×
10.02.2015
216.013.2324

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ СТАТУСА РЕЗУЛЬТАТА ИЗМЕРЕНИЙ ИНТЕЛЛЕКТУАЛЬНОГО ДАТЧИКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к контрольно-измерительной технике и может быть использовано в приборостроении при разработке, изготовлении и диагностике интеллектуальных датчиков и измерительных систем различного типа. Формируют верхнее и нижнее пороговые значения опорного сигнала, причем нижнее пороговое значение меньше единицы, а верхнее больше. Сравнивают значения опорного сигнала с пороговыми значениями, причем, если значение опорного сигнала находится в диапазоне между верхним и нижним пороговыми значениями или равно им, измерению присваивают статус - подтвержденное, а в случае выхода за границы, определяемые верхним и нижним пороговыми значениями, - недостоверное. Для формирования опорного сигнала выходной сигнал датчика разделяют на две аддитивные компоненты, первая из которых не зависит от шумовой компоненты на входе датчика, а вторая ей прямо пропорциональна. Регистрируют энергию второй компоненты датчика, и в качестве опорного сигнала принимают отношение текущей энергии компоненты к значению ее энергии в момент, когда датчик был гарантировано исправен. Технический результат заключается в возможности оценки метрологического состояния датчика физической величины в режиме непрерывного технологического процесса. 3 ил.
Основные результаты: Способ формирования статуса результата измерений интеллектуального датчика путем формирования опорного сигнала, определения его верхнего и нижнего пороговых значений, причем нижнее пороговое значение меньше единицы, а верхнее больше, сравнения текущего значения опорного сигнала с пороговыми значениями, причем, если значение опорного сигнала находится в диапазоне между верхним и нижним пороговыми значениями или равно им, измерению присваивают статус - подтвержденное, а в случае выхода за границы, определяемые верхним и нижним пороговыми значениями, - недостоверное, отличающийся тем, что для формирования опорного сигнала выходной сигнал датчика разделяют на две аддитивные компоненты, первая из которых не зависит от шумовой компоненты на входе датчика, а вторая ей прямо пропорциональна, регистрируют энергию второй компоненты датчика, и в качестве опорного сигнала принимают отношение текущей энергии компоненты к значению ее энергии в момент, когда датчик был гарантировано исправен.

Изобретение относится к контрольно-измерительной технике и может быть использовано в приборостроении при разработке, изготовлении и диагностике интеллектуальных датчиков и измерительных систем различного типа.

В настоящее время, в связи с повышением требований к надежности и эффективности систем управления различного вида, повышаются требования к их метрологическому обеспечению, т.е. к обеспечению необходимой достоверности измерительной информации. Основные проблемы обеспечения достоверности измерительной информации связаны с датчиками: их компоненты стареют, параметры со временем изменяются. Возникают и внезапные дефекты. Все это может приводить к ошибкам в управлении [R. Taymanov, K. Sapozhnikova, Metrological Self-Check and Evolution of Metrology, Measurement, 43, 2010, pp.869-877]. Основными путями решения проблемы обеспечения достоверности информации являются уменьшение межкалибровочного (межповерочного) интервала и различные способы резервирования и комплексирования датчиков. Ни один из этих методов нельзя признать оптимальным. Первый метод резко повышает затраты на эксплуатацию системы и он может быть просто не применим в силу особенностей ее эксплуатации. Кроме того, метод не дает гарантии сохранения параметров системы во время межповерочного интервала. Использование второго метода может быть ограничено конструктивными особенностями системы, ее тактико-техническими характеристиками и требованием независимости воздействия внешних условий на параметры датчика.

Согласно ГОСТ Р 8.673-2009. ГСИ. «Датчики интеллектуальные и системы измерительные интеллектуальные. Термины и определения», стр.4, пп.3.11 эту проблему для интеллектуальных датчиков предлагается решить за счет реализации в них функции самоконтроля. Там же, на стр.2-3, 7, функцию самоконтроля предлагается реализовать путем анализа опорной величины, получаемой в ходе эксплуатации датчика (измерительной системы). При этом результат анализа может быть выражен в статусе результата измерений.

Главной проблемой при таком подходе является получение опорной величины. Обычно способ генерации опорной величины определяется после тщательного анализа источников погрешности и определения критической составляющей погрешности.

