×
10.02.2015
216.013.2278

ЭЛЕКТРОЛИТИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА ГЕКСАБОРИДА ЦЕРИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к электролитическому способу получения наноразмерного порошка гексаборида церия, включающему синтез гексаборида церия из расплавленных сред в атмосфере очищенного и осушенного аргона. При этом синтез проводят из галогенидного расплава, в качества источника церия используют безводный хлорид церия, в качестве источника бора - фторборат калия, в качестве растворителя - эквимольную смесь хлоридов калия и натрия при следующем соотношении компонентов, мас.%: хлорид церия 1,0÷4,0; фторборат калия 1,0÷3,0; остальное - эквимольная смесь хлоридов калия и натрия, процесс ведут при температуре 700°С, плотностях тока от 0,3 до 0,7 А/см и потенциалах электролиза относительно стеклоуглеродного электрода сравнения от -2,0 до -3,1 B. Использование настоящего способа позволяет получать целевой продукт в чистом виде при высокой скорости получения. 6 ил., 3 пр.
Основные результаты: Электролитический способ получения наноразмерного порошка гексаборида церия, включающий синтез гексаборида церия из расплавленных сред в атмосфере очищенного и осушенного аргона, отличающийся тем, что синтез проводят из галогенидного расплава, в качества источника церия используют безводный хлорид церия, в качестве источника бора - фторборат калия, в качестве растворителя - эквимольную смесь хлоридов калия и натрия при следующем соотношении компонентов, мас.%:хлорид церия 1,0÷4,0;фторборат калия 1,0÷3,0;остальное - эквимольная смесь хлоридов калия и натрия,процесс ведут при температуре 700°С, плотностях тока от 0,3 до 0,7 А/см и потенциалах электролиза относительно стеклоуглеродного электрода сравнения от -2,0 до -3,1 B.
Реферат Свернуть Развернуть

Изобретение относится к электролитическим способам получения неорганических соединений, в частности соединений церия, используемых в ядерной энергетике, атомной технике, а также в различных областях современной техники.

Известны способы получения гексаборида церия электролизом расплавленных сред [Самсонов Г.В. Тугоплавкие соединения редкоземельных металлов М, Изд-во «Металлургия», 1964, стр.53-55]. Электролиз осуществляют в графитовых тиглях, служащих одновременно анодом; катод изготовляют из графита или молибдена. В состав ванны для электролиза входят окислы редкоземельных металлов и борный ангидрид с добавками фторидов щелочных и щелочноземельных металлов для снижения температуры и вязкости ванны. Температура электролиза смесей составляет 950-1000°C, напряжение на ванне 8,54÷12B, плотность тока 2,5÷2,6 А/см2. Состав ванны для получения гексаборида церия:

CeO2+2B2O3+CeF2,

или 1/3CeO2+B2O3+CaF2,

или 1/10CeO2+2B2O3+MgO+MgF2.

Недостатком данного технического решения являются высокая температура синтеза и сложность отделения целевого продукта от расплавленного электролита из-за низкой растворимости боратов и фторидов, загрязнение побочными продуктами, в частности боратами, а также невозможность получения ндивидуальной боридной фазы.

Наиболее близким является способ электролитического получения гексаборида церия по патенту РФ №2466090. Электролиз осуществляют в стеклоуглеродных тиглях, служащих одновременно анодом; катодом служит серебряный стержень. В состав ванны для электролиза входят:

хлорид церия 1,0÷4,0;

фторборат калия 1,0÷3,0;

остальное - эвтектическая смесь хлоридов калия, натрия и цезия.

Температура электролиза 550°C при плотностях тока от 0,1 до 1,0 А/см2 и потенциалах электролиза относительно стеклоуглеродного электрода сравнения от -2,0 до -3,0B.

Недостатком данного способа является получение побочного продукта СеВ4 за счет низких температур и сложность отделения его от целевого продукта гексаборида церия.

Задачей настоящего изобретения является получение наноразмерного порошка чистого гексаборида церия, повышение скорости синтеза целевого продукта из расплавленного электролита за счет увеличения температуры процесса синтеза.

