×
10.02.2015
216.013.257e

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ ОПОРНОГО РЕЗОНАНСА НА СВЕРХТОНКИХ ПЕРЕХОДАХ ОСНОВНОГО СОСТОЯНИЯ АТОМА ЩЕЛОЧНОГО МЕТАЛЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электротехники и может быть использовано в метрологии для определения частоты и времени, а также найти применение в атомных стандартах частоты и атомных часах. Предложенный способ формирования опорного резонанса на сверхтонких переходах основного состояния атома щелочного металла, основанный на использовании эффекта когерентного пленения населенностей в бихроматическом лазерном поле, предусматривает выбор режима возбуждения лазером, имеющим ширину спектра Г излучения, исходя из условия, при котором Г≤ γ, где γ - величина спонтанного распада возбужденного состояния. Предложенный способ при формировании опорного резонанса позволяет использовать ячейки без антирелаксационного покрытия и без буферного газа, что обеспечивает удешевление способа формирования опорного резонанса на сверхтонких переходах основного состояния атома щелочного металла. 2 ил.
Основные результаты: Способ формирования опорного резонанса на сверхтонких переходах основного состояния атома щелочного металла, основанный на эффекте когерентного пленения населенностей в бихроматическом лазерном поле в ячейке, отличающийся тем, что:резонанс когерентного пленения населенностей возбуждают лазером, имеющим ширину Г спектра излучения Г≤γ, где γ - величина спонтанного распада возбужденного состояния.

Изобретение относится к области электротехники и может быть использовано в метрологии для определения частоты и времени, может найти применение в атомных стандартах частоты и атомных часах.

Известен способ формирования высококонтрастного резонанса на сверхтонких переходах основного состояния атома щелочного металла в бихроматическом поле, в котором частотные компоненты одинаково линейно поляризованы. При этом полные угловые моменты сверхтонких компонент в основном состоянии имеют значения F=1 и F=2 для атомов 87Rb, а возбуждение осуществляется через сверхтонкую компоненту с полным угловым моментом F′=1. Обязательным является условие спектрального разрешения сверхтонкой структуры возбужденного состояния. Среди щелочных металлов перечисленные условия в обычных условиях выполняются для атомов 87Rb. Резонанс когерентного пленения населенностей (КПН) может формироваться как на 0-0 переходе, так и на частотах переходов атомов 87Rb: F=2, m=1↔F=1, m=-1 и F=2, m=-1↔F=1, m=1, где F - квантовое число полного углового момента атома, m - квантовое число проекции полного углового атома на направление магнитного поля [RU патент №2312457]. Недостатком этого способа является его сложная техническая реализация.

Известен способ формирования опорного резонанса на сверхтонких переходах основного состояния атома щелочного металла для стабилизации частоты генератора электромагнитных колебаний, основанный на эффекте когерентного пленения населенностей в бихроматическом лазерном поле, выбранный за прототип. Два сонаправленных лазерных поля с частотами ω1 и ω2, действующие в Л-конфигурации на разрешенные электродипольные переходы F=3<->F′=3 и F=4<->F′=3 (F - квантовое число полного углового момента атома, m - квантовое число проекции полного углового момента атома на направление магнитного поля), создают долгоживущую непоглощающую суперпозицию состояний сверхтонких подуровней атомов 133Cs, находящихся в ячейке с буферным газом [Ж. Кичинг, С. Кнэйп и Л. Холлберг. «Журнал прикладной физики». Том 81, стр. 353, 2002 г.]

Недостатком является необходимость покрывать ячейку антирелаксационным стеночным покрытием или вводить буферный газ, что ведет к удорожанию способа.

Задачей является удешевление способа формирования опорного резонанса.

Для решения задачи предложен способ возбуждения для формирования опорного резонанса на сверхтонких переходах основного состояния атома щелочного металла, основанный на эффекте когерентного пленения населенностей в бихроматическом лазерном поле, в котором резонанс возбуждают лазером, имеющим ширину спектра ГL≤γ, где γ - величина спонтанного распада возбужденного состояния. Ширина лазера является ключевым параметров при формировании резонанса КПН.

