×
10.02.2015
216.013.2488

Результат интеллектуальной деятельности: УСТРОЙСТВО АНАЛИЗА РЕЗУЛЬТАТОВ ТЕСТИРОВАНИЯ ДЛЯ ПОИСКА НЕИСПРАВНЫХ БЛОКОВ

Вид РИД

Изобретение

№ охранного документа
0002540805
Дата охранного документа
10.02.2015
Аннотация: Изобретение относится к области тестирования дискретных объектов большой размерности. Техническим результатом является повышение глубины локализации неисправностей. Устройство содержит m n-разрядных многовходовых сигнатурных анализаторов (СА строк), входы которых соединены со всеми mn выходами одновыходных блоков проверяемого объекта, n m-разрядных многовходовых сигнатурных анализаторов (СА столбцов), входы которых соединены со входами СА строк так, что j-e входы (j=1,…, n) всех m СА строк соединены со всеми m входами j-го СА столбцов. 1 ил.
Основные результаты: Устройство анализа результатов тестирования для поиска неисправных блоков, содержащее m n-разрядных многовходовых сигнатурных анализаторов (СА строк), входы которых соединены со всеми mn выходами одновыходных блоков проверяемого объекта, отличающееся тем, что дополнительно содержит n m-разрядных многовходовых сигнатурных анализаторов (СА столбцов), входы которых соединены со входами СА строк так, что j-е входы (j=1,…,n) всех m СА строк соединены со всеми m входами j-го СА столбцов.

При тестировании принято на входы объекта или на входы его частей (блоков) подавать тестовые воздействия (тесты), а с выходов объекта или его блоков снимать тестовую реакцию, которая анализируется (сопоставляется с эталонной реакцией исправного объекта) для решения одной или двух задач: 1) проверка исправности объекта; 2) поиск (или локализация) неисправностей (отказавших блоков), если проверяемый объект оказался неисправным. Решение второй задачи особенно актуально, если подразумевается восстановление неисправного объекта путем, например, ручной замены отказавшего блока или автоматической реконфигурации объекта, при которой неисправные блоки отключаются от объекта, а вместо них подключаются соответствующие резервные блоки. Такая возможность принципиально имеется, если объект реализован на программируемой логической матрице.

В технической диагностике в качестве устройства анализа результатов тестирования чаще всего применяют так называемые сигнатурные анализаторы (СА) (Ярмолик В.Н. Контроль и диагностика цифровых узлов ЭВМ, Минск, «Наука и техника», 1988, стр. 137-142). Сущность СА состоит в представлении длинной выходной последовательности на выходе объекта в виде короткого ключевого слова (сигнатуры). На основании сопоставления сигнатуры, полученной в результате тестирования, с ее эталонным значением, полученным заранее на заведомо исправном объекте или его модели, делается вывод о техническом состоянии тестируемого объекта. СА реализуется в виде регистра сдвига с обратными связями. Различают СА одноканальные (одновходовые), которые «сжимают» одну выходную тестовую последовательность во времени, и многоканальные (многовходовые), «сжимающие» несколько последовательностей с разных выходов объекта и во времени, и в пространстве.

Эффективность обнаружения ошибки в последовательности сжимаемых данных называется достоверностью СА (Ярмолик В.Н. Контроль и диагностика цифровых узлов ЭВМ, Минск, «Наука и техника», 1988, стр. 145-146). Достоверность оценивается как вероятность необнаружения ошибок в анализируемой последовательности: р≈1/2l, где l - число разрядов (или длина) СА. Причем эта вероятность инвариантна относительно сжимаемой последовательности и конструкции СА (числа и вида его обратных связей) и уже при l=16 значение р=1/216=0,0000152 достаточно близко к нулю.

Как правило, проверяемый объект многовыходной, и при условии, что его проверяющий тест построен или сгенерирован и может подаваться на входы объекта, задача сжатия выходной тестовой реакции может решаться двояко. В первом варианте (а это будет аналог заявляемого устройства) к каждому из N выходов объекта присоединяется одновходовой сигнатурный анализатор длины l. При этом затраты, исчисленные в количестве разрядов всех анализаторов (без учета затрат на хранение N эталонных сигнатур и их сопоставление с результирующими сигнатурами), составляют З1=lN. В этом варианте компактного тестирования решается как задача проверки исправности объекта, так и задача локализации неисправностей. Сигнатуру будем называть неисправной, если она отлична от эталонной. Если при тестировании k из N сигнатур оказались неисправными, то неисправности в объекте находятся в аппаратуре, работающей на эти k выходов, причем в общем случае эта аппаратура может пересекаться. В частном случае, если весь объект представляет собой N аппаратурно не пересекающихся частей (возможно, имеющих общие входы объекта), то k неисправных сигнатур свидетельствуют о неисправности соответствующих k частей. При этом для класса одиночных неисправностей в проверяемом объекте строго одна неисправная сигнатура в САi свидетельствует о неисправности строго одной части объекта с выходом i. Рассмотренное устройство реализации компактного тестирования и описанное в работе (Ярмолик В.Н. Контроль и диагностика цифровых узлов ЭВМ, Минск, «Наука и техника», 1988, стр. 208), является аналогом заявляемого устройства и характеризуется, как описано выше, определенным, зависящим от структуры проверяемого объекта, достигаемым уровнем (глубиной) локализации неисправностей и фиксированным уровнем затрат З1 на реализацию устройства анализа результатов тестирования.

