка необходимо для активирования поверхности покрываемых сложнопрофильных деталей (матрицы) и повышения адгезии к ним наносимого впоследствии никель-фосфорного покрытия.

Никель-фосфорный слой толщиной до 200 мкм наносят методом химического восстановления, термообрабатывают в диапазоне температур 110-400°C, что способствует повышению адгезионно-механических показателей прочности получаемых покрытий и обеспечивает возможность проведения высокоинтенсивной механической обработки матрицы до чистоты 6-8 Å. Такая высокая степень чистоты обработки поверхности необходима для обеспечения высоких оптических показателей и точного последующего дублирования геометрии матрицы в создаваемой впоследствии снимаемой реплике.

Полученная указанным образом матрица изготовлена с поверхностью, соответствующей профилю готового изделия, и состоит из алюминиевой подложки, металлизированного подслоя цинка и полученного методом химического восстановления никель-фосфорного слоя толщиной до 200 мкм.

Заготовку тонкостенного светоотражающего элемента толщиной 280-300 мкм получают методом последующего нанесения на матрицу несущего слоя никеля гальваническим методом из сульфаминового электролита следующего состава (г/л):

никель сульфаминовый 300-400
никель двухлористый 12-15
кислота борная 25-40
натрий лаурилсульфат 0,01-0,1
сахарин 0,008

при плотности тока 2,5 А/дм2, температуре 55-60°C в течение 8 часов.

После очередной промывки водой, сушки заготовки осуществляют снятие тонкостенной никелевой реплики методом термоудара. Полученные заготовки тонкостенного светоотражающего элемента подвергают контрольным испытаниям по механическим показателям для дальнейшего формирования отражающего слоя иридия на внутреннюю поверхность никелевой реплики методом высокоточного катодного напыления для последующей установки его в оптическую систему.

Таким образом, при использовании предлагаемого способа изготовления заготовки светоотражающего элемента для оптических систем обеспечивается достижение нового технического результата, состоящего в обеспечении повышения оптических (коэффициента светоотражения) и геометрических показателей (равнотолщинность реплики, точность дублирования профиля матрицы в снимаемой металлизированной реплике), показателей адгезии никель-фосфорного покрытия к матрице и его механической прочности, достаточных для проведения высокоинтенсивной механической обработки матрицы с покрытием и возможности последующего облегченного снятия формируемой реплики.

Возможность промышленной реализации предлагаемого способа подтверждается следующим примером.

Пример 1. Предлагаемый способ был реализован в лабораторных условиях на заготовках из алюминиевого сплава АмГ6, покрытых никель-фосфорным покрытием и отполированных до 6-8 Å.

Способ включал в себя следующие операции:

- обезжиривание в растворе состава (г/л):

тринатрий фосфат 45-55
кальцинированная сода 45-55

при температуре 50-60°C в течение 10 минут;

- промывка в горячей воде;

- промывка в холодной воде;

- никелирование в сульфаминовом электролите состава (г/л):

никель сульфаминовый 300-400
никель двухлористый 12-15
кислота борная 25-40
натрий лаурилсульфат 0,01-0,1
сахарин 0,008

при плотности тока 2,5 А/дм2, температуре 55-60°C в течение 8 часов;

- промывка в горячей воде;

- промывка в холодной воде;

- снятие реплики;

- нанесение слоя иридия высокоточным катодным напылением;

- проведение контрольных испытаний полученных образцов.

На фиг.1 представлен вид никелевых реплик перед нанесением слоя иридия методом высокоточного катодного напыления.

Как показал пример выполнения предлагаемого способа, при его реализации достигаются высокие значения оптических (коэффициента светоотражения) и геометрических показателей (равнотолщинность реплики и точность дублирования профиля матрицы в снимаемой металлизированной реплике), показателей адгезии никель-фосфорного покрытия к матрице и его механической прочности, достаточных для проведения высокоинтенсивной механической обработки матрицы с покрытием и возможности последующего снятия формируемой реплики.

Способ изготовления заготовки светоотражающего элемента для оптических систем, включающий предварительную химико-механическую обработку поверхности сложнопрофильных деталей, формирование металлизированного отражающего слоя, отличающийся тем, что формирование металлизированного светоотражающего слоя на основе иридия производят после снятия реплики, после нанесения последовательно подслоя химического цинка, нанесения никель-фосфорного слоя толщиной до 200 мкм, который подвергают термообработке в диапазоне температур 110-400°C и высокоинтенсивной полировке до 6-8 Å с получением дублируемой поверхности матрицы, с последующим формированием несущего слоя гальванического никеля из сульфаминового электролита следующего состава (г/л): при плотности тока 2,5 А/дм, температуре 55-60°C в течение 8 часов, после чего полученную металлизированную реплику снимают с матрицы методом термоудара, а собственно светоотражающий слой иридия наносят методом высокоточного катодного напыления на внутреннюю поверхность никелевой реплики с образованием тонкостенного светоотражающего элемента для последующей установки его в оптическую систему.
СПОСОБ ИЗГОТОВЛЕНИЯ ЗАГОТОВКИ СВЕТООТРАЖАЮЩЕГО ЭЛЕМЕНТА ДЛЯ ОПТИЧЕСКИХ СИСТЕМ
Источник поступления информации: Роспатент

