×
10.02.2015
216.013.22e5

Результат интеллектуальной деятельности: СПОСОБ И ГАЗОТУРБИННАЯ УСТАНОВКА ДЛЯ УТИЛИЗАЦИИ ПОПУТНЫХ НЕФТЯНЫХ ГАЗОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтяной и газовой промышленности, а более конкретно к способу и установке для утилизации попутных нефтяных газов. Способ утилизации попутных нефтяных газов, содержащих сероводород, заключается в сжигании газов в камере сгорания и преобразовании выделяющейся тепловой энергии в электрическую со съемом электроэнергии с вращающейся турбины, при этом газы сжигают, организуя присутствие в камере сгорания возбужденного молекулярного кислорода в синглетном состоянии, обеспечивая повышение полноты сгорания и увеличение эффективности преобразования химической энергии реагентов в тепловую энергию, выделяющуюся при горении, продукты сгорания, содержащие SO, отводят и доокисляют до SO в камере доокисления, организуя дополнительное присутствие синглетного кислорода, образовавшиеся продукты охлаждают до температуры ниже температуры конденсации бинарного аэрозоля HO/HSO, генерируют в них ионы , , HO и формируют конденсированную фазу бинарного сульфатного аэрозоля HO/HSO, сульфатный аэрозоль отводят, отделяют от него пары воды и выделяют конденсат серной кислоты HO/HSO. Газотурбинная установка содержит камеру сгорания и турбину, соединенную с электрогенератором, камеру доокисления, газоразрядную ячейку, связанную с камерой сгорания и камерой доокисления, охлаждающее устройство в виде теплообменника, многоострийный электрод коронного разряда и сепаратор. Изобретение обеспечивает повышение полноты сгорания попутных нефтяных газов и утилизацию серосодержащих продуктов сгорания переводом их в серную кислоту. 2 н. и 6 з.п. ф-лы, 1 ил.

Изобретение относится к нефтяной и газовой промышленности, а более точно - к способам и газотурбинным установкам для утилизации попутных нефтяных газов.

Широко известна утилизация сжиганием попутных газов, которая практикуется сегодня на большинстве месторождений России и наносит серьезных экологический ущерб. При этом расходуется ценное сырье и упускается существенная экономическая выгода от его переработки и использования в энергетике и в химической промышленности.

В настоящее время остро стоит вопрос об утилизации попутных нефтяных газов. Попутные газы состоят из таких фракций, как CH4 (метан), C3H8 (пропан), C4H10 (бутан), и, кроме того, включают H2S.

Особенно сильно эта проблема проявляется для России, поскольку наши месторождения нефти и газа характеризуются повышенным содержанием серных соединений. Например, в попутных нефтяных газах доля сероводорода (H2S) достигает 25-30%.

Известно полезное использование попутных нефтяных или сырых природных газов в энергоустановках.

Известен способ утилизации попутного нефтяного газа, повышающий степень его использования, в котором в турбину сжатия подают воздух и попутный нефтяной газ (патент РФ 2473785). Сжатые газ и воздух направляют в камеру сгорания, где происходит горение. Тепло расширяющегося горячего газа заставляет вращаться рабочую турбину, которая вращает компрессор и ротор электрического генератора. Воду, получаемую из скважины, из которой добывается нефть, предварительно очищают от примесей и с помощью насоса, приводимого во вращение от вала газовой турбины, пропускают через экономайзер, куда подают горячий воздух, идущий от рабочей турбины. Горячую воду используют для хозяйственных нужд.

Известна переработка попутного нефтяного газа в электроэнергию, повышающая эффективность использования углеродного топлива и улучшающая экологию окружающей среды с использованием в установке, содержащей воздушный компрессор, турбину, камеру сгорания, электрогенератор и устройство подогрева воздуха после компрессора, включающее в себя теплообменный аппарат-регенератор, расположенный в выхлопной трубе. Камера сгорания с выхлопной трубой выполнена в виде наземной факельной установки сжигания попутного нефтяного газа. Компрессор оснащен электроприводом (патент РФ №2482302).

