×
10.02.2015
216.013.232f

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ МЕХАНИЧЕСКИХ СВОЙСТВ ХРУПКИХ МАТЕРИАЛОВ ПРИ РАСТЯЖЕНИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к механическим испытаниям на растяжение хрупких образцов из композиционных материалов и предназначено для авиастроения, судостроения, машиностроения, атомной энергетики. Сущность изобретения: накладки одинаковых с образцом размеров и формы, выполненные из материала, обеспечивающего суммарную жесткость обеих накладок, меньшую или равную жесткости исследуемого образца, наклеивают на двух противоположных поверхностях образца, в результате получают лабораторную сборку, которую размещают в цанговых захватах испытательной машины. Каждый захват устанавливают между краем торца и началом дуги галтели сборки. На поверхность сборки устанавливают экстензометр. Прикладывают нагрузку к сборке и по показаниям экстензометра получают кривую «деформация-напряжение» лабораторной сборки, из которой восстанавливают диаграмму деформирования образца. Напряжение в образце σ выражают через напряжения лабораторной сборки σ и накладки σ, при условии равенства деформации, по формуле σ=3·σ-2·σ. Технический результат: возможность выполнения принципа Сен-Венана и, соответственно, создание однородного напряженного состояния в рабочей части образца из хрупкого материала; создание одноосного растяжения в рабочей части образца из исследуемого материала, исключение изгиба; получение большего количества точек измерения усилия на одинаковой базе деформации. 1 з.п. ф-лы, 4 ил.

Область техники

Изобретение относится к испытательной технике, а именно к механическим испытаниям образцов из композиционных материалов, поведение которых при растяжении близко к хрупкому. Область применения - авиастроение, судостроение, машиностроение, атомная энергетика и др.

Предшествующий уровень техники

Известен способ испытаний на растяжение металлических и неметаллических материалов (ГОСТ 1497-84, “Металлы. Методы испытаний на растяжение”), заключающийся в том, что стандартный испытываемый образец нагружают до разрушения, при этом измеряют нагрузку и деформацию, по которым определяют модуль упругости, предел пропорциональности, предел текучести и временное сопротивление.

Недостатками способа при его применении к испытаниям хрупких материалов являются трудности в обеспечении надежного крепления в захватах испытательной машины, а так же невозможность отслеживания нелинейного участка деформирования, предшествующего разрушению, так как хрупкие материалы более чувствительны к внецентровому приложению нагрузки и соответственно наложению изгиба на одноосное напряженное состояние.

Известен способ испытания на растяжение армированных пластиков («Методы статических испытаний армированных пластиков», Тернопольский Ю.М., Кянцис Т.Я., М., “Химия”, 1981 г.), заключающийся в том, что нагружают стандартный образец типа двусторонней лопатки с наклеенными на концевые части накладками до разрушения, измеряют нагрузки и деформации, по которым определяют механические характеристики пластиков.

Недостатком способа является недооценка величин деформационной способности и предела прочности композиционного материала в отличие от соответствующих характеристик, определяемых при испытаниях натурных конструкций. Хрупкие материалы имеют механические характеристики, различные при растяжении и сжатии, что справедливо для большинства композитов. При данном способе испытаний образцов из композиционных материалов возникают трудности в выполнении принципа Сен-Венана: в образцах из материалов с зависящими от вида напряженно-деформированного состояния свойствами существенно возрастают зоны краевого эффекта, что препятствует созданию однородного напряженного состояния в рабочей части образца».