Наиболее близким к заявляемому устройству, реализующим второй вариант сжатия тестовой реакции, является устройство, Описанное в работе (Аксенова Г.П. Контролепригодная архитектура для самотестирования в программируемых логических матричных структурах, «Автоматика и телемеханика», 2010, №12, стр. 154-165).

В этой работе в качестве анализатора тестовой реакции выступает совокупность многовходовых сигнатурных анализаторов, множество входов которых без пересечений охватывает все N выходов проверяемого объекта (т.е. каждый вход СА соединен с одним выходом объекта). А проверяемым объектом является контролепригодная программируемая логическая матрица (ПЛМ), аппаратурно не пересекающиеся части - это одновыходные элементы ПЛМ (ее конфигурируемые логические блоки), выходы которых соединены со входами l-разрядных многовходовых СА. Затраты З2 на реализацию устройства-прототипа минимальны, когда суммарное число разрядов всех СА равно N, а N кратно l. Итак, З2мин=N. И если задача проверки исправности (с достоверностью многовходового СА) в прототипе решается полностью, то задача локализации неисправностей не решается даже для класса одиночных неисправностей. Действительно, при неисправности строго одного элемента ПЛМ единственная неисправная сигнатура свидетельствует только о том, что неисправности находятся в части объекта, а точнее, среди группы элементов ПЛМ, выходы которых соединены со входами СА, выдавшего эту неисправную сигнатуру. Т.е. экономный в реализации многовходовой СА, сжимая тестовую реакцию и во времени, и в пространстве, «замазывает» след от неисправного элемента.

Задачей настоящего изобретения является поиск неисправностей.

Техническим результатом изобретения является повышение глубины локализации неисправностей.

Будем считать, что проверяемый объект для устройства-прототипа и заявляемого устройства один и тот же, т.е. это - контролепригодная ПЛМ. Для пояснения принципа достижения заявленного технического результата условно расположим все N одновыходных блоков проверяемого объекта (т.е. элементы ПЛМ) в виде (m х n)-матрицы, где m - число ее строк, a n - число столбцов. (Не путать условную матрицу с реальным конструктивным размещением элементов в кристалле). Если N<mn, то последняя строка будет не полностью заполнена. Не умаляя общности, будем считать, что N=mn.

Технический результат достигается тем, что устройство анализа результатов тестирования для поиска неисправных блоков содержит m n-разрядных многовходовых сигнатурных анализаторов (СА строк), входы которых соединены со всеми mn выходами одновыходных блоков проверяемого объекта, и дополнительно содержит n m-разрядных многовходовых сигнатурных анализаторов (СА столбцов), входы которых соединены со входами СА строк так, что j-е входы (j=1,…, n) всех m СА строк соединены со всеми m входами j-го СА столбцов.

На чертеже представлена схема предложенного устройства вместе с выходной частью проверяемой ПЛМ, очерченной штрихпунктирной линией; одновыходные элементы ПЛМ изображены квадратами и расположены в форме условной матрицы по строкам и столбцам.

Заявляемое устройство содержит m n-разрядных многовходовых СА строк (CA1, СА2,…, САm) и n m-разрядных многовходовых СА столбцов которые соединены с выходами одновыходных элементов ПЛМ, расположенных соответственно в строках и столбцах матрицы. Выход каждого элемента ПЛМ принадлежит одновременно некоторой строке i(i=1,…, m) и некоторому столбцу j(j=1,…, m) матрицы и, следовательно, соединен с одним из входов (произвольным) САi соответствующего строке i, и одновременно с одним из входов (произвольным) , соответствующего столбцу j. Число разрядов всех СА, составляющих заявляемое устройство, равно З3=2nm=2N, т.е. в два раза превышает затраты устройства-прототипа, но в l/2 меньше затрат устройства-аналога. Для наглядной демонстрации отличия заявляемого устройства от устройства-прототипа без потери общности будем считать, что число всех многовходовых СА прототипа равно m (их будем называть СА строк), разрядность каждого из них n, а все входы СА строк числом mn=N построчно соединены со всеми N выходами элементов ПЛМ. Таким образом, заявляемое устройство, как и устройство-прототип, содержит одинаковое число СА строк (CA1, СА2,…, CAm), одним и тем же способом соединенных с выходами всех элементов ПЛМ, и отличается от устройства-прототипа добавлением к последнему n m-разрядных многовходовых СА столбцов и соединением всех их N входов с выходами элементов ПЛМ особым образом - в соответствии со столбцами матрицы. По существу в заявляемом устройстве каждый элемент ПЛМ при его тестировании в отличие от устройства-прототипа подает свою реакцию одновременно на два СА (СА строки и СА столбца), в которых она и анализируется.