Известно сжигание попутных нефтяных газов, обеспечивающее повышение экологической чистоты утилизации попутного нефтяного газа за счет более качественного и полного сжигания попутного газа при высоких температурах в турбулентном режиме горения (патент РФ №2484374) в универсальной установке для утилизации нефтяных отходов бурения. Установка снабжена футерованной циклонной камерой сжигания с тангенциально подведенными каналами попутного газа и воздушной рубашкой охлаждения, вентилятором, подающим воздух в рубашку охлаждения, дополнительной дымовой трубой с заслонкой и инжектирующими отверстиями. Каналы попутного газа в циклонной камере сжигания выполнены с наконечниками в виде форсунок, в которые подается воздух из рубашки охлаждения, горелочное устройство расположено в передней торцевой части циклонной камеры сжигания, конденсатор водяных паров соединен с конденсатосборником.

Известные технические решения не устраняют экологический ущерб от выброса серосодержащих соединений.

Известен способ очистки попутного газа от сероводорода, представляющий собой электрофизический метод превращения сероводорода в плазме барьерного разряда без применения катализаторов, адсорбентов, щелочных растворов и аминовых реагентов. Очистку осуществляют в плазмохимическом реакторе с барьерным разрядом при амплитуде высоковольтных импульсов напряжения 5,5 кВ и частоте повторения от 500 до 3500 Гц, содержании в исходной смеси: сероводорода от 1,9 до 9,4% об.; воздуха от 1,1 до 76,6% об.; воды до 0,9% об.; углекислого газа до 11,4% об.; гелия до 8,3% об. (патент РФ №2477649).

Известное техническое решение имеет частный узкий характер, т.к. приспособлено к определенному составу попутного газа, содержащего сероводород в количестве от 1,9 до 9,4% об.

В основу изобретения положена задача создания способа и устройства, позволяющего увеличить эффективность преобразования химической энергии реагентов в тепловую и электрическую энергию, снизить выброс вредных веществ в окружающую среду при утилизации попутных нефтяных газов.

Технический результат - повышение полноты сгорания попутных нефтяных газов и утилизация серосодержащих продуктов сгорания путем перевода их в полезный продукт - серную кислоту H2SO4.

Поставленная задача решается тем, что в способе утилизации попутных нефтяных газов, содержащих сероводород, путем сжигания нефтяного газа в камере сгорания и переработки продуктов горения в серную кислоту с получением электроэнергии от вращающейся турбины, нефтяные газы сжигают, организуя присутствие в камере сгорания возбужденного молекулярного кислорода в синглетном состоянии O2(a1Δg) и увеличивая таким образом полноту сгорания, продукты сгорания, содержащие SO2, отводят и доокисляют до SO3, организуя дополнительное присутствие синглетного кислорода, образовавшиеся продукты охлаждают до температуры ниже температуры конденсации бинарного аэрозоля H2O/H2SO4, генерируют в них ионы , , H3O+ и формируют конденсированную фазу бинарного сульфатного аэрозоля H2O/H2SO4, сульфатный аэрозоль отводят, отделяют от него пары воды и выделяют конденсат серной кислоты.

Для интенсификации конденсации бинарного аэрозоля H2O/H2SO4 на продукты, после доокисления и охлаждения в теплообменнике, воздействуют многоострийным (многоточечным) коронным разрядом, который генерирует значительное количество ионов , , H3O+.

Целесообразно, если в камере доокисления SO2 синглетный кислород присутствует в количестве до ~4% от обычного кислорода в основном состоянии, а в камере сгорания - в количестве не менее 2% от обычного кислорода.

Поставленная задача решается также тем, что газотурбинная установка для утилизации попутных нефтяных газов, содержащая камеру сгорания и турбину, соединенную с электрогенератором для получения электроэнергии от вращающейся турбины, дополнительно содержит камеру доокисления, размещенную за турбиной, газоразрядную ячейку для генерации синглетного кислорода, связанную с камерой сгорания и камерой доокисления, размещенные за камерой окисления охлаждающее устройство в виде теплообменника, многоострийный электрод коронного разряда и сепаратор, например центробежный.

В дальнейшем изобретение поясняется описанием и чертежом, на котором представлена принципиальная схема газотурбинной установки для утилизации попутных нефтяных газов согласно изобретению.

Воспламенить попутный газ, состоящий из сероводорода H2S, при атмосферном давлении в воздухе даже со стехиометрическим соотношением топлива и окислителя удается лишь при начальной температуре ~850-900 K, температура продуктов горения (в основном SO2 и H2O) при сжигании стехиометрической смеси H2O + воздух при атмосферном давлении достигает ~2500 K, при этом сероводород имеет невысокую полноту сгорания и, кроме того, в результате его сжигания окружающая среда загрязняется оксидами серы.