В качестве прототипа было выбрано авторское свидетельство РФ №1335844, от 11.12.1985, G01N 3/08, «Способ механических испытаний образцов материалов», Авторы: Ефимов О.Ю., Сахно А.И., Мамлеев Р.Ф. Образец типа двусторонней лопатки с накладками размещают в захватах испытательной машины, нагружают его испытательной нагрузкой, регистрируют нагрузку и относительное перемещение захватов. Накладки из хрупкого материала с прочностью, в 3-10 раз меньшей прочности материала образца, контактируют с захватами и размещены на поверхностях перехода рабочей части образца в захватную часть. Перед нагружением испытательной нагрузкой к образцу прикладывают предварительное усилие до разрушения накладок, которое затем снижают. Далее образец нагружают до разрушения. Признаками, совпадающими с существенными признаками заявляемого изобретения, являются - образец с накладками размещают в захватах испытательной машины, нагружают его испытательной нагрузкой, регистрируют нагрузку, регистрируют относительное перемещение захватов, накладки размещают на поверхностях образца и контактируют с захватами, образец нагружают до разрушения.

Недостатком прототипа можно считать то, что при описанном способе испытаний образцов из хрупких материалов возникают трудности в выполнении принципа Сен-Венана и соответственно в создании однородного напряженного состояния в рабочей части образца. Кроме того, при увеличении ширины свободных торцов образца уменьшается относительный объем «полезной» рабочей части, увеличивается расход материала и стоимость изготовления образцов. Также невозможно применить данный способ к исследованию взрывчатых составов, поведение которых при растяжении близко к хрупкому, из-за опасности инициирования взрыва в местах контакта с захватами через разрушенные в предварительном нагружении накладки.

Раскрытие изобретения

Задачей, на решение которой направлено заявляемое изобретение, является создание способа определения механических свойств хрупких материалов, в том числе взрывчатых составов, в переходной области, предшествующей разрушению, при их растяжении; выявление резервов деформационной способности исследуемого материала; повышении точности и информативности результатов экспериментов.

Технический результат, достигаемый при решении этой задачи, заключается в выполнении принципа Сен-Венана и, соответственно, создании однородного напряженного состояния в рабочей части образца из хрупкого материала; создании одноосного растяжения в рабочей части образца из исследуемого материала, исключении изгиба; получении большего количества точек измерения усилия на одинаковой базе деформации.

Для получения указанного технического результата в предложенном способе определения механических свойств хрупких материалов при растяжении, включающем прикрепление накладок к образцу, размещение образца с накладками в захватах испытательной машины, нагрузку образца с накладками, регистрацию деформации рабочей части образца, согласно изобретению накладки одинаковых с образцом размеров и формы выполнены из материала, обеспечивающего суммарную жесткость обеих накладок, меньшую или равную жесткости исследуемого образца. Накладки наклеивают на двух противоположных поверхностях образца. В результате получают лабораторную сборку, которую размещают в цанговых захватах испытательной машины. При этом каждый захват устанавливают между краем торца и началом дуги галтели сборки. На поверхность сборки устанавливают экстензометр. Прикладывают нагрузку к сборке. По показаниям экстензометра получают кривую «деформация-напряжение» лабораторной сборки, из которой восстанавливают диаграмму деформирования образца. Напряжение в образце σo выражают через напряжения лабораторной сборки σлс и накладки σп, при условии равенства деформации, по формуле σo=3·σлс-2·σп.

Это позволяет более точно выполнить принцип Сен-Венана, увеличить точность определения деформационной способности и предела прочности при растяжении образца из хрупкого материала. Появляется возможность применять цанговые захваты, способные центрироваться вдоль оси нагружения. За счет увеличения жесткости объекта исследований на одинаковой базе деформации записывается большее количество точек измерения усилия, что повышает точность и информативность результатов экспериментов. Это позволяет определить диаграмму деформирования хрупких материалов при растяжении, в том числе и в переходной области, предшествующей разрушению.

На поверхность накладок в зоне контакта с захватами возможно нанесение канавок, рисок, шероховатостей. Это позволяет применять данный метод к исследованию механических свойств взрывчатых составов без опасности инициирования взрыва при проскальзывании в захватах испытательной машины.

Краткое описание чертежей

На фиг.1 показана лабораторная сборка.

На фиг.2 показана диаграмма деформирования лабораторной сборки.

На фиг.3 показана диаграмма деформирования образца.

