×
10.02.2015
216.013.2423

Результат интеллектуальной деятельности: СПОСОБ ИЗОЛЯЦИИ ЗОН ВОДОПРИТОКА В СКВАЖИНЕ

Вид РИД

Изобретение

№ охранного документа
0002540704
Дата охранного документа
10.02.2015
Аннотация: Предложение относится к нефтедобывающей промышленности, в частности к способам изоляции зон водопритока в скважине. Способ изоляции зон водопритока в скважине включает спуск в эксплуатационную колонну на насосно-компрессорных трубах (НКТ) перфорированного патрубка. Закачивают в НКТ приготовленную на дневной поверхности двухкомпонентную тампонажную смесь с длительным сроком структурирования, буферную жидкость, вторую порцию структурообразователя. При этом до спуска колонны НКТ выявляют зону водопритока и определяют ее удельную приемистость. В зависимости от глубины зоны водопритока и удельной приемистости выбирают объем и время структурирования двухкомпонентной тампонажной смеси с коротким сроком структурирования, состоящей из двухкомпонентной тампонажной смеси с длительным сроком структурирования и второй порции структурообразователя. Готовят двухкомпонентную тампонажную смесь с длительным сроком структурирования и последовательно закачивают буферную жидкость с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования, двухкомпонентную тампонажную смесь с длительным сроком структурирования, буферную жидкость с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования. Далее закачивают вторую порцию структурообразователя с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования. Устанавливают в НКТ разделительную пробку с фиксирующей головкой и продавливают при давлении 0,5 МПа продавочной жидкостью с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования, в трубное и кольцевое пространство. Создают циркуляцию продавочной жидкостью с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования, через верхние радиальные отверстия до выравнивания плотностей в трубном и кольцевом пространстве. Затем колонну НКТ приподнимают и инжектируют при их подъеме вторую порцию структурообразователя с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования, через перфорированный торец перфорированного патрубка в двухкомпонентную тампонажную смесь с длительным сроком структурирования. После чего двухкомпонентную тампонажную смесь с коротким сроком структурирования продавливают по кольцевому пространству в зону водопритока продавочной жидкостью с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования. Техническим результатом является повышение эффективности изоляции зон водопритока в скважине. 1 пр., 2 табл., 3 ил.
Основные результаты: Способ изоляции зон водопритока в скважине, включающий спуск в эксплуатационную колонну на насосно-компрессорных трубах перфорированного патрубка, закачивание в насосно-компрессорные трубы приготовленной на дневной поверхности двухкомпонентной тампонажной смеси с длительным сроком структурирования, буферной жидкости, второй порции структурообразователя и продавливание продавочной жидкостью всей двухкомпонентной тампонажной смеси с длительным сроком структурирования, приготовленной на дневной поверхности, и первой части буферной жидкости в кольцевое пространство, подъем насосно-компрессорных труб и инжекцию при их подъеме второй порции структурообразователя через открытый торец перфорированного патрубка в двухкомпонентную тампонажную смесь с длительным сроком структурирования, продавливание полученной двухкомпонентной тампонажной смеси с коротким сроком структурирования по трубному пространству в зону водопритока жидкостью с плотностью, равной плотности жидкости глушения скважины, отличающийся тем, что до спуска колонны насосно-компрессорных труб выявляют зону водопритока и определяют ее удельную приемистость, в зависимости от глубины зоны водопритока и удельной приемистости выбирают объем и время структурирования двухкомпонентной тампонажной смеси с коротким сроком структурирования, состоящей из двухкомпонентной тампонажной смеси с длительным сроком структурирования и второй порции структурообразователя, далее проводят лабораторные испытания для получения соотношения структурообразующего реагента и структурообразователя с целью получения двухкомпонентной тампонажной смеси с длительным сроком структурирования, после этого подбирают соотношение двухкомпонентной тампонажной смеси с длительным сроком структурирования и второй порции структурообразователя, в зависимости от соотношения двухкомпонентной тампонажной смеси с длительным сроком структурирования и второй порции структурообразователя подбирают диаметр и толщину стенки насосно-компрессорных труб, в эксплуатационную колонну на насосно-компрессорных трубах спускают перфорированный патрубок с перфорированным торцом, снаружи перфорированного патрубка устанавливают центратор, далее устанавливают переводник с двумя рядами боковых радиальных отверстий - верхними и нижними соответственно, переводник размещают на расстоянии от 70 до 180 м от перфорированного торца перфорированного патрубка, в первоначальном положении два ряда боковых радиальных отверстий переводника изнутри герметично перекрывают втулкой с посадочным седлом, снаружи в средней части втулка имеет кольцевую проточку и боковые радиальные отверстия, втулка зафиксирована срезным элементом и выполнена с возможностью осевого перемещения вниз до упора, после этого доспускают на насосно-компрессорных трубах перфорированный патрубок и устанавливают его перфорированный торец на 10 м выше зоны водопритока, готовят двухкомпонентную тампонажную смесь с длительным сроком структурирования и последовательно закачивают буферную жидкость с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования, двухкомпонентную тампонажную смесь с длительным сроком структурирования, буферную жидкость с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования, вторую порцию структурообразователя с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования, устанавливают в насосно-компрессорные трубы разделительную пробку с фиксирующей головкой и продавливают при давлении 0,5 МПа продавочной жидкостью с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования, в трубное и кольцевое пространство, с перемещением втулки вместе с разделительной пробкой вниз до упора и с открытием верхних и нижних боковых радиальных отверстий, далее создают циркуляцию продавочной жидкости с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования, через верхние радиальные отверстия до выравнивания плотностей в трубном и кольцевом пространстве, затем колонну насосно-компрессорных труб приподнимают и инжектируют при их подъеме вторую порцию структурообразователя с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования, через перфорированный торец перфорированного патрубка в двухкомпонентную тампонажную смесь с длительным сроком структурирования, после чего двухкомпонентную тампонажную смесь с коротким сроком структурирования продавливают по кольцевому пространству в зону водопритока продавочной жидкостью с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования.

Предложение относится к нефтедобывающей промышленности, в частности к способам изоляции зон водопритока в скважине.