Способ для утилизации попутных нефтяных газов согласно изобретению может быть реализован посредством газотурбинной установки, принципиальная схема которой представлена на чертеже, на котором 1 - камера сгорания, 2 - турбина, 3 - камера доокисления, 4 - теплообменник, 5 - центробежный сепаратор, 6 - разрядная ячейка (генератор синглетного кислорода), 7 - многоострийный электрод коронного разряда (генератор ионов), 8 - съем электроэнергии с вращающейся турбины, 9 - конденсат серной кислоты, 10 - съем тепла с теплообменника.

Для увеличения полноты сгорания предлагается осуществлять сжигание в камере сгорания попутных нефтяных газов в присутствии синглетного кислорода. Добавление синглетного кислорода даже в кол-ве 2% (в мольных долях) от нормального молекулярного кислорода в основном электронном состоянии позволяет понизить температуру воспламенения до ~550 K и увеличить долю химической энергии, запасенной в смеси H2O + воздух, выделяющейся в виде тепловой энергии при горении.

Синглетный кислород является общим названием электронно-возбужденных состояний молекулярного кислорода, также обозначаемых в спектроскопии как O2(a1Δg) или . Из-за различия в электронных оболочках его свойства отличны от обычного нормального кислорода . Синглетный кислород является химически более активным, но менее стабильным, чем кислород в нормальном (основном) состоянии.

Энергетически выгодно получать синглетный кислород в электрическом разряде с приведенной напряженностью электрического поля E/N=(10-20)·10-16 В·см2. При атмосферном давлении такие значения E/N реализуются только в несамостоятельном разряде, например в комбинированном скрещенном разряде, состоящем из высоковольтного, высокочастотного разряда и разряда прямого тока.

Чтобы энергию, высвободившуюся при горении, можно было удобно передавать к потребителю, ее надо преобразовать в электрическую. Для этого в установке после камеры сгорания 1 продукты горения проходят через турбину 2, в которой они отдают свою тепловую энергию, расширяясь и охлаждаясь. Чем больше расширение газов, тем большая доля тепловой энергии в турбине преобразуется в механическую. При этом температура продуктов горения неизбежно падает.

Согласно изобретению такой компонент продуктов сгорания, как SO2, очень вредный с экологической точки зрения, отфильтровывают, чтобы он не попал в атмосферу.

Для этого его доокисляют до SO3 в присутствии синглетного кислорода с последующим получением газообразной серной кислоты H2SO4 в реакции SO3+H2O=H2SO4.

Диоксид серы SO2 даже при достаточно высокой температуре выхлопа 800-900 K не окислятся до SO3 без специальных воздействий.

Чтобы при указанной температуре перевести (доокислить) SO2 в SO3 необходимо возбуждать молекулярный кислород в синглетное состояние O2(a1Δg) и обеспечивать определенное его количество в камере дооксиления. Установлено, что реакция SO2+O2(a1Δg)=SO3+O протекает на несколько порядков величины быстрее, чем реакция окисления SO2 обычным молекулярным кислородом. Присутствие синглетного кислорода O2(a1Δg) в количестве до ~4% от обычного кислорода в основном состоянии переводит примерно 70% SO2 в SO3 даже при относительно низкой температуре 900 K на приемлемой длине камеры доокисления (<1 м).

Далее, продукты сгорания охлаждают в теплообменнике до 400-300°K, чтобы из SO3 при температуре 800-900 K получить газообразный H2SO4, т.к. именно при таких температурах эффективно протекает реакция ассоциации SO3+H2O=H2SO4.

Чтобы получить конденсированную фазу H2O/H2SO4 при таких температурах, смесь продуктов сгорания, включающую SO2, SO3, H2O и H2SO4, подвергают воздействию слаботочного, например коронного, разряда. В результате чего в смеси генерируются (образуются) ионы , , H3O+, которые являются центрами формирования ионных ассоциатов серной кислоты в воде H3O+(H2SO4)n(H2O)m и , на основе которых формируются из бинарного раствора H2O/H2SO4 жидкие частицы нанометрового размера (с диаметром d=5-20 нм). Для эффективной конденсации H2O/H2SO4 необходимо иметь концентрацию ионов H3O+, , как зародышей конденсации на уровне ~1011-1012 см-3.

После этого выделяют конденсат H2SO4 сепарацией образовавшихся газов и аэрозольных частиц.