Известен способ контроля метрологической исправности [патент RU №2321829 C2, МПК G01D 3/00, опубл. 20.10.2007, «Способ контроля метрологической исправности измерительного преобразователя неэлектрической величины и устройство для его осуществления»], при котором в чувствительном элементе выделяются (формируются) части, имеющие разную чувствительность к фактору, влияющему на исправность преобразователя. В процессе эксплуатации периодически измеряют значения от этих частей с чувствительностью, достаточной для выявления нарастания погрешности измерительного преобразователя, и по ним судят о его метрологической исправности, т.е. опорная величина формируется путем сравнения сигналов от частей первичного преобразователя, имеющих разую чувствительность к возмущающему фактору. Недостатком данного способа является отсутствие возможности непосредственно в процессе эксплуатации осуществлять коррекцию характеристики преобразователя, что связано с тем, что в указанном устройстве неизвестно соотношение между погрешностями, вызванными систематическими и случайными составляющими.

Известен способ контроля метрологической исправности [патент RU №2444707, МПК G01D 3/00, опубл. 07.10.2010, «Измерительный преобразователь температуры с контролем метрологической исправности»], согласно которому для формирования опорного сигнала, как и в предыдущем способе, сравниваются значения показаний частей чувствительного элемента, имеющих разную зависимость от возмущающего фактора, в котором, однако, одна часть чувствительного элемента выполнена из нескольких, преимущественно двух, параллельно соединенных проводников, причем суммарные площади поперечных сечений чувствительных элементов соизмеримы друг с другом. Это повышает достоверность коррекции результата измерений температуры непосредственно в процессе эксплуатации и дает возможность увеличения межкалибровочного интервала

Известен способ [Иванова Е.П., Курская Т.Н., Шрамко С.В. О некоторых аспектах применения самокалибрующихся датчиков температуры // ТЕМПЕРАТУРА-2011: 4-я Всероссийская и стран КООМЕТ конференция по проблемам термометрии. Тезисы (Санкт-Петербург, 19-21 апреля). Стр.63-65], основанный на использовании для самодиагностики датчиков температуры точки фазовых переходов (плавления) реперных металлов. Способ заключается в использовании дополнительного нагревателя и ампулы с реперным металлом. Для проверки метрологической исправности термопреобразователя включается дополнительный нагреватель, нагревающий ампулу и собственно термопреобразователь до температуры, превышающей точку плавления реперного металла. Возникающее в момент плавления реперного металла температурное «плато» использовалось как опорный сигнал для проверки работы основного первичного преобразователя. Недостатками способа являются ограниченное число контрольных точек и необходимость сложного подбора реперных металлов.

Общим недостатком для всех указанных способов является ориентация на конкретный тип и конструкцию датчиков.

Наиболее близким к заявляемому решению является способ тестовых воздействий [Стрелкова О.В., Шестаков А.Л. Алгоритм оценки состояния термопреобразователя сопротивления с использованием тестовых воздействий. // ИЗМЕРЕНИЯ-2008: Международная научно-техническая конференция. Труды конференции (Пенза, 22-24 октября), стр.13-16], который заключается в том, что в процессе работы датчика периодически изменяют значение контролируемого датчиком параметра. В качестве опорной величины и основы формирования статуса измерения используется реакция датчика на эти изменения. Недостатками способа является то, что он требует разработки метода генерации воздействия, соответствующего изменения конструкции датчика, и не реализует полного контроля функции преобразования. При этом необходимо контролировать стабильность воздействия, что порождает очередной круг проблем.

Задача, на решение которой направлено заявляемое изобретение, заключается в разработке универсального способа оценки метрологического состояния датчика физической величины в режиме непрерывного технологического процесса.

Указанная задача достигается тем, что в целях формирования статуса результата измерений интеллектуального датчика, формируют верхнее и нижнее пороговые значения опорного сигнала, причем нижнее пороговое значение меньше единицы, а верхнее больше, сравнивают значения опорного сигнала с пороговыми значениями, причем, если значение опорного сигнала находится в диапазоне между верхним и нижним пороговыми значениями или равно им, измерению присваивают статус - подтвержденное, а в случае выхода за границы, определяемые верхним и нижним пороговыми значениями, - недостоверное, согласно изобретению для формирования опорного сигнала выходной сигнал датчика разделяют на две аддитивные компоненты, первая из которых не зависит от шумовой компоненты на входе датчика, а вторая ей прямо пропорциональна, регистрируют энергию второй компоненты датчика и в качестве опорного сигнала принимают отношение текущей энергии компоненты к значению ее энергии в момент, когда датчик был гарантировано исправен.