Известен способ приготовления тампонажной смеси в скважине (патент RU №2373376, МПК E21B 33/138, опубл. 20.11.2009, бюл. №32), включающий спуск в эксплуатационную колонну на насосно-компрессорных трубах (НКТ) перфорированного патрубка, последовательное закачивание в НКТ структурообразующего реагента, подушки буферной жидкости, структурообразователя и последующее смешение структурообразующего реагента со структурообразователем при подъеме на НКТ перфорированного патрубка. Снаружи перфорированного патрубка устанавливают центратор, внутри перфорированного патрубка в верхней части устанавливают проходное кольцо, а в нижней части - посадочное кольцо, причем внутренний диаметр посадочного кольца меньше внутреннего диаметра проходного кольца. После выхода в кольцевое пространство закачанных по НКТ структурообразующего реагента и части буферной жидкости в НКТ устанавливают разделительную пробку, а момент выхода структурообразующего реагента и части объема буферной жидкости в кольцевое пространство определяют по повышению давления закачивания на 2,0-3,0 МПа от первоначального, возникающего при посадке разделительной пробки на проходное кольцо. Посадочное кольцо перфорированного патрубка до подъема насосно-компрессорных труб перекрывается разделительной пробкой, чем обеспечивается более равномерное распределение структурообразователя в структурообразующем реагенте за счет инжектирования структурообразователя в структурообразующий реагент через отверстия на теле патрубка.

Недостатком известного способа является то, что для его осуществления предъявляются определенные требования как к скважинной, так и к продавочной жидкостям, а также к структурообразующему реагенту, структурообразователю и буферной жидкости. Когда вахта капитального ремонта скважин (КРС) открывает устье для подъема НКТ с целью введения структурообразователя в структурообразующий реагент, происходит выравнивание давлений, создаваемых столбами жидкостей в НКТ и кольцевом пространстве за НКТ через нижнюю часть перфорированного патрубка. При приготовлении тампонажной смеси и выравнивании давлений происходит переток жидкостей из НКТ в кольцевое пространство за НКТ (так, например, если в качестве структурообразующего реагента выбран кремнийорганический продукт 119-296Т марки А, а в качестве структурообразователя - соляная кислота 4%-ной концентрации, то плотность такой кислоты - 1019 кг/м3, а кремнийорганического продукта 119-296Т марки А - 990 кг/м3). При этом уровень жидкостей в НКТ и кольцевом пространстве за НКТ смещается относительно друг друга, что делает невозможным смешение всего объема второй порции структурообразователя со структурообразующим реагентом и, как следствие, это ведет к отверждению тампонажной смеси не во всем объеме. Кроме того, сквозное отверстие перфорированного патрубка герметично перекрыто продавочной пробкой. Поэтому при подъеме колонны НКТ до верхней границы тампонажной смеси происходит засасывание скважинной жидкости и перемешивание ее с тампонажной смесью, вследствие чего тампонажная смесь разбавляется, кроме того, структурообразователь вытекает лишь только через отверстия на теле патрубка, что затрудняет равномерное распределение структурообразователя в структурообразующем реагенте. Еще одним недостатком является то, что плотность продавочной жидкости (1000 кг/м3) меньше плотности тампонажной смеси (~1006 кг/м), во время закачки и отверждения тампонажной смеси происходит ее разбавление продавочной жидкостью.

Наиболее близким по технической сущности является способ изоляции зон водопритока в скважине (патент RU №2239048, МПК E21B 33/13, опубл. 27.10.2004, бюл. №30), включающий спуск в эксплуатационную колонну на насосно-компрессорных трубах (НКТ) перфорированного патрубка, торец которого открыт, последовательное закачивание в НКТ приготовленного на дневной поверхности объема двухкомпонентной тампонажной смеси с длительным сроком структурирования (ДТС с ДСС), буферной жидкости, второй порции структурообразователя. По способу всю смесь, приготовленную на дневной поверхности ДТС с ДСС, и первую часть буферной жидкости вытесняют в кольцевое пространство за НКТ, а НКТ приподнимают и инжектируют при их подъеме вторую порцию структурообразователя через открытый торец перфорированного патрубка в смесь, после чего полученную двухкомпонентную тампонажную смесь с коротким сроком структурирования (ДТС с КСС) продавливают по трубному пространству жидкостью с плотностью, равной плотности жидкости глушения скважины, в зону водопритока.

Недостатком известного способа является то, что для его осуществления предъявляются определенные требования как к скважинной, так и к продавочной жидкостям, а также к структурообразующему реагенту, структурообразователю и буферной жидкости. Из-за незначительной разницы в удельном весе, когда открывают устье и устанавливают гидроротор для подъема НКТ с целью введения второй порции структурообразователя в ДТС с ДСС, происходит выравнивание давления, создаваемого столбами жидкостей в НКТ и кольцевом пространстве между НКТ и эксплуатационной колонной (переток жидкости через нижнюю часть перфорированного патрубка). В случае приготовления необходимого объема ДТС с КСС при выравнивании давлений происходит переток жидкостей из НКТ в кольцевое пространство между НКТ и эксплуатационной колонной либо в обратном направлении. При этом уровни жидкостей в НКТ и кольцевом пространстве между НКТ и эксплуатационной колонной смещаются относительно друг друга, что делает невозможным смешение всего объема второй порции структурообразователя с ДТС с ДСС и, как следствие, ведет к отверждению ДТС с КСС не во всем объеме. Далее при осуществлении известного способа НКТ приподнимают и инжектируют при их подъеме порции реагента (структурообразователя) в ДТС с ДСС, находящейся в обсадной колонне. При этом основная часть потока структурообразователя вытекает из НКТ напрямую через открытый торец перфорированного патрубка в обсадную колонну, что затрудняет равномерное распределение и смешивание потока структурообразователя. Кроме этого, свободно подвешенный перфорированный патрубок обычно смещается от центра обсадной колонны к стенке, особенно в наклонно направленных скважинах, что также затрудняет равномерное распределение и смешивание потока структурообразователя. Еще одним недостатком является то, что продавочная жидкость и ДТС с ДСС имеют разные плотности, поэтому во время закачки и отверждения ДТС с КСС происходит ее разбавление продавочной жидкостью.