Сущность изобретения заключается в том, что осуществляют совместное электровыделение церия и бора из галогенидного расплава на катоде и последующее взаимодействие их на атомарном уровне с образованием ультрадисперсных порошков гексаборида церия. Процесс осуществляется в трехэлектродной кварцевой ячейке, где катодом служит вольфрамовый стержень; анодом и одновременно контейнером - стеклоуглеродный тигель; электродом сравнения - стеклоуглеродная пластина. Синтез ультрадисперсного порошка гексаборида церия проводят посредством потенциостатического электролиза из эквимольного расплава KCl-NaCl, содержащего трихлорид церия и фторборат калия в атмосфере очищенного и осушенного аргона. Потенциостатический электролиз эквимольного расплава KCl-NaCl, содержащего трихлорид церия и фторборат калия, проводят на вольфрамовом катоде при потециалах в пределах от -2,0 до -3,1B относительно стеклоуглеродного электрода сравнения. Полученную катодно-солевую грушу, состоящую из гексаборида церия, отмывают от фторида церия фторидом калия.

Электрохимические процессы, происходящие при образовании боридов церия, можно представить следующими уравнениями:

В качества источника церия используют безводный трихлорид церия, в качестве источника бора - фторборат калия, в качестве растворителя - эквимольную смесь хлоридов калия и натрия при следующем соотношении компонентов, мас.%:

хлорид церия 1,0÷4,0;

фторборат калия 1,0÷3,0;

остальное - эквимольная смесь хлоридов калия и натрия.

Электролиз ведут в потенциостатическом режиме при температуре 700°C. Оптимальная продолжительность ведения процесса электролиза составляет 50÷60 мин.

Выбор компонентов электролитической ванны произведен на основании термодинамического анализа и кинетических измерений совместного электровыделения церия и бора из галогенидных расплавов. Из соединений церия и бора, не содержащих кислород, хлорид церия и фторборат калия являются достаточно низкоплавкими и хорошо растворимыми в эквимольном расплаве KCl-NaCl. Растворитель (эквимольный расплав KCl-NaCl) выбран из следующих соображений: напряжение разложения расплавленной смеси KCl-NaCl больше таковых для расплавов CeCl3 и KBF4; хорошая растворимость в воде.

Фазовый состав идентифицирован методом рентгенофазового анализа на дифрактометре ДРОН-6, который показал наличие только фазы CeB6 (изображение на фиг.1, 3, 5).

Фиг.1 - Рентгенограмма порошка борида церия CeB6 (линия 1), полученного из расплава KCl-NaCl на вольфрамовом катоде при φ=-2,3B.

Фиг.3 - Рентгенограмма порошка борида церия CeB6 (линия 1), полученного из расплава KCl-NaCl на вольфрамовом электроде при φ=-3,1B.

Фиг.5 - Рентгенограмма порошка борида церия CeB6 (линия 1), полученного на вольфрамовом катоде при φ=-2,5B.

Размер частиц определяли лазерным дифракционным анализатором Fritsch Analysette-22 (изображение на фиг.2, 4, 6).

Фиг.2 - Диаграмма распределения по размерам частиц, полученных при 973K электрохимическим синтезом при i=0,5A/см2.

Фиг.4 - Электронный снимок, частиц, полученных при 973K электрохимическим синтезом при i=0,3A/см2.

Фиг.6 - Диаграмма распределения по размерам частиц, полученных при 973K электрохимическим синтезом при i=0,7A/см2.

Пример 1

В стеклоуглеродный тигель объемом 40 мл помещают солевую смесь массой 31,67 г, содержащую 0,66 г CeCl3 (2,1 мас.%); 1,01 г KBF4 (3,18 мас.%); 16,8 г KCl (53,04 мас.%); 13,2 г NaCl (41,68 мас.%). Тигель с солевой смесью помещают в кварцевую ячейку и в атмосфере сухого аргона выдерживают до температуры расплавления системы. По достижении рабочей температуры 700°C в расплав опускают вольфрамовый катод, электролиз проводят при потенциале -2,3B относительно стеклоуглеродного электрода сравнения (плотность тока 0,5А/см2). Катодно-солевую грушу, состоящую из гексаборида церия, отмывают от фторида церия фторидом калия. Размер частиц полученного порошка гексаборида церия 10-30 нм.

Пример 2

В стеклоуглеродный тигель объемом 40 мл помещают солевую смесь массой 34,2 г, содержащую 2,78 г CeCl3 (8,11 мас.%); 1,42 г KBF4 (4,15 мас.%); 16,8 г KCl (49,12 мас.%); 13,2 г NaCl (38,6 мас.%). Тигель с солевой смесью помещают в кварцевую ячейку и в атмосфере сухого аргона выдерживают до температуры расплавления системы. По достижении рабочей температуры 700°C в расплав опускают вольфрамовый катод, электролиз проводят при потенциале -3,1B относительно стеклоуглеродного электрода сравнения (плотность тока 0,3 А/см2). Катодно-солевую грушу, состоящую из гексаборида церия, отмывают от фторида церия фторидом калия. Размер частиц полученного порошка гексаборида церия 50-70 нм.