Газотурбинная установка для организации возбуждения молекулярного кислорода в синглетное состояние O2(a1Δg) снабжена газоразрядной ячейкой 6, связанной с камерой сгорания 1 и камерой доокисления 3, установка содержит также теплообменный аппарат 4 для организации охлаждения и многоострийный электрод 7 коронного разряда для интенсификации образования H2SO4.

Многоточечный коронный разряд - наиболее эффективный источник ионов, в котором энергия практически не тратится на возбуждение атомов и молекул в другие состояния, ориентирован вдоль потока. Сетчатый многоострийный электрод коронного разряда для создания однородного поля ионов должен располагаться поперек потока в теплообменнике и может быть выполнен в виде поперечной сетки, в узлах которой продольно потоку расположены острия электродов. На сетке набегающий поток создает вихревую пелену, что способствует эффективному перемешиванию выхлопных газов и ионов и образованию аэрозоля, содержащего конденсат H2SO4.

Выделение конденсата H2SO4 проводят в сепараторе с осевой закруткой (центробежный сепаратор), чтобы конденсат выделялся на стенках.

Способ осуществляют при работе установки следующим образом.

Попутные нефтяные газы, содержащие H2S, сжигают в камере сгорания 1 газотурбинной установки (ГТУ), организуя присутствие в камере сгорания возбужденного молекулярного кислорода в синглетном состоянии O2(a1Δg) электрическим разрядом с приведенной напряженностью электрического поля E/N=(10-20)·10-16 В·см2, генерируемого в газоразрядной ячейке 6, связанной с камерой сгорания 1 и камерой доокисления 3, установка содержит также теплообменник 4 для организации охлаждения и многоострийный электрод 7 коронного разряда для интенсификации образования бинарных аэрозольных частиц H2O/H2SO4. Синглетный кислород O2(a1Δg) в камере сгорания присутствует в количестве не менее 2% от обычного кислорода в основном состоянии.

Образующиеся продукты сгорания, содержащие SO2, поступают в газовую турбину 2, соединенную с электрогенератором 8 для съема энергии с вращающейся турбины.

Охлажденные в турбине 2 продукты горения после турбины 2 поступают в камеру доокисления 3, где также организуется присутствие возбужденного молекулярного кислорода в синглетном состоянии O2(a1Δg) путем его подачи от газоразрядной ячейки 6, в которой организован электрический разряд с приведенной напряженностью электрического поля E/N=(10-20)·10-16 В·см2. Реакция SO2+O2(a1Δg)=SO3+O протекает на несколько порядков величины быстрее, чем реакция окисления обычным молекулярным кислородом O2(X3Σg-). Присутствие в количестве до ~4% синглетного кислорода от обычного кислорода в основном состоянии переводит примерно 70% SO2 в SO3 при температуре 900 K на длине камеры доокисления ~1 м.

Далее продукты из камеры доокисления 3 поступают в теплообменник 4, на выходе из которого реализуется температура ниже температуры конденсации сульфатного бинарного аэрозоля H2O/H2SO4, с которого осуществляется съем тепловой энергии, которая является дополнительным полезным продуктом переработки попутных газов.

На продукты доокисления в выходной части теплообменника воздействуют многоточечным (многоострийным) коронным разрядом. Образуются ионы , , H3O+, которые являются центрами формирования ионных ассоциатов в воде H3O+(H2SO4)n(H2O)m и , на основе которых формируется сульфатный бинарный раствор H2O/H2SO4 (сульфатный аэрозоль).

Сульфатный аэрозоль, содержащий жидкие частицы H2O/H2SO4 и пары воды, отводят в центробежный сепаратор 5, который отделяет конденсированную фазу H2O/H2SO4 от паров воды. Выделенный конденсат 9 серной кислоты может быть использован как целевой продукт.


СПОСОБ И ГАЗОТУРБИННАЯ УСТАНОВКА ДЛЯ УТИЛИЗАЦИИ ПОПУТНЫХ НЕФТЯНЫХ ГАЗОВ
СПОСОБ И ГАЗОТУРБИННАЯ УСТАНОВКА ДЛЯ УТИЛИЗАЦИИ ПОПУТНЫХ НЕФТЯНЫХ ГАЗОВ
СПОСОБ И ГАЗОТУРБИННАЯ УСТАНОВКА ДЛЯ УТИЛИЗАЦИИ ПОПУТНЫХ НЕФТЯНЫХ ГАЗОВ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 215.
20.01.2016
№216.013.a344