Техническими задачами предложения являются повышение эффективности изоляции зон водопритока в скважине за счет повышения качества двухкомпонентной тампонажной смеси с коротким сроком структурирования, исключение разбавления двухкомпонентной тампонажной смеси с длительным сроком структурирования и структурообразователя вследствие более равномерного распределения структурообразователя в двухкомпонентной тампонажной смеси с длительным сроком структурирования при подъеме насосно-компрессорных труб и контроля за объемом структурообразователя, а также упрощение способа.

Технические задачи решаются способом изоляции зон водопритока в скважине, включающим спуск в эксплуатационную колонну на насосно-компрессорных трубах перфорированного патрубка, закачивание в насосно-компрессорные трубы приготовленной на дневной поверхности двухкомпонентной тампонажной смеси с длительным сроком структурирования, буферной жидкости, второй порции структурообразователя и продавливание продавочной жидкостью всей двухкомпонентной тампонажной смеси с длительным сроком структурирования, приготовленной на дневной поверхности, и первой части буферной жидкости в кольцевое пространство, подъем насосно-компрессорных труб и инжекцию при их подъеме второй порции структурообразователя через открытый торец перфорированного патрубка в двухкомпонентную тампонажную смесь с длительным сроком структурирования, продавливание полученной двухкомпонентной тампонажной смеси с коротким сроком структурирования по трубному пространству в зону водопритока жидкостью с плотностью, равной плотности жидкости глушения скважины.

Новым является то, что до спуска колонны насосно-компрессорных труб выявляют зону водопритока и определяют ее удельную приемистость, в зависимости от глубины зоны водопритока и удельной приемистости выбирают объем и время структурирования двухкомпонентной тампонажной смеси с коротким сроком структурирования, состоящей из двухкомпонентной тампонажной смеси с длительным сроком структурирования и второй порции структурообразователя, далее проводят лабораторные испытания для получения соотношения структурообразующего реагента и структурообразователя с целью получения двухкомпонентной тампонажной смеси с длительным сроком структурирования, после этого подбирают соотношение двухкомпонентной тампонажной смеси с длительным сроком структурирования и второй порции структурообразователя, в зависимости от соотношения двухкомпонентной тампонажной смеси с длительным сроком структурирования и второй порции структурообразователя подбирают диаметр и толщину стенки насосно-компрессорных труб, в эксплуатационную колонну на насосно-компрессорных трубах спускают перфорированный патрубок с перфорированным торцом, снаружи перфорированного патрубка устанавливают центратор, далее устанавливают переводник с двумя рядами боковых радиальных отверстий - верхними и нижними соответственно, переводник размещают на расстоянии от 70 до 180 м от перфорированного торца перфорированного патрубка, в первоначальном положении два ряда боковых радиальных отверстий переводника изнутри герметично перекрывают втулкой с посадочным седлом, снаружи в средней части втулка имеет кольцевую проточку и боковые радиальные отверстия, втулка зафиксирована срезным элементом и выполнена с возможностью осевого перемещения вниз до упора, после этого доспускают на насосно-компрессорных трубах перфорированный патрубок и устанавливают его перфорированный торец на 10 м выше зоны водопритока, готовят двухкомпонентную тампонажную смесь с длительным сроком структурирования и последовательно закачивают буферную жидкость с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования, двухкомпонентную тампонажную смесь с длительным сроком структурирования, буферную жидкость с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования, вторую порцию структурообразователя с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования, устанавливают в насосно-компрессорные трубы разделительную пробку с фиксирующей головкой и продавливают при давлении 0,5 МПа продавочной жидкостью с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования, в трубное и кольцевое пространство с перемещением втулки вместе с разделительной пробкой вниз до упора и с открытием верхних и нижних боковых радиальных отверстий, далее создают циркуляцию продавочной жидкостью с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования, через верхние радиальные отверстия до выравнивания плотностей в трубном и кольцевом пространстве, затем колонну насосно-компрессорных труб приподнимают и инжектируют при их подъеме вторую порцию структурообразователя с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования, через перфорированный торец перфорированного патрубка в двухкомпонентную тампонажную смесь с длительным сроком структурирования, после чего двухкомпонентную тампонажную смесь с коротким сроком структурирования продавливают по кольцевому пространству в зону водопритока продавочной жидкостью с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования.

На фиг.1, 2 и 3 продемонстрирована последовательность реализации способа. Способ реализуют следующим образом. Проводят работы в нефтедобывающей скважине, которая обсажена эксплуатационной колонной (ЭК) 1 (фиг.1) и перфорирована. До спуска насосно-компрессорных труб (НКТ) 2 поинтервальной опрессовкой ЭК 1 (фиг.1) выявляют зону водопритока 3, например выявили зону водопритока 3 на глубине 1800 м, и определяют ее удельную приемистость, например, удельная приемистость равна 1,5 м3/(ч·МПа). В зависимости от глубины зоны водопритока и удельной приемистости выбирают объем и время структурирования двухкомпонентной тампонажной смеси с коротким сроком структурирования (ДТС с КСС), состоящей из двухкомпонентной тампонажной смеси с длительным сроком структурирования (ДТС с ДСС) и второй порции структурообразователя. При удельной приемистости 1,5 м3/(ч·МПа) объем ДТС с КСС составляет 2 м3, при удельной приемистости 1 м3/(ч·МПа) - 1,5 м3, при удельной приемистости 0,5 м3/(ч·МПа) - 1 м3. Время структурирования ДТС с КСС зависит от глубины зоны водопритока 3: чем глубже находится зона водопритока 3 скважины, тем больше время структурирования. Опытным путем установлено, что на глубине 1800 м структурирование происходит через 1 ч 30 мин; на глубине 1300 м - через 1 ч 15 мин; на глубине 500 м - через 1 ч. Зная глубину зоны водопритока, определяют время структурирования ДТС с КСС, например 1 ч 30 мин.

Для получения ДТС с ДСС используют кремнийорганический продукт 119-296И марки А по ТУ 2229-226-05763441-99 (структурообразующий реагент) и раствор соляной кислоты по ТУ 2122-004-12064382-98 (структурообразователь). Проводят лабораторные испытания. Для получения соотношения структурообразующего реагента и стркутурообразователя берут три стеклянных стакана, в каждый стакан наливают кремнийорганический продукт 119-296И марки А и приливают раствор соляной кислоты в соотношении, например, 2:1, 10:1; 3:1 соответственно. Растворы перемешивают, определяют их плотность и время структурирования. Далее определяют время структурирования ДТС с КСС. Для этого к приготовленной ДТС с ДСС приливают вторую порцию соляной кислоты с плотностью, равной плотности ДТС с ДСС, в соотношении, например, 4,3:1; 4,3:1; 4,8:1, растворы перемешивают и оставляют их на структурирование. Результаты лабораторных испытаний приведены в таблице 1.