Теперь оценим достигаемую в заявляемом устройстве глубину локализации неисправностей (неисправных элементов ПЛМ) по результатам тестирования объекта, зафиксированным в виде исправных и неисправных сигнатур во всех m+n СА (строк и столбцов). Все дальнейшие рассуждения будем проводить для условной матрицы. Элементы ПЛМ будем называть элементами матрицы; элемент матрицы, соответствующий неисправному элементу ПЛМ, - неисправным элементом; строку (столбец) матрицы, в которой находится неисправный элемент, - неисправной строкой (столбцом). А поскольку строкам и столбцам матрицы сопоставлены результирующие сигнатуры соответствующих СА устройства, то неисправная строка (столбец) - это неисправная сигнатура соответствующего СА.

Рассмотрим класс одиночных неисправностей матрицы, где неисправным может быть только один ее элемент, хотя в самом элементе допускается кратная неисправность. Покажем, что заявляемое устройство обеспечивает локализацию любого неисправного элемента матрицы в классе одиночных неисправностей в отличие от устройства-прототипа. Пусть в матрице неисправен один элемент (if), принадлежащий одновременно некоторой строке i и некоторому столбцу j матрицы, см. чертеж. В этом случае после проведения тестирования неисправность зафиксируется в виде неисправной сигнатуры в САi и в . Отсюда можно сделать вывод, что неисправен элемент, находящийся на пересечении этой строки и этого столбца, так как этот элемент единственный, который принадлежит и строке i, и столбцу j. И этот элемент (ij).

Теперь рассмотрим кратные неисправности в матрице. Пусть, например, матрица, состоящая из порядковых номеров своих элементов

содержит три неисправных элемента с номерами 3, 6, 11 (они выделены жирным шрифтом). При проведении тестирования неисправность зафиксируют СА строк 1, 2, 3 и столбцов 2, 3. Следовательно, под подозрение попадают элементы, стоящие на пересечении этих неисправных строк и столбцов, а именно 2, 3, 6, 7, 10, 11. Неисправные элементы все попали в подозреваемое множество, однако туда попали и исправные элементы 2, 7 и 10.

Покажем, что заявляемое устройство в отличие от устройства-прототипа обеспечивает точную локализацию неисправных элементов матрицы при кратной неисправности следующего вида: неисправные элементы находятся все в одной строке или все в одном столбце. Пусть в матрице в i-й строке находятся k неисправных элементов. В этом случае после проведения тестирования будут зафиксированы, как неисправные, i-я строка и k столбцов. Так как неисправная строка одна, то неисправные элементы однозначно будут находиться на пересечениях этой строки и неисправных столбцов. Таким образом, будут указаны как неисправные все k элементов i-й строки и только они. Аналогичные рассуждения можно провести, если неисправные элементы находятся все в j-м столбце.

Устройство анализа результатов тестирования для поиска неисправных блоков, содержащее m n-разрядных многовходовых сигнатурных анализаторов (СА строк), входы которых соединены со всеми mn выходами одновыходных блоков проверяемого объекта, отличающееся тем, что дополнительно содержит n m-разрядных многовходовых сигнатурных анализаторов (СА столбцов), входы которых соединены со входами СА строк так, что j-е входы (j=1,…,n) всех m СА строк соединены со всеми m входами j-го СА столбцов.
УСТРОЙСТВО АНАЛИЗА РЕЗУЛЬТАТОВ ТЕСТИРОВАНИЯ ДЛЯ ПОИСКА НЕИСПРАВНЫХ БЛОКОВ
Источник поступления информации: Роспатент

Показаны записи 171-180 из 276.
10.05.2018
№218.016.3a23

Устройство для идентификации стадии жизненного цикла тематики научных лабораторий

Изобретение относится к устройству для идентификации стадий жизненного цикла тематики научных лабораторий. Технический результат заключается в автоматизации определения конкретной стадии жизненного цикла исследований. Устройство содержит с первого по десятый входные регистры, с первого по...
Тип: Изобретение
Номер охранного документа: 0002647644
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.432a

Бесконтактный радиоволновый уровнемер

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости. Технический результат - повышение точности измерения в предлагаемом уровнемере - достигается тем, что он содержит последовательно соединенные модулятор, генератор...
Тип: Изобретение
Номер охранного документа: 0002649665
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4378