На фиг.4 показана таблица результатов экспериментальных исследований, где

εраст (%) - деформационная способность при растяжении,

σраст (МПа) - предел прочности при растяжении,

Eраст (МПа) - модуль упругости при растяжении.

Варианты осуществления изобретения

Как показано на фиг.1, испытуемый образец 1 выполнен из хрупкого материала в форме двусторонней лопатки. На две противоположные поверхности образца 1 наклеены накладки 2. Накладки 2 выполнены одинаковых с образцом 1 размеров и формы из материала, обеспечивающего суммарную жесткость обеих накладок 2, меньшую или равную жесткости исследуемого образца 1. Образец 1 с наклеенными накладками 2 образует лабораторную сборку 3. Сборку 3 размещают и фиксируют в цанговых захватах испытательной машины. Захваты накладывают на поверхности четырех граней сборки 3 таким образом, чтобы край каждого захвата располагался между краем торца 4 и началом дуги галтели 5 сборки 3. На поверхность сборки 3 в зоне контакта 6 с захватами наносят канавки, или риски, или шероховатости.

На поверхность рабочей части сборки 3 устанавливают экстензометр 7. Прикладывают нагрузку к сборке 3, снимают показания экстензометра 7 и получают график зависимости деформации рабочей части лабораторной сборки 3 от приложенного усилия (на фиг.2), из которой восстанавливают диаграмму деформирования образца 1. Напряжение в образце σо выражают через напряжения лабораторной сборки σлс и накладки σп, при условии равенства деформации, по формуле σо=3·σлс-2·σп. Диаграмма деформирования лабораторной сборки 3 приведена на фиг.2. Данная диаграмма содержит четыре участка: участок 8 упругого деформирования лабораторной сборки 3; участок 9 пластического деформирования образца 1 в составе лабораторной сборки 3 с упругодеформирующимися накладками 2; участок 10 разрушения образца 1 (прохождения поперечной трещины); участок 11 деформирования сборки 3 с образцом 1, имеющим сквозную поперечную трещину.

На фиг.3 приведена диаграмма деформирования образца 1 без накладок 2. Сравнение диаграмм на фиг.2 и фиг.3 позволяет сделать вывод о том, что стандартные испытания образцов 1 в отличие от лабораторных сборок 3 не позволяют выявить предшествующую разрушению область - участок 9 (на фиг.2) нелинейного деформирования материала образца 1, поведение которого близко к хрупкому. Диаграмма на фиг.3 практически линейна вплоть до разрушения образца 1.

На фиг.4 представлена таблица результатов статистической обработки экспериментальных данных, полученных в опытах по растяжению накладок 2 из оргстекла, образцов 1 из взрывчатого состава (ВС) и лабораторных сборок 3. Было проведено и обработано не менее 18 опытов на каждый вид испытаний. В таблице также приведены параметры диаграммы деформирования материала ВС образцов 1, полученные по результатам испытаний лабораторных сборок 3. Анализ данных, представленных в таблице, позволяет сделать следующие выводы:

- использование при испытаниях на растяжение предложенной конструкции лабораторной сборки 3 позволило выявить существенные (в 1.77 раза) резервы деформационной способности материала ВС образцов 1, которые невозможно определить при проведении стандартных испытаний образцов 1;

- различная степень отличий деформационной способности и предела прочности при растяжении (в 1.77 и 1.58 раза соответственно), полученных в испытаниях лабораторных сборок 3 и образцов 1 без накладок 2, говорит о нелинейном поведении материала ВС образцов 1 в области, предшествующей разрушению - участок 9 (на фиг.2). Стандартные испытания образцов 1 в отличие от лабораторных сборок 3 не позволяют выявить эту область деформирования материала - участок 9 (на фиг.2): зависимость «напряжение-деформация» (фиг.3 практически линейна вплоть до разрушения);