Таблица 1
Результаты лабораторных испытаний ДТС с ДСС и ДТС с КСС
№ опыта Двухкомпонентная тампонажная смесь с длительным сроком структурирования Двухкомпонентная тампонажная смесь с коротким сроком структурирования
Соотношение продукта 119-296И марки А и раствора соляной кислоты Плотность, кг/м3 Время структурирования, ч Соотношение ДТС с ДСС и раствора соляной кислоты Плотность, кг/м3 Время структурирования, ч
1 2:1 1017 1,5 4,3:1 1017 30 мин
2 10:1 1012 8 4,3:1 1012 2 ч
3 3:1 1015 3 4,8:1 1015 1 ч 30 мин

Пример приготовления ДТС с ДСС и ДТС с КСС в лабораторных условиях (опыт №3). В стеклянный стакан объемом 500 мл наливают 300 мл кремнийорганического продукта 119-296И марки А плотностью 1010 кг/м3 и приливают 100 мл раствора соляной кислоты плотностью 1030 кг/м3, раствор хорошо перемешивают палочкой до получения однородной жидкости, замеряют плотность, которая составляет 1015 кг/м3 (соотношение 3:1). Структурирование происходит через 3 ч, что является достаточным для приготовления ДТС с ДСС, закачки и продавливания ее в интервал зоны водопритока, поэтому ДТС с ДСС выбрана для осуществления способа. По времени структурирования ДТС с КСС (опыт №3) выбрана для осуществления способа изоляции зоны водопритока в скважине как наиболее оптимальная. Для того чтобы время структурирования составило 1 ч 30 мин, подбирают соотношение ДТС с ДСС и второй порции структурообразователя: к 400 мл приготовленной ДТС с ДСС плотностью 1015 кг/м3 приливают 88,3 мл второй порции соляной кислоты плотностью 1015 кг/м3 (соотношение 4,8:1), хорошо перемешивают и оставляют на структурирование, которое происходит через 1 ч 30 мин.

В зависимости от соотношения ДТС с ДСС и второй порции структурообразователя (4,8:1), зная диаметр и толщину стенки ЭК 1, подбирают диаметр и толщину стенки НКТ 2 так, чтобы объем 1 м кольцевого пространства 4 ЭК 1 и НКТ 2 и объем 1 м трубного пространства 5 НКТ 2 находились в данном соотношении. Например, если скважина обсажена ЭК 1 диаметром 146 мм с толщиной стенки 10 мм, для соотношения 4,8:1 подбор диаметра НКТ 2 осуществляют следующим образом. По таблице 67 книги А.Д. Амирова, С.Т. Овнатанова и И.Б. Саркисова «Капитальный ремонт нефтяных и газовых скважин» (Азнефтеиздат, Баку, 1953, с.216) определяют объем 1 м трубного пространства 5 НКТ 2. Например, с диаметром 60 мм и с толщиной стенки 5 мм он равен 2,02 л, после этого по таблице 68 этого же издания (с.218) определяют объем 1 м кольцевого пространства 4 ЭК 1 диаметром 146 мм с толщиной стенки 10 и НКТ 2, который равен 9,64, то есть 9,64 л и 2,02 л находятся в соотношении 4,8:1.