Сущность изобретения поясняется следующими графическими материалами:

Фиг.1 - общая блок-схема датчика физического параметра;

Фиг.2 - блок-схема датчика физической величины при отклонении функции преобразования сенсора от эталонной;

Фиг.3 - пример реализации способа для аддитивной смеси узкополосного низкочастотного полезного сигнала и белого шума.

Рассмотрим задачу оценки значения параметра, воздействующего на датчик в условиях возможного «дрейфа» характеристик датчика. В общем случае, блок-схему формирования выходного сигнала датчика можно представить в виде, показанном на фиг.1.

Исходя из представленной блок-схемы, сигнал Y(t) на выходе датчика будет иметь вид

Где Y(t) - регистрируемый сигнал на выходе датчика, S(i) - измеряемый сигнал на входе датчика, U(t) - сигнал на выходе первичного преобразователя, ξ(t), ς(t) - аддитивные помехи на входе и выходе датчика соответственно. F0(x), F1(u) - функции преобразования первичного преобразователя (ФППП) и линеаризующего электронного блока соответственно. Здесь и в дальнейшем подразумевается, что датчик можно считать безинерционным устройством в диапазоне частот измеряемого параметра.

Если преобразование F0 однозначно и , то

Формула 2 является основной формулой при использовании сигнала с датчика в расчетах систем управления и обработки информации.

Однако это справедливо лишь при выполнении указанных выше условий:

1. Преобразование F0 однозначно.

2. .

Рассмотрим случай, когда условие (2) не выполняется, т.е. ФППП искажена в силу каких-либо причин относительно исходной F0. Тогда можно принять, что F=F0+ΔF, где F - истинная функция преобразования, F0 - функция преобразования, принятая при расчетах, ΔF - вариация функции преобразования, удовлетворяющая условию близости функций F и F0, по крайней мере 1-го порядка.

Тогда вариацию ΔF можно пересчитать к входу блок-схемы фиг.1 и она примет вид фиг.2. Отличием фиг.2 от фиг.1 является дополнительная помеха ΔS датчика. При этом заметим, что функция преобразования считается неизменной, т.е. соотношение (2) остается справедливым с соответствующей коррекцией ξ(t).

Дополнительную помеху ΔS находим из условия

Условие (3) означает, что искажения сигнала на входе при неизменной функции преобразования аналогичны, с точки зрения дальнейшей обработки, искажениям функции преобразования при неизменном входном сигнале.

Принимая ΔS настолько малым, что оно обеспечивает малость ΔF (это надо будет рассматривать отдельно), можно записать

F0(x)+F'0(x)Δs=F0(x)+ΔF(x).

Отсюда получаем выражение для ΔS:

В (4) под x понимается суммарный сигнал, действующий на входе первичного преобразователя, т.е.

Учитывая (2), (4) и (5) и считая, что шумы на входе значительно превышают собственные шумы датчика (т.е. ς(t) можно пренебречь), будем иметь

Или

Принимая, что ξ(t) также достаточно мало по отношению к полезному сигналу, получим выражение для выходного сигнала датчика с учетом искажения функции преобразования.

Таким образом, что можно считать, что отклонения фактической ФИНН относительно эталонной можно заменить введением дополнительной шумовой составляющей на входе эталонного сенсора.

В выражении (8) можно выделить части, зависящие и не зависящие от ξ

Если о характеристиках входного сигнала и помехи ничего не известно, то разделить сигнал (8) на компоненты (9)-(10) и оценить искажения функции преобразования не представляется возможным. Однако, как минимум, есть два случая, когда получение этой оценки реализовать достаточно просто:

- метод тестовых воздействий (когда сами формируем ξ(t)),

- предположение о постоянном аддитивном белом шуме на входе, которое является обычной практикой при анализе информационных и управляющих систем.