Способ форсирования авиационных двигателей

Изобретение относится к энергетике. Способ работы газотурбинного двигателя с форсажной камерой, заключающийся в том, что формируют топливовоздушную смесь и обеспечивают ее горение в основной камере сгорания. Продукты сгорания расширяют в турбине и подают их в форсажную камеру, где смешивают...
Тип: Изобретение
Номер охранного документа: 0002573438
Дата охранного документа: 20.01.2016
10.02.2016
№216.014.c459

Способ получения медного электролитического порошка

Изобретение относится к технологии получения медного электролитического порошка с размером частиц менее 63 мкм с удельной поверхностью в диапазоне от 1900 до 2500 см/г и насыпной плотностью менее 0,75 г/см. Электролиз ведут на стержневых медных катодах в электролите с серной кислотой при двух...
Тип: Изобретение
Номер охранного документа: 0002574185
Дата охранного документа: 10.02.2016
20.06.2016
№217.015.02ec

Стенд для циклических испытаний газодинамических подшипников

Изобретение относится к испытательной технике и может быть использовано при испытаниях и доводке газовых подшипников высокооборотных турбомашин. Стенд содержит вал, установленный в радиальном подшипнике, закрепленном на станине стенда, установленный на валу испытуемый газодинамический...
Тип: Изобретение
Номер охранного документа: 0002587758
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2d20

Способ конвертирования турбовального авиационного двигателя в наземную газотурбинную установку

Способ конвертирования турбовального авиационного двигателя в наземную газотурбинную установку. Удаляют лопатки из проточных частей последних ступеней компрессора и первых ступеней турбины. Заменяют сопловой аппарат первой ступени (из оставшихся) конвертированной турбины на сопловой аппарат...
Тип: Изобретение
Номер охранного документа: 0002579526
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3221

Способ функционирования турбореактивного двухконтурного двигателя летательного аппарата с выносными вентиляторными модулями

Изобретение позволяет улучшить согласование взлетного и крейсерского режимов работы двигателя и повысить топливную экономичность двигателей гражданской и транспортной авиации. Указанный технический результат достигается тем, что турбореактивный двухконтурный двигатель летательного аппарата с...
Тип: Изобретение
Номер охранного документа: 0002580608
Дата охранного документа: 10.04.2016
20.05.2016
№216.015.3f8b

Муфта составного ротора газогенератора газотурбинного двигателя

Муфта составного ротора газогенератора газотурбинного двигателя содержит средства для передачи крутящего момента и осевого сцепления двух соосных вращающихся колес в виде перемещающихся элементов, размещенных в кольцевых выемках, выполненных в цапфе центробежного колеса компрессора и цапфе...
Тип: Изобретение
Номер охранного документа: 0002584109
Дата охранного документа: 20.05.2016
12.01.2017
№217.015.5842

Способ сжигания низкокалорийного топлива

Изобретение относится к области переработки низкокалорийного топлива, утилизации твердых бытовых и промышленных отходов. Низкокалорийное топливо газифицируют в пиролизном реакторе 1. Окружающий воздух предварительно активируют электрическим разрядом с приведенной напряженностью электрического...
Тип: Изобретение
Номер охранного документа: 0002588220
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5898

Насос-дозатор

Изобретение относится к системам подачи и дозирования рабочего тела с электроприводными насосами, в частности к системам топливоподачи и управления газотурбинных двигателей. Насос-дозатор содержит насос подачи рабочего тела с регулируемым электроприводом, включающим электродвигатель (ЭД), блок...
Тип: Изобретение
Номер охранного документа: 0002588315
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.713e

Способ определения тяги в полете турбореактивного двухконтурного двигателя со смешением потоков

Изобретение относится к области управления турбореактивным двухконтурным двигателем со смешением потоков ТРДД и ТРДД с форсажной камерой сгорания ТРДДФ и позволяет определить с повышенной точностью тягу в полете с учетом реального истечения газа из реактивного сопла. По замерам полетной...
Тип: Изобретение
Номер охранного документа: 0002596413
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7987

Способ работы газотурбинной установки непрерывного действия

Изобретение может быть использовано в стационарных газотурбинных установках в камере сгорания топлива. Способ работы газотурбинной установки непрерывного действия заключается в сжатии поступающего воздуха в компрессоре, подаче сжатого воздуха и топлива в первую камеру сгорания, сжигании в...
Тип: Изобретение
Номер охранного документа: 0002599407
Дата охранного документа: 10.10.2016
Показаны записи 51-60 из 95.
20.01.2016
№216.013.a344