В ЭК 1 на НКТ 2 спускают перфорированный патрубок 6 с перфорированным торцом 7. Снаружи перфорированного патрубка 6 устанавливают центратор 8, далее устанавливают переводник 9 с двумя рядами боковых радиальных отверстий - верхними 10 и нижними 11 соответственно. Переводник 9 устанавливают на расстоянии от 70 до 180 м от перфорированного торца 7 перфорированного патрубка 6 (это расстояние выбирают в зависимости от объема ДТС с ДСС, буферной жидкости с плотностью, равной плотности ДТС с ДСС, и второй порции структурообразователя с плотностью, равной плотности ДТС с ДСС, и чем больше объем, тем больше расстояние от перфорированного торца 7 перфорированного патрубка 6). В первоначальном положении два ряда боковых радиальных отверстий - верхние 10 и нижние 11 переводника 9 изнутри герметично перекрывают втулкой 12 с посадочным седлом 13, снаружи в средней части втулка 12 имеет кольцевую проточку 14 и боковые радиальные отверстия 15. Втулка 12 зафиксирована срезным элементом 16 и выполнена с возможностью осевого перемещения вниз до упора 17. После этого доспускают на НКТ 2 перфорированный патрубок 6 и устанавливают его перфорированный торец 7 на 10 м выше зоны водопритока 3. Готовят ДТС с ДСС на дневной поверхности и последовательно закачивают буферную жидкость с плотностью, равной плотности ДТС с ДСС, затем приготовленную на дневной поверхности ДТС с ДСС, буферную жидкость с плотностью, равной плотности ДТС с ДСС, вторую порцию структурообразователя с плотностью, равной плотности ДТС с ДСС. В качестве буферной жидкости используют, например, пластовую воду. Устанавливают в НКТ 2 разделительную пробку 18 с фиксирующей головкой 19 и продавливают при давлении 0,5 МПа продавочной жидкостью с плотностью, равной плотности ДТС с ДСС, в трубное 5 и кольцевое 4 пространство (так как все закачиваемые жидкости имеют одинаковую плотность, то разбавление ДТС с ДСС и второй порции структурообразователя с плотностью, равной плотности ДТС с ДСС, не происходит). В качестве продавочной жидкости используют, например, пластовую воду. При этом фиксирующая головка 19 фиксируется в посадочном седле 13, о чем свидетельствует рост давления закачивания на 1,5 МПа от первоначального. Факт повышения давления свидетельствует о том, что весь приготовленный на дневной поверхности объем ДТС с ДСС и часть буферной жидкости с плотностью, равной плотности ДТС с ДСС, практически полностью продавливается через перфорированный торец 7 перфорированного патрубка 6 в кольцевое пространство 4, а вторая часть буферной жидкости с плотностью, равной плотности ДТС с ДСС, и вторая порция структурообразователя с плотностью, равной плотности ДТС с ДСС, остаются в трубном пространстве 5 НКТ 2 (фиг.2). То есть фиксирование момента изменения давления позволяет контролировать объемы ДТС с ДСС, буферной жидкости с плотностью, равной плотности ДТС с ДСС, и второй порции структурообразователя с плотностью, равной плотности ДТС с ДСС, в трубном 5 и кольцевом 4 пространстве. Давление продолжает повышаться и под воздействием избыточного давления в 2,5 МПа происходит разрушение срезного элемента 16, о чем свидетельствует резкое падение давления на манометре насосного агрегата (на фиг. не показано). Втулка 12 (фиг.1) вместе с разделительной пробкой 18 перемещается вниз до упора 17 (фиг.2) с открытием верхних 10 и нижних 11 боковых радиальных отверстий переводника 9 и боковых радиальных отверстий 15 втулки 12. Далее создают циркуляцию продавочной жидкостью с плотностью, равной плотности ДТС с ДСС, через верхние радиальные отверстия 10 до выравнивания плотностей в трубном 5 и кольцевом 4 пространстве (так происходит уравновешивание всей гидравлической системы, то есть ДТС с ДСС, буферной жидкости с плотностью, равной плотности ДТС с ДСС, и второй порции структурообразователя с плотностью, равной плотности ДТС с ДСС, под разделительной пробкой 18 и продавочной жидкости с плотностью, равной плотности ДТС с ДСС, над разделительной пробкой). Благодаря этому не происходит смещения жидкостей относительно друг друга. Затем приподнимают колонну НКТ 2 с перфорированным патрубком 6 и переводником 9 с открытыми верхними 10 и нижними 11 радиальными отверстиями и боковыми радиальными отверстиями 15 втулки 12 до верхней границы ДТС с КСС 20 (фиг.3), которая определяется совместным объемом компонентов ДТС с КСС. Далее инжектируют вторую порцию структурообразователя с плотностью, равной плотности ДТС с ДСС, при этом верхние радиальные отверстия 10 уравновешивают гидравлическую систему над разделительной пробкой 18, а нижние радиальные отверстия 11 обеспечивают свободный выход второй порции структурообразователя с плотностью, равной плотности ДТС с ДСС, через перфорированный торец 7 перфорированного патрубка 6 в ДТС с ДСС для смешивания. То есть, когда приподнимают колонну НКТ 2, вторая порция структурообразователя, двигаясь вниз, перенаправляется в радиальные направления в отверстия перфорированного торца 7 перфорированного патрубка 6, где происходит дробление потока второй порции структурообразователя на мелкие струи, что в свою очередь облегчает равномерное распределение второй порции структурообразователя в объеме ДТС с ДСС, который находится в скважине. Это является существенной отличительной особенностью по сравнению с прототипом, в результате чего в стволе скважины образуется однородная ДТС с КСС 21 (фиг.3). При этом перфорированный торец 7 перфорированного патрубка 6 исключает засасывание скважинной жидкости при подъеме НКТ 2 до верхней границы ДТС с КСС, благодаря этому не происходит разбавления ДТС с КСС 21 скважинной жидкостью. Далее продавливают ДТС с КСС 21 по кольцевому пространству 4 в зону водопритока 3 продавочной жидкостью с плотностью, равной плотности ДТС с ДСС. Затем скважину оставляют на время структурирования ДТС с КСС в течение 48 ч. Так как плотность продавочной жидкости и плотность ДТС с КСС равны, то во время закачки и в процессе отверждения ДТС с КСС разбавления продавочной жидкостью не происходит.

Пример практического применения способа

Проводят работы в нефтедобывающей скважине, которая обсажена ЭК 1 (фиг.1) диаметром 146 мм с толщиной стенки 10 мм и перфорирована в интервале 1800-1805 м. До спуска НКТ 2 поинтервальной опрессовкой ЭК 1 в интервале 1800-1805 м была выявлена зона водопритока 3. Определили удельную приемистость зоны водопритока 3, которая составила 1,5 м3/(ч·МПа). Для данной глубины необходимое время структурирования составляет 1 ч 30 мин, а необходимый объем тампонажной смеси - 2 м3. Использовали ДТС с ДСС, состоящую из кремнийорганического продукта 119-296И марки А плотностью 1010 кг/м3 и соляной кислоты плотностью 1030 кг/м3 (табл. 2, опыт №1).

В лабораторных условиях подобрали соотношение структурообразующего реагента и структурообразователя, из полученных ДТС с ДСС смесь со временем структурообразования 3 ч и плотностью 1015 кг/м3 выбрали оптимальной. Для ее приготовления необходимо:

- 1,125 м3 кремнийорганического продукта 119-296И плотностью 1010 кг/м3;

- 0,562 м3 раствора соляной кислоты плотностью 1030 кг/м3.

Объем ДТС с ДСС составил 1,687 м3, соотношение компонентов 3:1.

Для приготовления в скважине ДТС с КСС с плотностью 1015 кг/м3 необходимо:

- 1,687 м3 ДТС с ДСС плотностью 1015 кг/м3;

- 0,353 м3 соляной кислоты плотностью 1015 кг/м3.