В первом случае для разделения Y(t) на компоненты Ys(t) и Yξ(t) возможно использование методов выделения сигала известной формы ξ(t) на фоне неизвестной помехи, которой в этом случае является сигнал S(t), во втором можно использовать различные методы фильтрации, которые позволяют разделить сигналы с различными корреляционными функциями (у белого шума ξ(t) это δ - функция, у сигала S(t) - обычно корреляционная функция узкополосного процесса). В обоих случаях задача оценки ΔF сводится к решению системы дифференциальных уравнений (9-10) относительно неизвестных S(t) и ΔF(x).

В случае, если стоит только задача обнаружения искажений F0, то можно просто контролировать отклонения Yξ(t) от постоянной величины при изменении сигнала. В первом случае это сводится к контролю постоянства амплитуды отклика на тестирующее воздействие, а во втором - к контролю постоянства дисперсии шумового сигнала в процессе работы. В зависимости от степени флуктуации сигнала Yξ(t) можно получить оценку достоверности измерения сигнала S(t).

Таким образом, для решения поставленной технической задачи предлагается для формирования опорной величины использовать отклонение амплитуды (дисперсии) компоненты сигнала Yξ(t) от постоянной величины в процессе работы.

В случае, если на вход датчика с нелинейной функцией преобразования воздействует узкополосный низкочастотный сигнал в смеси со стационарным белым шумом (фиг.3), тогда заявляемый способ можно реализовать следующим образом.

Полезный сигнал S(t) в смеси с шумом ξ(t) поступает на вход датчика, первичный преобразователь 1 которого имеет нелинейную функцию преобразования. Так как полезный сигнал предполагается узкополосным низкочастотным, то, в простейшем случае, его можно выделить с помощью простейшего низкочастотного фильтра 3. Тогда разница сигнала на входе и выходе низкочастотного фильтра 3 позволяет оценить шумовую компоненту сигнала.

В случае, если электронный блок 2 датчика компенсирует нелинейность преобразователя 1 (датчик метрологически исправен) и собственным шумом датчика можно пренебречь, можно считать, что Ys(t)=S(t) и Yξ(t)=ξ(t) Тогда вычислитель дисперсии сигнала Yξ(t) выдаст величину , близкую к априорному значению σ0, а решающее устройство - величину, близкую к единице.

В качестве априорного значения дисперсии можно использовать величину, полученную при гарантированно исправном состоянии датчика (начало его работы).

Рассогласование характеристик первичного преобразователя 1 и электронного блока 2 (возникновение метрологической неисправности) относительно сигнала Yξ(t) вызовет два эффекта:

- смещение постоянной составляющей относительно σ0,

- возникновение модуляции синхронно с изменением Ys(t).

И тот и другой эффекты вызовут отклонение отношения от единицы. В этом случае выход отношения дисперсии за установленные значения минимального или максимального порога может служить индикатором появления метрологической неисправности.

Таким образом, приведенные выше сведения подтверждают возможность осуществления заявленного изобретения, достижения указанного технического результата и решения поставленной задачи.

Способ формирования статуса результата измерений интеллектуального датчика путем формирования опорного сигнала, определения его верхнего и нижнего пороговых значений, причем нижнее пороговое значение меньше единицы, а верхнее больше, сравнения текущего значения опорного сигнала с пороговыми значениями, причем, если значение опорного сигнала находится в диапазоне между верхним и нижним пороговыми значениями или равно им, измерению присваивают статус - подтвержденное, а в случае выхода за границы, определяемые верхним и нижним пороговыми значениями, - недостоверное, отличающийся тем, что для формирования опорного сигнала выходной сигнал датчика разделяют на две аддитивные компоненты, первая из которых не зависит от шумовой компоненты на входе датчика, а вторая ей прямо пропорциональна, регистрируют энергию второй компоненты датчика, и в качестве опорного сигнала принимают отношение текущей энергии компоненты к значению ее энергии в момент, когда датчик был гарантировано исправен.
СПОСОБ ФОРМИРОВАНИЯ СТАТУСА РЕЗУЛЬТАТА ИЗМЕРЕНИЙ ИНТЕЛЛЕКТУАЛЬНОГО ДАТЧИКА
СПОСОБ ФОРМИРОВАНИЯ СТАТУСА РЕЗУЛЬТАТА ИЗМЕРЕНИЙ ИНТЕЛЛЕКТУАЛЬНОГО ДАТЧИКА
СПОСОБ ФОРМИРОВАНИЯ СТАТУСА РЕЗУЛЬТАТА ИЗМЕРЕНИЙ ИНТЕЛЛЕКТУАЛЬНОГО ДАТЧИКА
Источник поступления информации: Роспатент