Способ может быть реализован как для lin||lin, так и для linlin конфигураций бихроматического лазерного поля при возбуждении резонанса КПН.

При возбуждении лазером с «узким» спектром излучения (т.е. когда выполняется условие ГL≤γ) в лазерном поле взаимодействуют только атомы из одной скоростной группы - "медленные" атомы, которые в основном участвуют в формировании резонанса когерентного пленения населенностей. Поэтому уширение резонанса КПН за счет столкновений со стенками ячейки имеет незначительный вклад и зависимость ширины резонанса КПН от размеров ячейки практически отсутствует. Таким образом, если работать только с "медленными" атомами, то столкновительное уширение со стенками ячейки несет незначительный вклад, что позволяет не покрывать ячейку антирелаксационным стеночным покрытием или вводить буферный газ. Следовательно, отличительный признак является существенным и достаточным для решения задачи.

Способ формирования опорного резонанса на сверхтонких переходах основного состояния атома щелочного металла осуществляют следующим образом. Возьмем ячейку без антирелаксационного стеночного покрытия, в которую помещены атомы цезия 133Cs при температуре 55°C. Поместим ячейку в магнитное поле 0,02 Гс. На данные атомы направим бихроматическое лазерное поле в ∧-конфигурации, которое резонансно переходам F=3<->F′=3 и F=4<->F′=3 и имеет ширину спектра 4,57 МГц. Величина спонтанного распада для атомов 133Cs на переходе F′=3<->F=3, F′=3<->F=4 составляет 4,57 МГц. Следовательно, выполняется условие ГL≤γ. Лазерное поле имеет интенсивность 1 мкВт.

Результаты численного расчета амплитуды p резонанса когерентного пленения населенностей в ∧-конфигурации от двухфотонной отстройки Ω для различных длин ячеек для случая ячейки без антирелаксационного стеночного покрытия предсталены на фиг.1. Сплошная кривая соответствует ячейке длиной 0,825 см, точечная 1,65 см, пунктирная 2,475 см, штрихпунктирная 3,3 см. Из фиг.1 видно, что не наблюдается какой-либо существенной зависимости ширины резонанса когерентного пленения населенностей от размеров ячейки.

Возьмем ячейку без антирелаксационного стеночного покрытия, в которую помещены атомы рубидия 87Rb при температуре 55°C. Поместим ячейку в магнитное поле 0,05 Гс. На данные атомы направим бихроматическое лазерное поле в ∧-конфигурации, которое резонансно переходам F=1<->F′=2 и F=2<->F′=2 и имеет ширину спектра 2 МГц. Величина спонтанного распада для атомов 133Cs на переходе F′=2<->F=1, F′=2<->F=2 составляет 5,74 МГц. Следовательно, выполняется условие ГL≤γ. Лазерное поле имеет интенсивность 2 мкВт.

Результаты численного расчета амплитуды ρ резонанса когерентного пленения населенностей в ∧-конфигурации от двухфотонной отстройки Ω для различных длин ячеек для случая ячейки без антирелаксационного стеночного покрытия представлены на фиг.2. Сплошная кривая соответствует ячейке длиной 2,2 см, пунктирная 3,3 см, точечная 4,4 см. Из фиг.2 видно, что не наблюдается какой-либо существенной зависимости ширины резонанса когерентного пленения населенностей от размеров ячейки.

Предложенный способ формирования опорного резонанса на сверхтонких переходах основного состояния атома щелочного металла позволяет использовать ячейки без антирелаксационного покрытия, что ведет к удешевлению способа формирования опорного резонанса на сверхтонких переходах основного состояния атома щелочного металла.