Объем ДТС с КСС составил 2,04 м3, плотность - 1015 кг/м3, время структурирования - 1 ч 30 мин, соотношение компонентов - 4,8:1 (табл.2, опыт №1). С целью получения такого соотношения компонентов для ЭК 1 диаметром 146 мм с толщиной стенки 10 мм подобрали диаметр и толщину стенки НКТ 2, которые равны 60 и 5 мм соответственно. В ЭК 1 на НКТ 2 диаметром 60 мм с толщиной стенки 5 мм спустили перфорированный патрубок 6 с перфорированным торцом 7. Снаружи перфорированного патрубка установили центратор 8, далее установили переводник 9 с двумя рядами радиальных отверстий - верхними 10 и нижними 11 соответственно, переводник 9 установили на расстоянии 180 м от перфорированного торца 7 перфорированного патрубка 6. В первоначальном положении два ряда боковых радиальных отверстий (верхние 10 и нижние 11) переводника 9 изнутри герметично перекрыли втулкой 12 с посадочным седлом 13. Снаружи в средней части втулка 12 имеет кольцевую проточку 14 и боковые радиальные отверстия 15. Втулка 12 зафиксирована срезным элементом 16 и выполнена с возможностью осевого перемещения вниз до упора 17. После этого доспустили на НКТ 2 перфорированный патрубок 6 и установили его перфорированный торец 7 на глубину 1790 м, то есть на 10 м выше зоны водопритока 3. Приготовили на дневной поверхности ДТС с ДСС плотностью 1015 кг/м3 в объеме 1,687 м3. В НКТ 2 последовательно закачали 0,2 м3 буферной жидкости плотностью 1015 кг/м3, 1,687 м3 ДТС с ДСС, приготовленной на дневной поверхности, с плотностью 1015 кг/м3, 0,066 м3 буферной жидкости плотностью 1015 кг/м3, 0,353 м3 соляной кислоты плотностью 1015 кг/м3. Установили в НКТ 2 разделительную пробку 18 с фиксирующей головкой 19 и продавили при давлении 0,5 МПа продавочной жидкостью с плотностью 1015 кг/м3 в трубное 5 и кольцевое 4 пространство. При этом фиксирующая головка 19 зафиксировалась в посадочном седле 13, давление выросло до 2 МПа. Давление продолжало повышаться и под воздействием избыточного давления в 2,5 МПа произошло разрушение срезного элемента 16. Давление на манометре насосного агрегата резко упало (на фиг. не показано). Втулка 12 (фиг.1) вместе с разделительной пробкой 18 переместилась вниз до упора 17 (фиг.2) с открытием верхних 10 и нижних 11 боковых радиальных отверстий переводника 9 и боковых радиальных отверстий 15 втулки 12. Далее создали циркуляцию продавочной жидкости плотностью 1015 кг/м3 через верхние радиальные отверстия 10 до выравнивания плотностей в трубном 5 и кольцевом 4 пространстве (так произошло уравновешивание всей гидравлической системы, т.е. ДТС с ДСС, буферной жидкости плотностью 1015 кг/м3 и соляной кислоты плотностью 1015 кг/м3 под разделительной пробкой 18 и продавочной жидкости плотностью 1015 кг/м3 над разделительной пробкой). Благодаря этому не произошло смещения жидкостей относительно друг друга. Затем приподняли колонну НКТ 2 с перфорированным патрубком 6 и переводником 9 с открытыми верхними 10 и нижними 11 радиальными отверстиями и боковыми радиальными отверстиями 15 втулки 12 на глубину 1610 м. При этом верхние радиальные отверстия 10 уравновешивают гидравлическую систему над разделительной пробкой 18, а нижние радиальные отверстия 11 обеспечивают свободный выход соляной кислоты плотностью 1015 кг/м3 из НКТ 2 через перфорированный торец 7 перфорированного патрубка 6 в скважину, где и происходит равномерное смешивание соляной кислоты плотностью 1015 кг/м3 с объемом ДТС с ДСС с плотностью 1015 кг/м3. В процессе подъема соляная кислота плотностью 1015 кг/м3 и ДТС с ДСС плотностью 1015 кг/м3 смешиваются и образуется ДТС с КСС плотностью 1015 кг/м3 21 (инжекция), которую после подъема НКТ 2 продавили в зону водопритока 3 закачкой по кольцевому пространству 4 продавочной жидкости плотностью 1015 кг/м3. Затем скважину оставили на время структурирования ДТС с КСС плотностью 1015 кг/м3 в течение 48 ч. Остальные примеры (представлены в табл.2) выполняются аналогично.

Заявленный способ повышает эффективность изоляции зон водопритока в скважине, исключает разбавление ДТС с ДСС и структурообразователя с плотностью, равной плотности ДТС с ДСС, буферной и продавочной жидкости с плотностью, равной плотности ДТС с ДСС, при движении, а также позволяет контролировать процесс осуществления изоляции зон водопритока и упрощает его.

Таблица 2
Рецептура ДТС с ДСС и ДТС с КСС в зависимости от геолого-технических условий скважины
№ опыта п/п Двухкомпонентная тампонажная смесь с длительным сроком структурирования Двухкомпонентная тампонажная смесь с коротким сроком структурирования Диаметр ЭК, мм Диаметр НКТ, мм Расстояние от перфор. торца перфор. патрубка до переводника, м Объем двухкомпонентной тампонажной смеси с длительным сроком структурирования, м3 Объем раствора соляной кислоты с плотностью, равной плотности ДТС с ДСС, м3 Объем двухкомпонентной тампонажной смеси с коротким сроком структурирования, м3 Удельная приемистость, м3/(ч·МПа) Глубина зоны водопритока, м Буферная жидкость, м3
Соотношение продукта 119-296И марки А и раствора соляной кислоты Плотность, кг/м3 Время структурирования, ч Соотношение ДТС с ДСС и второй порции раствора соляной кислоты Плотность, кг/м3 Время структурирования, ч
1 3:1 1015 3 4,8:1 1015 1 ч 30 мин 146×10 60 180 1,687 0,353 2,04 1,5 1800 0,058
2 5:1 1013 4 4,3:1 1013 1 ч 168×10 73 100 1,237 0,287 1,524 1 500 0,08
3 9:1 1012 6 4,3:1 1012 1 ч 15 мин 168×10 73 70 0,846 0,196 1,042 0,5 1300 0,08