- использование при испытаниях на растяжение предложенной конструкции лабораторной сборки 3 позволяет получать более стабильные (с меньшим разбросом) в отличие от стандартных испытаний образцов 1 результаты. Это, в свою очередь, позволяет получать более точные расчетные оценки прочности и надежности конструкций, содержащих детали из хрупких материалов;

- модуль упругости материала образца 1, определенный с использованием лабораторных сборок 3, практически совпадает (отличие не превышает 2%) со значением этой характеристики, полученной в стандартных испытаниях образцов 1. Что подтверждает правильность вывода формулы восстановления диаграммы деформирования материала ВС образца 1 из кривой «деформация-напряжение» лабораторной сборки 3 и обоснованность методических предположений, использованных при проектировании лабораторной сборки 3, и способа ее испытания.

Необходимо отметить, что разрушение всех образцов, испытанных в составе лабораторных сборок, произошло в рабочей части. Данный результат доказывает, что предложенный способ позволяет выполнить принцип Сен-Венана, создать однородное напряженное состояние в рабочей части образца из хрупких материалов.

Таким образом, способ расширяет арсенал технических средств определения механических свойств хрупких материалов при растяжении в переходной области, предшествующей разрушению, выявляет резервы деформационной способности материала, которые невозможно определить при проведении стандартных испытаний образцов на растяжение, позволяет повысить точность и информативность результатов экспериментов.

Промышленная применимость

Наиболее эффективно изобретение может быть использовано в авиастроении, судостроении, машиностроении, атомной энергетике. Для оценки прочности и жесткости любого конструкционного материала, поведение которого при растяжении близко к хрупкому, он подвергается механическим испытаниям. Достоверность сведений о прочности и жесткости материала обусловливает эффективность его использования и эксплуатационные возможности конструкций, содержащих детали из него. Осуществление на практике описанного способа подтвердило получение технического результата. Это показывает его работоспособность и подтверждает промышленную применимость.


СПОСОБ ОПРЕДЕЛЕНИЯ МЕХАНИЧЕСКИХ СВОЙСТВ ХРУПКИХ МАТЕРИАЛОВ ПРИ РАСТЯЖЕНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕХАНИЧЕСКИХ СВОЙСТВ ХРУПКИХ МАТЕРИАЛОВ ПРИ РАСТЯЖЕНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕХАНИЧЕСКИХ СВОЙСТВ ХРУПКИХ МАТЕРИАЛОВ ПРИ РАСТЯЖЕНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕХАНИЧЕСКИХ СВОЙСТВ ХРУПКИХ МАТЕРИАЛОВ ПРИ РАСТЯЖЕНИИ
Источник поступления информации: Роспатент

Показаны записи 331-340 из 685.
25.08.2018
№218.016.7f17

Способ гидролокации в мелководных областях с оперативным контролем изменчивости условий обнаружения подводной цели

Изобретение относится к области гидролокации, может быть использовано при проведении подводных работ, контроле подводной обстановки, при охране различных объектов со стороны водной среды и обеспечивает достижение постоянной максимально возможной дальности обнаружения подводных целей, а также...
Тип: Изобретение
Номер охранного документа: 0002664869
Дата охранного документа: 23.08.2018
25.08.2018
№218.016.7f71

Стенд для исследования параметров взаимодействия лазерного излучения с конструкционными материалами

Изобретение относится к области измерительной техники и касается стенда для исследования параметров взаимодействия лазерного излучения (ЛИ) с конструкционными материалами (КМ). Стенд включает в себя лазер, оптическую систему, светоделительный элемент, систему контроля параметров ЛИ, систему...
Тип: Изобретение
Номер охранного документа: 0002664969
Дата охранного документа: 24.08.2018
28.08.2018
№218.016.7fb2

Стеклокерамический композиционный электроизоляционный материал и способ его изготовления

Изобретение относится к стеклокерамическому композиционному электроизоляционному материалу. Шихта содержит следующие совместно измельченные и механоактивированные компоненты, мас.%: стекло СЛ2-1 50-70; фторфлогопит – остальное. Перемешивание компонентов проводят за два интервала не менее чем...
Тип: Изобретение
Номер охранного документа: 0002664993
Дата охранного документа: 24.08.2018
28.08.2018
№218.016.7fe3