Способ форсирования авиационных двигателей

Изобретение относится к энергетике. Способ работы газотурбинного двигателя с форсажной камерой, заключающийся в том, что формируют топливовоздушную смесь и обеспечивают ее горение в основной камере сгорания. Продукты сгорания расширяют в турбине и подают их в форсажную камеру, где смешивают...
Тип: Изобретение
Номер охранного документа: 0002573438
Дата охранного документа: 20.01.2016
10.02.2016
№216.014.c459

Способ получения медного электролитического порошка

Изобретение относится к технологии получения медного электролитического порошка с размером частиц менее 63 мкм с удельной поверхностью в диапазоне от 1900 до 2500 см/г и насыпной плотностью менее 0,75 г/см. Электролиз ведут на стержневых медных катодах в электролите с серной кислотой при двух...
Тип: Изобретение
Номер охранного документа: 0002574185
Дата охранного документа: 10.02.2016
20.06.2016
№217.015.02ec

Стенд для циклических испытаний газодинамических подшипников

Изобретение относится к испытательной технике и может быть использовано при испытаниях и доводке газовых подшипников высокооборотных турбомашин. Стенд содержит вал, установленный в радиальном подшипнике, закрепленном на станине стенда, установленный на валу испытуемый газодинамический...
Тип: Изобретение
Номер охранного документа: 0002587758
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2d20

Способ конвертирования турбовального авиационного двигателя в наземную газотурбинную установку

Способ конвертирования турбовального авиационного двигателя в наземную газотурбинную установку. Удаляют лопатки из проточных частей последних ступеней компрессора и первых ступеней турбины. Заменяют сопловой аппарат первой ступени (из оставшихся) конвертированной турбины на сопловой аппарат...
Тип: Изобретение
Номер охранного документа: 0002579526
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3221

Способ функционирования турбореактивного двухконтурного двигателя летательного аппарата с выносными вентиляторными модулями

Изобретение позволяет улучшить согласование взлетного и крейсерского режимов работы двигателя и повысить топливную экономичность двигателей гражданской и транспортной авиации. Указанный технический результат достигается тем, что турбореактивный двухконтурный двигатель летательного аппарата с...
Тип: Изобретение
Номер охранного документа: 0002580608
Дата охранного документа: 10.04.2016
20.05.2016
№216.015.3f8b

Муфта составного ротора газогенератора газотурбинного двигателя

Муфта составного ротора газогенератора газотурбинного двигателя содержит средства для передачи крутящего момента и осевого сцепления двух соосных вращающихся колес в виде перемещающихся элементов, размещенных в кольцевых выемках, выполненных в цапфе центробежного колеса компрессора и цапфе...
Тип: Изобретение
Номер охранного документа: 0002584109
Дата охранного документа: 20.05.2016
12.01.2017
№217.015.5842

Способ сжигания низкокалорийного топлива

Изобретение относится к области переработки низкокалорийного топлива, утилизации твердых бытовых и промышленных отходов. Низкокалорийное топливо газифицируют в пиролизном реакторе 1. Окружающий воздух предварительно активируют электрическим разрядом с приведенной напряженностью электрического...
Тип: Изобретение
Номер охранного документа: 0002588220
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5898

Насос-дозатор

Изобретение относится к системам подачи и дозирования рабочего тела с электроприводными насосами, в частности к системам топливоподачи и управления газотурбинных двигателей. Насос-дозатор содержит насос подачи рабочего тела с регулируемым электроприводом, включающим электродвигатель (ЭД), блок...
Тип: Изобретение
Номер охранного документа: 0002588315
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.713e

Способ определения тяги в полете турбореактивного двухконтурного двигателя со смешением потоков

Изобретение относится к области управления турбореактивным двухконтурным двигателем со смешением потоков ТРДД и ТРДД с форсажной камерой сгорания ТРДДФ и позволяет определить с повышенной точностью тягу в полете с учетом реального истечения газа из реактивного сопла. По замерам полетной...
Тип: Изобретение
Номер охранного документа: 0002596413
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7987

Способ работы газотурбинной установки непрерывного действия

Изобретение может быть использовано в стационарных газотурбинных установках в камере сгорания топлива. Способ работы газотурбинной установки непрерывного действия заключается в сжатии поступающего воздуха в компрессоре, подаче сжатого воздуха и топлива в первую камеру сгорания, сжигании в...
Тип: Изобретение
Номер охранного документа: 0002599407
Дата охранного документа: 10.10.2016
+ добавить свой РИД