Способ изоляции зон водопритока в скважине, включающий спуск в эксплуатационную колонну на насосно-компрессорных трубах перфорированного патрубка, закачивание в насосно-компрессорные трубы приготовленной на дневной поверхности двухкомпонентной тампонажной смеси с длительным сроком структурирования, буферной жидкости, второй порции структурообразователя и продавливание продавочной жидкостью всей двухкомпонентной тампонажной смеси с длительным сроком структурирования, приготовленной на дневной поверхности, и первой части буферной жидкости в кольцевое пространство, подъем насосно-компрессорных труб и инжекцию при их подъеме второй порции структурообразователя через открытый торец перфорированного патрубка в двухкомпонентную тампонажную смесь с длительным сроком структурирования, продавливание полученной двухкомпонентной тампонажной смеси с коротким сроком структурирования по трубному пространству в зону водопритока жидкостью с плотностью, равной плотности жидкости глушения скважины, отличающийся тем, что до спуска колонны насосно-компрессорных труб выявляют зону водопритока и определяют ее удельную приемистость, в зависимости от глубины зоны водопритока и удельной приемистости выбирают объем и время структурирования двухкомпонентной тампонажной смеси с коротким сроком структурирования, состоящей из двухкомпонентной тампонажной смеси с длительным сроком структурирования и второй порции структурообразователя, далее проводят лабораторные испытания для получения соотношения структурообразующего реагента и структурообразователя с целью получения двухкомпонентной тампонажной смеси с длительным сроком структурирования, после этого подбирают соотношение двухкомпонентной тампонажной смеси с длительным сроком структурирования и второй порции структурообразователя, в зависимости от соотношения двухкомпонентной тампонажной смеси с длительным сроком структурирования и второй порции структурообразователя подбирают диаметр и толщину стенки насосно-компрессорных труб, в эксплуатационную колонну на насосно-компрессорных трубах спускают перфорированный патрубок с перфорированным торцом, снаружи перфорированного патрубка устанавливают центратор, далее устанавливают переводник с двумя рядами боковых радиальных отверстий - верхними и нижними соответственно, переводник размещают на расстоянии от 70 до 180 м от перфорированного торца перфорированного патрубка, в первоначальном положении два ряда боковых радиальных отверстий переводника изнутри герметично перекрывают втулкой с посадочным седлом, снаружи в средней части втулка имеет кольцевую проточку и боковые радиальные отверстия, втулка зафиксирована срезным элементом и выполнена с возможностью осевого перемещения вниз до упора, после этого доспускают на насосно-компрессорных трубах перфорированный патрубок и устанавливают его перфорированный торец на 10 м выше зоны водопритока, готовят двухкомпонентную тампонажную смесь с длительным сроком структурирования и последовательно закачивают буферную жидкость с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования, двухкомпонентную тампонажную смесь с длительным сроком структурирования, буферную жидкость с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования, вторую порцию структурообразователя с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования, устанавливают в насосно-компрессорные трубы разделительную пробку с фиксирующей головкой и продавливают при давлении 0,5 МПа продавочной жидкостью с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования, в трубное и кольцевое пространство, с перемещением втулки вместе с разделительной пробкой вниз до упора и с открытием верхних и нижних боковых радиальных отверстий, далее создают циркуляцию продавочной жидкости с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования, через верхние радиальные отверстия до выравнивания плотностей в трубном и кольцевом пространстве, затем колонну насосно-компрессорных труб приподнимают и инжектируют при их подъеме вторую порцию структурообразователя с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования, через перфорированный торец перфорированного патрубка в двухкомпонентную тампонажную смесь с длительным сроком структурирования, после чего двухкомпонентную тампонажную смесь с коротким сроком структурирования продавливают по кольцевому пространству в зону водопритока продавочной жидкостью с плотностью, равной плотности двухкомпонентной тампонажной смеси с длительным сроком структурирования.
СПОСОБ ИЗОЛЯЦИИ ЗОН ВОДОПРИТОКА В СКВАЖИНЕ
СПОСОБ ИЗОЛЯЦИИ ЗОН ВОДОПРИТОКА В СКВАЖИНЕ
СПОСОБ ИЗОЛЯЦИИ ЗОН ВОДОПРИТОКА В СКВАЖИНЕ
Источник поступления информации: Роспатент

Показаны записи 521-530 из 578.
29.03.2019
№219.016.f725

Способ разработки многопластовой залежи нефти

Изобретение относится к нефтяной промышленности, в частности к способам разработки многопластовой залежи нефти и ограничения водопритока в добывающей скважине, вскрывшей два и более продуктивных пласта. Обеспечивает повышение эффективности способа разработки многопластовой залежи нефти за счет...
Тип: Изобретение
Номер охранного документа: 0002431747
Дата охранного документа: 20.10.2011
29.03.2019
№219.016.f726

Способ разработки неоднородного нефтяного пласта

Изобретение относится к разработке нефтяных месторождений и может использоваться при разработке нефтяной залежи с неоднородными по проницаемости заводненными пластами для регулирования профиля приемистости нагнетательной скважины и ограничения водопритоков в добывающей скважине. Способ...
Тип: Изобретение
Номер охранного документа: 0002431741
Дата охранного документа: 20.10.2011
29.03.2019
№219.016.f728

Способ ограничения водопритока в скважине

Изобретение относится к нефтегазодобывающей промышленности и предназначено для ремонтно-изоляционных работ в скважинах и может быть использовано с применением колтюбинга. Технический результат - повышение эффективности ремонтно-изоляционных работ за счет создания более стойкого к прорыву вод...
Тип: Изобретение
Номер охранного документа: 0002431735
Дата охранного документа: 20.10.2011
29.03.2019
№219.016.f7d5

Способ улучшения гидродинамической связи скважины с продуктивным пластом

Изобретение относится к нефтедобывающей промышленности и может быть использовано для улучшения гидродинамической связи скважины с продуктивным пластом в карбонатных породах. Обеспечивает упрощение способа и снижение его трудоемкости, а также повышение эффективности разработки карбонатного...
Тип: Изобретение
Номер охранного документа: 0002462590
Дата охранного документа: 27.09.2012
04.04.2019
№219.016.fcba

Противополетное устройство для электроцентробежного насоса

Изобретение относится к нефтедобывающей промышленности и может быть применено в добыче нефти электроцентробежными насосами для предотвращения их падения на забой скважины. Устройство содержит верхний и нижний переводники, ствол с жестко установленным в его верхней части опорным кольцом,...
Тип: Изобретение
Номер охранного документа: 0002455454
Дата охранного документа: 10.07.2012
10.04.2019
№219.017.09ce

Клапан для выравнивания давления в скважинном оборудовании

Изобретение относится к нефтедобывающей промышленности, в частности к эксплуатации и ремонту скважин. Клапан содержит корпус с основным каналом, сообщенным сверху с технологическими трубами, а снизу со скважинным оборудованием, поршень, установленный в основном канале, подпружиненный вверх и...
Тип: Изобретение
Номер охранного документа: 0002466268
Дата охранного документа: 10.11.2012
10.04.2019
№219.017.09fc