Показаны записи 101-102 из 102.
11.03.2019
№219.016.dcd3

Способ изготовления металлокерамического малогабаритного электрического гермовывода

Изобретение может быть использовано в электровакуумных приборах. Способ изготовления металлокерамического малогабаритного электрического гермовывода включает сборку предварительно подготовленных элементов: изолятора, электрических выводов и вспомогательных материалов. Перед установкой...
Тип: Изобретение
Номер охранного документа: 0002433494
Дата охранного документа: 10.11.2011
09.06.2019
№219.017.7f27

Уплотнение горловины оболочки из упруго-эластичного материала

Изобретение относится к области машиностроения и может быть использовано для герметизации различных эластичных тонкостенных камер, оболочек, работающих под действием давления рабочей среды. Уплотнение горловины оболочки из упругоэластичного материала включает крышку с выходным патрубком,...
Тип: Изобретение
Номер охранного документа: 0002444663
Дата охранного документа: 10.03.2012
Показаны записи 101-107 из 107.
08.07.2018
№218.016.6e87

Способ изготовления светопоглощающих элементов оптических систем на титановых подложках

Использование: получение светопоглощающих многослойных изделий для изготовления светопоглощающих элементов оптических - электронных приборов и оптических систем (зеркал) космических аппаратов. Техническим результатом изобретения является разработка способа получения светопоглощающих элементов...
Тип: Изобретение
Номер охранного документа: 0002660408
Дата охранного документа: 06.07.2018
17.11.2018
№218.016.9e35

Способ изготовления светопоглощающих элементов оптических систем на стальных подложках

Изобретение относится к области гальванотехники и может быть использовано для изготовления светопоглощающих элементов оптических электронных приборов и оптических систем зеркал, телескопов космических аппаратов. Способ включает предварительную подготовку стальной подложки, обезжиривание и...
Тип: Изобретение
Номер охранного документа: 0002672655
Дата охранного документа: 16.11.2018
11.03.2019
№219.016.dcd3

Способ изготовления металлокерамического малогабаритного электрического гермовывода

Изобретение может быть использовано в электровакуумных приборах. Способ изготовления металлокерамического малогабаритного электрического гермовывода включает сборку предварительно подготовленных элементов: изолятора, электрических выводов и вспомогательных материалов. Перед установкой...
Тип: Изобретение
Номер охранного документа: 0002433494
Дата охранного документа: 10.11.2011
04.04.2019
№219.016.fb3d

Способ изготовления светопоглощающих элементов оптических систем на подложках из нержавеющей стали

Использование: для изготовления светопоглощающих элементов оптико-электронных приборов и оптических систем. Сущность изобретения заключается в том, что способ изготовления светопоглощающих элементов оптических систем на подложках из нержавеющей стали включает предварительную подготовку подложек...
Тип: Изобретение
Номер охранного документа: 0002683883
Дата охранного документа: 02.04.2019
18.05.2019
№219.017.5479

Композиция для получения микропористого фенопластового материала для фильтров

Использование: область технологий получения пористых материалов, применяемых для очистки жидких и газообразных сред, может быть использовано в химической, машиностроительной, газодобывающей, нефтехимической и смежных областях при получении фильтров или сорбирующих материалов. Готовят...
Тип: Изобретение
Номер охранного документа: 0002284212
Дата охранного документа: 27.09.2006
29.05.2019
№219.017.675a

Способ получения пористого наноструктурного никеля

Изобретение относится к порошковой металлургии, в частности к получению пористого никеля, и может использоваться при изготовлении воздушных и жидкостных фильтров, основы нейтрализаторов, электродов, составных элементов катализаторов и носителей катализаторов. Из порошков с фенолформальдегидной...
Тип: Изобретение
Номер охранного документа: 0002320456
Дата охранного документа: 27.03.2008
19.06.2019
№219.017.84e7

Способ получения открытопористого стеклоуглеродного материала

Изобретение относится к химической технологии и может быть использовано для изготовления химически стойких пористых электродов, фильтрующих материалов, барботеров, мембран, адсорбентов, нагревательных элементов теплообменной аппаратуры. Связующее - жидкую резольную фенолоформальдегидную смолу и...
Тип: Изобретение
Номер охранного документа: 0002291103
Дата охранного документа: 10.01.2007
+ добавить свой РИД