Способ измерения уровня и проводимости электропроводящей среды и устройство для его осуществления

Изобретения относятся к электрическим методам измерения и предназначены для определения уровня и проводимости электропроводящей жидкости в резервуарах в условиях неконтролируемого изменения ее проводимости. Предлагаемый способ измерения и устройство для его осуществления позволяют исключить эту...
Тип: Изобретение
Номер охранного документа: 0002649672
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.470b

Способ измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб как готовых изделий, так и при их производстве, в том числе при их производстве, например, по методу центробежного литья на металлургических,...
Тип: Изобретение
Номер охранного документа: 0002650605
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.4741

Бесконтактный радиоволновый способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости. Технический результат - повышение точности в предлагаемом способе измерения уровня жидкости в емкости достигается тем, что в сторону поверхности жидкости по нормали к...
Тип: Изобретение
Номер охранного документа: 0002650611
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.491d

Гибридный летательный аппарат

Изобретение относится к области воздухоплавательной техники. Гибридный летательный аппарат содержит оболочку и двигатели с воздушными винтами. Оболочка выполнена в форме тора и имеет внутренний жесткий каркас, при этом в центральном отверстии тора, перпендикулярно плоскости каркаса, установлена...
Тип: Изобретение
Номер охранного документа: 0002651305
Дата охранного документа: 19.04.2018
29.05.2018
№218.016.55cb

Устройство для измерения уровня вещества в открытой металлической емкости

Изобретение предназначено для измерения уровня жидких и сыпучих веществ в открытых металлических емкостях. В частности, оно может быть применено для определения уровня жидкого металла в открытых технологических емкостях металлургического производства. Техническим результатом является расширение...
Тип: Изобретение
Номер охранного документа: 0002654362
Дата охранного документа: 17.05.2018
29.05.2018
№218.016.5686

Способ искусственной перекачки физиологической жидкости

Изобретение относится к кардиологии и может быть использовано для перекачивания крови. Способ осуществляется с помощью насоса, в котором используют волнообразное движение текучей среды в замкнутом объеме, создаваемое сжатием и растяжением пьезоэлементов путем подачи переменного трехфазного...
Тип: Изобретение
Номер охранного документа: 0002654618
Дата охранного документа: 21.05.2018
29.05.2018
№218.016.5721

Устройство для измерения массового расхода жидких и сыпучих сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких и сыпучих сред в трубопроводах, в частности при трубопроводной транспортировке нефтепродуктов, сжиженных газов и др. Устройство содержит генератор СВЧ, передающую и приемную...
Тип: Изобретение
Номер охранного документа: 0002654929
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.5768

Способ измерения массового расхода жидких и сыпучих сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких и сыпучих сред в трубопроводах, в частности при трубопроводной транспортировке нефтепродуктов, сжиженных газов и др. Технический результат - повышение точности измерения...
Тип: Изобретение
Номер охранного документа: 0002654926
Дата охранного документа: 23.05.2018
Показаны записи 161-167 из 167.
04.04.2018
№218.016.2f8a

Спецпроцессор для задачи выполнимости булевых формул

Изобретение относится к средствам для решения задач о выполнении булевых функций. Технический результат заключается в решения задачи о выполнимости булевых функций, заданных в конъюнктивной нормальной форме, имеющих N переменных и до М=2 дизъюнктов. При этом упрощение структуры спецпроцессора...
Тип: Изобретение
Номер охранного документа: 0002644505
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.2fde

Перистальтический насос на пьезоэлектрических элементах

Изобретение относится к устройствам для перекачивания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред. Устройство для перекачивания текучих сред содержит пьезомодули, установленные в...
Тип: Изобретение
Номер охранного документа: 0002644643
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.3263

Устройство для измерения дифференциального тока

Изобретение относится к области измерительной техники и может быть использовано для измерения токов утечки в электропроводке и электрооборудовании. Техническим результатом заявляемого технического решения является упрощение процедуры преобразования сигнала вторичной обмотки дифференциального...
Тип: Изобретение
Номер охранного документа: 0002645434
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3282

Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера...
Тип: Изобретение
Номер охранного документа: 0002645435
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3426

Способ определения количества диэлектрической жидкости в металлической емкости

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В...
Тип: Изобретение
Номер охранного документа: 0002645813
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.351d

Устройство преобразования механической энергии движения водной среды в электрическую энергию

Изобретение относится к области энергетики и может быть использовано для преобразования механической энергии движения водной среды в электрическую энергию. Устройство для преобразования энергии движения водной среды 1 в электрическую энергию содержит опору 2, герметизированное гибкое полотнище...
Тип: Изобретение
Номер охранного документа: 0002645842
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3578

Способ определения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором,...
Тип: Изобретение
Номер охранного документа: 0002645836
Дата охранного документа: 28.02.2018
+ добавить свой РИД