Способ изготовления полых микросфер из вспучивающегося порошкового материала

Изобретение относится к области производства неорганических высокодисперсных наполнителей, а именно полых микросфер, используемых в производстве композиционных материалов различного назначения. В способе изготовления полых микросфер из вспучивающегося порошкового материала, включающем...
Тип: Изобретение
Номер охранного документа: 0002664990
Дата охранного документа: 24.08.2018
29.08.2018
№218.016.80f5

Генератор высоковольтных импульсов с оптическим управлением

Изобретение относится к импульсной высоковольтной технике. Технический результат заключается в повышении стабильности работы генератора высоковольтных импульсов с оптическим управлением. Это достигается за счет генератора высоковольтных импульсов с оптическим управлением, относится к импульсной...
Тип: Изобретение
Номер охранного документа: 0002665277
Дата охранного документа: 28.08.2018
09.09.2018
№218.016.853e

Субнаносекундный ускоритель электронов

Изобретение относится к технике формирования электронных пучков субнаносекундной длительности. Формирователь содержит формирующую и передающею коаксиальные линии, обостряющий и срезающий разрядные зазоры, формирующая линия подключена к источнику наносекундных высоковольтных импульсов, при этом...
Тип: Изобретение
Номер охранного документа: 0002666353
Дата охранного документа: 07.09.2018
12.09.2018
№218.016.8697

Унифицированный радиационно-стойкий модуль коммутатора нагрузок исполнительных каскадов приборов автоматики

Изобретение относится к области электронной техники и может быть использовано в коммутационных устройствах, обеспечивающих подключение различных типов нагрузок, а также пиротехнических устройств. Технический результат заключается в повышении надежности исполнительных каскадов приборов...
Тип: Изобретение
Номер охранного документа: 0002666643
Дата охранного документа: 11.09.2018
03.10.2018
№218.016.8cf5

Устройство генерации импульсов широкополосного электромагнитного излучения свч- диапазона

Изобретение относится к технике СВЧ и может быть использовано при разработке генераторов широкополосного электромагнитного излучения (ЭМИ) в сантиметровом диапазоне длин волн. Устройство генерации импульсов широкополосного электромагнитного излучения СВЧ-диапазона представляет собой плоский...
Тип: Изобретение
Номер охранного документа: 0002668271
Дата охранного документа: 28.09.2018
04.10.2018
№218.016.8e67

Способ изготовления керамических поглотителей энергии

Изобретение относится к технологии изготовления керамических изделий для электронной и радиотехнической промышленности и может быть использовано при производстве поглотителей электромагнитного излучения, например в мощных генераторах, усилителях, лампах бегущей волны, клистронах и...
Тип: Изобретение
Номер охранного документа: 0002668643
Дата охранного документа: 02.10.2018
04.10.2018
№218.016.8e71

Оптическая система наведения

Оптическая система наведения может быть использована в астрономии и для систем лазерной локации космического мусора. Оптическая система наведения содержит платформу, имеющую возможность поворота вокруг вертикальной оси системы, с горизонтально установленным на этой платформе...
Тип: Изобретение
Номер охранного документа: 0002668647
Дата охранного документа: 02.10.2018
Показаны записи 251-251 из 251.
04.04.2018
№218.016.3700

Способ определения показателей однородности дисперсного материала спектральным методом и способ определения масштабных границ однородности дисперсного материала спектральным методом

Изобретения относятся к области определения однородности дисперсных материалов и могут найти применение в порошковой металлургии, в самораспространяющемся высокотемпературном синтезе, в материаловедении и аналитической химии. Способ определения показателей однородности дисперсного материала...
Тип: Изобретение
Номер охранного документа: 0002646427
Дата охранного документа: 05.03.2018
+ добавить свой РИД