Показаны записи 121-130 из 150.
10.04.2016
№216.015.2ce6

Крем масляный с функциональными компонентами

Изобретение относится к пищевой промышленности, в частности к кондитерскому производству. Крем масляный включает масло сливочное, сахарную пудру, ванильную пудру, коньяк, молоко цельное сгущенное с сахаром, пищевую добавку NovaSol Omega при следующем содержании исходных компонентов, мас. %:...
Тип: Изобретение
Номер охранного документа: 0002579225
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d75

Способ производства деликатесного продукта из мяса индейки

Изобретение относится к пищевой промышленности и может быть использовано при производстве мясопродуктов. Способ включает измельчение, посол в течение 120-180 мин при температуре 16±2°C, сушку проводимую в два этапа: 1 этап термообработки осуществляют при температуре 55±2°C в течение 85-100 мин;...
Тип: Изобретение
Номер охранного документа: 0002579226
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.3311

Композиция белкового обогатителя для колбасных изделий

Изобретение относится к пищевой промышленности. Композиция содержит предварительно измельченное вторичное сырье: рубец, уши и губы крупного рогатого скота, взятые в соотношении 1:2:2 в количестве 75-79, ферментный препарат Протепсин в количестве 0,2-0,25, пробиотический концентрат Наринэ-форте...
Тип: Изобретение
Номер охранного документа: 0002582253
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3388

Способ производства обогащенного пастеризованного молока с функциональными свойствами

Изобретение относится к молочной промышленности. Способ производства обогащенного пастеризованного молока включает приемку и подготовку сырья, его бактофугирование и пастеризацию при температуре 85°C, охлаждение до температуры 2-4°C и нормализацию, далее осуществляют внесение 0,27 кг...
Тип: Изобретение
Номер охранного документа: 0002582252
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3575

Энергоблок с регулируемыми значениями реактивной мощности, величины и фазы напряжения

Изобретение относится к области электротехники и может быть использовано для регулирования напряжения и реактивной мощности блоков генерации электростанций. Техническим результатом является повышение надежности энергоблока, величины активной мощности, выдаваемой в сеть синхронным генератором...
Тип: Изобретение
Номер охранного документа: 0002581650
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3647

Раздаточная коробка транспортного средства с механизмом переключения передач

Изобретение относится к приводам транспортных машин, устанавливаемых на транспортных средствах повышенной проходимости. Раздаточная коробка содержит картер, в котором размещены несимметричный цилиндрический дифференциал, блок подвижных шестерен с промежуточными шестернями, входящими в...
Тип: Изобретение
Номер охранного документа: 0002581798
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3684

Способ производства обогащенного печенья с добавлением овсяной муки

Изобретение относится к пищевой промышленности, в частности к кондитерской, и может быть использовано при производстве мучных кондитерских изделий, а именно песочного печенья, обогащенного биологически активными компонентами. В процессе производства обогащенного печенья с добавлением овсяной...
Тип: Изобретение
Номер охранного документа: 0002581220
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3936

Способ получения труб с внутренним винтообразным оребрением и устройство для его осуществления

Изобретение относится к области изготовления труб сложного профиля на вертикальном прессе. На боковой поверхности контейнера выполняют отверстие, в котором устанавливают матрицу под прямым углом к оси пуансона в матрице-держателе, в контейнер подают заготовку. Изготовление труб большой длины...
Тип: Изобретение
Номер охранного документа: 0002582842
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.39f8

Торт "графские развалины"

Изобретение относится к пищевой промышленности, в частности к кондитерскому производству и общественному питанию. Предложен торт «Графские развалины», включающий один плоский слой из выпеченного полуфабриката, содержащего муку пшеничную высшего сорта, сахар-песок, меланж, маргарин,...
Тип: Изобретение
Номер охранного документа: 0002582815
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.39fd

Способ увеличения срока годности мучных кондитерских изделий (варианты)