Способ формирования опорного резонанса на сверхтонких переходах основного состояния атома щелочного металла, основанный на эффекте когерентного пленения населенностей в бихроматическом лазерном поле в ячейке, отличающийся тем, что:резонанс когерентного пленения населенностей возбуждают лазером, имеющим ширину Г спектра излучения Г≤γ, где γ - величина спонтанного распада возбужденного состояния.
СПОСОБ ФОРМИРОВАНИЯ ОПОРНОГО РЕЗОНАНСА НА СВЕРХТОНКИХ ПЕРЕХОДАХ ОСНОВНОГО СОСТОЯНИЯ АТОМА ЩЕЛОЧНОГО МЕТАЛЛА
СПОСОБ ФОРМИРОВАНИЯ ОПОРНОГО РЕЗОНАНСА НА СВЕРХТОНКИХ ПЕРЕХОДАХ ОСНОВНОГО СОСТОЯНИЯ АТОМА ЩЕЛОЧНОГО МЕТАЛЛА
Источник поступления информации: Роспатент

Показаны записи 1-4 из 4.
20.10.2014
№216.013.0001

Способ получения магнитотвердого материала smfen

Изобретение может быть использовано при получении магнитотвердых материалов, используемых в электротехнике и машиностроении. Способ получения магнитотвердого материала SmFeN включает смешивание порошков Sm и Fe, их механоактивацию и последующее азотирование. Сначала проводят механоактивацию в...
Тип: Изобретение
Номер охранного документа: 0002531393
Дата охранного документа: 20.10.2014
10.01.2015
№216.013.1a82

Способ дифференциальной защиты электроустановки

Изобретение относится к области электротехники, а именно к защите электроустановок. Технический результат заключается в повышении чувствительности и быстродействия защиты, а также устойчивости ее функционирования. В предложенном способе пофазно формируют дифференциальный ток. Исходя из...
Тип: Изобретение
Номер охранного документа: 0002538214
Дата охранного документа: 10.01.2015
10.03.2015
№216.013.2fa9

Способ определения марки бетона по морозостойкости

Способ относится к методам испытаний пористых водонасыщенных тел. Он предусматривает изготовление серии бетонных образцов, насыщение образцов водой, измерение образцов, определение начального их объема, их замораживание-размораживание до нормативных температур и регистрацию при этом деформации....
Тип: Изобретение
Номер охранного документа: 0002543669
Дата охранного документа: 10.03.2015
27.04.2016
№216.015.3a0c

Способ компенсации магнитного поля коаксиальной линии

Изобретение относится к области техники высоких и сверхвысоких частот и предназначено для эффективной защиты входов радиоэлектронного оборудования от воздействия электромагнитных наводок. Технический результат - повышение эффективности защиты входов радиоэлектронного оборудования от внешних...
Тип: Изобретение
Номер охранного документа: 0002582551
Дата охранного документа: 27.04.2016
Показаны записи 1-4 из 4.
20.10.2014
№216.013.0001

Способ получения магнитотвердого материала smfen

Изобретение может быть использовано при получении магнитотвердых материалов, используемых в электротехнике и машиностроении. Способ получения магнитотвердого материала SmFeN включает смешивание порошков Sm и Fe, их механоактивацию и последующее азотирование. Сначала проводят механоактивацию в...
Тип: Изобретение
Номер охранного документа: 0002531393
Дата охранного документа: 20.10.2014
10.01.2015
№216.013.1a82

Способ дифференциальной защиты электроустановки

Изобретение относится к области электротехники, а именно к защите электроустановок. Технический результат заключается в повышении чувствительности и быстродействия защиты, а также устойчивости ее функционирования. В предложенном способе пофазно формируют дифференциальный ток. Исходя из...
Тип: Изобретение
Номер охранного документа: 0002538214
Дата охранного документа: 10.01.2015
10.03.2015
№216.013.2fa9

Способ определения марки бетона по морозостойкости

Способ относится к методам испытаний пористых водонасыщенных тел. Он предусматривает изготовление серии бетонных образцов, насыщение образцов водой, измерение образцов, определение начального их объема, их замораживание-размораживание до нормативных температур и регистрацию при этом деформации....
Тип: Изобретение
Номер охранного документа: 0002543669
Дата охранного документа: 10.03.2015
27.04.2016
№216.015.3a0c

Способ компенсации магнитного поля коаксиальной линии

Изобретение относится к области техники высоких и сверхвысоких частот и предназначено для эффективной защиты входов радиоэлектронного оборудования от воздействия электромагнитных наводок. Технический результат - повышение эффективности защиты входов радиоэлектронного оборудования от внешних...
Тип: Изобретение
Номер охранного документа: 0002582551
Дата охранного документа: 27.04.2016
+ добавить свой РИД