Способ разработки залежи высоковязкой нефти (варианты)

Изобретение относится к нефтедобывающей промышленности, в частности к способам разработки залежей высоковязких нефтей. В способе разработки залежи высоковязкой нефти, включающем закачку через нагнетательную скважину вытесняющего агента, отбор продукции через добывающие скважины, определение...
Тип: Изобретение
Номер охранного документа: 0002461702
Дата охранного документа: 20.09.2012
19.04.2019
№219.017.3407

Устройство для перекрытия зоны осложнения при бурении скважины

Изобретение относится к бурению и капитальному ремонту скважин и предназначено, в частности, для развальцовывания труб при их установке в скважине. Устройство включает перекрыватель с цилиндрическими участками по концам, состоящий из профильных труб, соединенных жестко между собой, нижний из...
Тип: Изобретение
Номер охранного документа: 0002462583
Дата охранного документа: 27.09.2012
29.04.2019
№219.017.435e

Устройство для разрезания ремонтного патрубка в скважине

Изобретение относится к нефтегазодобывающей промышленности, в частности к оборудованию для разрезания и извлечения из скважин ремонтных патрубков, таких как летучка, пластыри, пакера и т.п. Устройство содержит корпус, в поперечном пазу которого размещен клиновой нож с двумя режущими кромками....
Тип: Изобретение
Номер охранного документа: 0002418149
Дата охранного документа: 10.05.2011
29.04.2019
№219.017.4431

Способ разработки залежи высоковязкой и сверхвязкой нефти

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности парогравитационного воздействия и нефтеотдачи пласта. В способе разработки залежей сверхвязких нефтей, включающем закачку пара в пласт, прогрев пласта с созданием паровой камеры, совместную...
Тип: Изобретение
Номер охранного документа: 0002470149
Дата охранного документа: 20.12.2012
Показаны записи 521-530 из 681.
29.05.2018
№218.016.5968

Способ определения эффективности гидравлического разрыва пласта скважины

Изобретение относится к разработке нефтяных залежей и может быть применено для проведения гидравлического разрыва пласта (ГРП) с различной проницаемостью пород. Способ включает проведение исследований до и после проведения ГРП с проппантом, проведение ГРП, определение эффективности ГРП на...
Тип: Изобретение
Номер охранного документа: 0002655310
Дата охранного документа: 25.05.2018
29.05.2018
№218.016.5997

Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины

Изобретение относится к нефтяной промышленности и может быть применено для многократного гидравлического разрыва пласта в горизонтальном стволе скважины. Способ многократного гидравлического разрыва пласта - ГРП в горизонтальном стволе скважины включает бурение горизонтального ствола скважины,...
Тип: Изобретение
Номер охранного документа: 0002655309
Дата охранного документа: 25.05.2018
09.06.2018
№218.016.5de5

Способ перфорации скважины и обработки призабойной зоны карбонатного пласта

Изобретение относится к нефтегазодобывающей промышленности, к области эксплуатации скважин, а именно к способам вторичного вскрытия и обработки призабойной зоны карбонатных пластов. Способ включает спуск колонны НКТ с гидромеханическим прокалывающим перфоратором на нижнем конце в...
Тип: Изобретение
Номер охранного документа: 0002656255
Дата охранного документа: 04.06.2018
16.06.2018
№218.016.62c2

Станок для распиловки керна

Изобретение относится к области геологоразведочных работ и может быть использовано для распиловки керна горных пород. Техническим результатом являются упрощение и усовершенствование конструкции подающего устройства рабочего органа, повышение точности выполнения распилов керна, снижение износа...
Тип: Изобретение
Номер охранного документа: 0002657582
Дата охранного документа: 14.06.2018
22.09.2018
№218.016.88be

Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины

Изобретение относится к способам гидравлического разрыва в горизонтальном стволе скважины. Способ включает бурение горизонтального ствола скважины, определение нефтенасыщенных интервалов пласта, вскрытого горизонтальным стволом скважины, спуск и крепление хвостовика, поинтервальное выполнение...
Тип: Изобретение
Номер охранного документа: 0002667240
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.88d3

Способ изоляции водопритоков в скважине (варианты)

Группа изобретений относится к нефтегазодобывающей промышленности, в частности к способам проведения водоизоляционных работ в добывающих скважинах, а также к способам выравнивания профиля приемистости в нагнетательных скважинах. Способ изоляции водопритоков в скважину по первому варианту...
Тип: Изобретение
Номер охранного документа: 0002667241
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.8936

Способ гидравлического разрыва пласта

Изобретение относится к нефтяной промышленности и может быть применено при гидравлическом разрыве карбонатного пласта или залежи высоковязкой нефти. Способ включает перфорацию стенок скважины в необходимом интервале скважины каналами глубиной не менее протяженности зоны концентрации напряжений...
Тип: Изобретение
Номер охранного документа: 0002667255
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.8969

Состав для изоляции водопритока в скважину с низкой пластовой температурой (варианты)

Группа изобретений относится к нефтедобывающей промышленности, в частности к составам для изоляции водопритока в добывающих скважинах и обработки нагнетательных скважин с целью выравнивания профиля приемистости и увеличения охвата пластов заводнением. По первому варианту состав содержит...
Тип: Изобретение
Номер охранного документа: 0002667254
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.8983

Способ перфорации скважины и обработки призабойной зоны карбонатного пласта

Изобретение относится к нефтегазодобывающей промышленности, к области эксплуатации скважин, а именно к способам для вторичного вскрытия и обработки призабойной зоны карбонатного пласта. Способ включает спуск в эксплуатационную колонну (ЭК) закрепленных на колонне насосно-компрессорных труб...
Тип: Изобретение
Номер охранного документа: 0002667239
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.8990

Способ определения пространственной ориентации трещины гидроразрыва в горизонтальном стволе скважины

Изобретение относится к проведению гидравлического разрыва пласта (ГРП) и может быть применено для определения ориентации трещины в горизонтальном стволе скважины, полученной в результате ГРП. Способ включает проведение ГРП с образованием трещины разрыва и определение пространственной...
Тип: Изобретение
Номер охранного документа: 0002667248
Дата охранного документа: 18.09.2018
+ добавить свой РИД