Изобретение относится к пищевой, а именно к кондитерской промышленности. Способ увеличения срока годности мучных кондитерских изделий предусматривает внесение обогащающей добавки на стадии замеса теста, при производстве печенья с добавлением овсяной муки используют предварительно растворенный в...
Тип: Изобретение
Номер охранного документа: 0002582987
Дата охранного документа: 27.04.2016
Показаны записи 121-130 из 185.
10.09.2015
№216.013.7916

Центрователь

Изобретение относится к устройствам для центрирования проката и поковок. Повышение срока службы рабочего инструмента центрователей и улучшение качества центрируемых деталей обеспечивается за счет того, что устройство содержит станину 1, в которой установлены три опоры 2 с возможностью...
Тип: Изобретение
Номер охранного документа: 0002562587
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7ac6

Способ управления многофазным выпрямительным агрегатом

Изобретение относится к электротехнике, а именно к преобразовательной технике. Способ управления многофазным выпрямительным агрегатом осуществляется путем плавного регулирования выпрямленного напряжения, которое осуществляется изменением выходного напряжения трехфазного автономного инвертора...
Тип: Изобретение
Номер охранного документа: 0002563027
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7b9a

Способ получения термостабильного фотокатализатора на основе диоксида титана

Изобретение относится к способу получения термостабильного фотокатализатора на основе диоксида титана. Данный способ включает осаждение гидроксида титана из водного раствора его неорганической соли, отделение, отмывку, растворение в перекиси водорода, установление требуемого pH раствора,...
Тип: Изобретение
Номер охранного документа: 0002563239
Дата охранного документа: 20.09.2015
10.10.2015
№216.013.8168

Четырёхтактный бескривошипный поршневой тепловой двигатель с оппозитным расположением цилиндров

Изобретение может быть использовано в двигателестроении. Четырехтактный бескривошипный поршневой тепловой двигатель с оппозитным расположением цилиндров содержит головки (2) цилиндров, цилиндры (3 и 4) с расположенными в них осесимметричными поршнями (5), связанными с механизмом преобразования...
Тип: Изобретение
Номер охранного документа: 0002564725
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.8466

Стабилизатор переменного напряжения

Изобретение относится к области электротехники и может быть использовано в устройствах электропитания, в частности в стабилизаторах переменного напряжения. Техническим результатом является снижение динамических потерь электроэнергии. Стабилизатор переменного напряжения содержит коммутирующий...
Тип: Изобретение
Номер охранного документа: 0002565497
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.84cb

Система управления группой электроприводов с параллельными каналами регулирования

Изобретение относится к области электротехники и может использоваться при автоматизации технологических процессов для управления группой параллельно работающих асинхронных электродвигателей. Техническим результатом изобретения является повышение надежности работы системы управления группой...
Тип: Изобретение
Номер охранного документа: 0002565598
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.857e

Система зажигания для двс с увеличенной энергией разряда

Изобретение относится к области транспорта и может использоваться для воспламенения обедненных топливных смесей. Техническим результатом является повышение надежности искрообразования при повышенных утечках заряда по поверхности изолятора (юбочки) свечи из-за образовавшегося нагара, а также в...
Тип: Изобретение
Номер охранного документа: 0002565777
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.8a98

Способ прессования электротехнических изделий из порошковых композиций на основе углерода

Изобретение относится к прессованию электротехнических изделий из порошковых композиций на основе углерода. Проводят предварительное горячее прессование порошковой композиции при скорости пуансона 10÷12 мм/с с удельным давлением 20÷30 МПа и с последующей выдержкой при этом давлении в течение...
Тип: Изобретение
Номер охранного документа: 0002567083
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8b05

Способ производства экструдированных кукурузных хлопьев

Изобретение относится к пищевой промышленности, а именно к производству кукурузных хлопьев. Способ производства кукурузных хлопьев с пшеничными отрубями и черникой предусматривает экструдирование исходного продукта с последующим охлаждением полученного вспученного продукта. При этом кроме...
Тип: Изобретение
Номер охранного документа: 0002567196
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.9049

Способ определения жесткости технологической системы круглошлифовального станка с чпу

Изобретение относится к обработке металлов резанием со снятием стружки, а именно к исследованию точности обработки цилиндрических деталей на круглошлифовальных станках с числовым программным управлением (ЧПУ), и может быть использовано непосредственно в спроектированном цикле круглого врезного...
Тип: Изобретение
Номер охранного документа: 0002568553
Дата охранного документа: 20.11.2015
+ добавить свой РИД