Пример 3

В стеклоуглеродный тигель объемом 40 мл помещают солевую смесь массой 33,74 г содержащую 1,13 г CeCl3 (3,37 мас.%); 2,61 г KBF4 (7,72 мас.%); 16,8 г KCl (49,79 мас.%); 13,2 г NaCl (39,12 мас.%). Тигель с солевой смесью помещают в кварцевую ячейку и в атмосфере сухого аргона выдерживают до температуры расплавления системы. По достижении рабочей температуры 700°C в расплав опускают вольфрамовый катод, электролиз проводят при потенциале -2,5B относительно стеклоуглеродного электрода сравнения (плотность тока 0,7 А/см2). Катодно-солевую грушу, состоящую из гексаборида церия, отмывают от фторида церия фторидом калия. Размер частиц полученного порошка гексаборида церия 100 нм.

Техническим результатом является:

- получение наноразмерных частиц гексаборида церия;

- получение целевого продукта в чистом виде за счет хорошей растворимости эквимольного расплава хлорида калия и хлорида натрия в воде, растворимости образующегося фторида церия фторидом калия.

Электролитический способ получения наноразмерного порошка гексаборида церия, включающий синтез гексаборида церия из расплавленных сред в атмосфере очищенного и осушенного аргона, отличающийся тем, что синтез проводят из галогенидного расплава, в качества источника церия используют безводный хлорид церия, в качестве источника бора - фторборат калия, в качестве растворителя - эквимольную смесь хлоридов калия и натрия при следующем соотношении компонентов, мас.%:хлорид церия 1,0÷4,0;фторборат калия 1,0÷3,0;остальное - эквимольная смесь хлоридов калия и натрия,процесс ведут при температуре 700°С, плотностях тока от 0,3 до 0,7 А/см и потенциалах электролиза относительно стеклоуглеродного электрода сравнения от -2,0 до -3,1 B.
ЭЛЕКТРОЛИТИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА ГЕКСАБОРИДА ЦЕРИЯ
ЭЛЕКТРОЛИТИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА ГЕКСАБОРИДА ЦЕРИЯ
ЭЛЕКТРОЛИТИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА ГЕКСАБОРИДА ЦЕРИЯ
ЭЛЕКТРОЛИТИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА ГЕКСАБОРИДА ЦЕРИЯ
ЭЛЕКТРОЛИТИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА ГЕКСАБОРИДА ЦЕРИЯ
ЭЛЕКТРОЛИТИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА ГЕКСАБОРИДА ЦЕРИЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 11.
10.03.2013
№216.012.2e21

Электролитический способ получения ультрадисперсного порошка гексаборида лантана

Изобретение относится к электролитическим способам получения чистого гексаборида лантана. Задача решается совместным электровыделением лантана и бора из хлоридного расплава на катоде и их последующее взаимодействие на атомарном уровне. Процесс осуществляется в трехэлектродной кварцевой ячейке,...
Тип: Изобретение
Номер охранного документа: 0002477340
Дата охранного документа: 10.03.2013
27.03.2013
№216.012.313c

Способ получения композиций карбида вольфрама с платиной

Изобретение относится к электрохимическому способу получения композиций карбида вольфрама с платиной и может быть использовано для создания нового поколения топливных элементов и электролизеров для электрохимического получения водорода. Получение композиции карбида вольфрама с платиной,...
Тип: Изобретение
Номер охранного документа: 0002478142
Дата охранного документа: 27.03.2013
20.02.2014
№216.012.a27f

Электролитический способ получения ультрадисперсного порошка гексаборида гадолиния

Изобретение относится к электролитическим способам получения чистого ультрадисперсного порошка гексаборида гадолиния. Порошок синтезируют электролизом из расплавленной среды, включающей хлорид гадолиния и фторборат калия в фоновом электролите при температуре 550±10°C в атмосфере очищенного и...
Тип: Изобретение
Номер охранного документа: 0002507314
Дата охранного документа: 20.02.2014
10.04.2014
№216.012.af73

Электролитический способ получения ультрадисперсного порошка гексаборида диспрозия

Изобретение относится к электролитическим способам получения чистого гексаборида диспрозия. В качестве источника диспрозия используют безводный трихлорид диспрозия, источника бора - фторборат калия, фонового электролита - эквимольную смесь хлоридов калия и натрия. Электролиз ведут в...
Тип: Изобретение
Номер охранного документа: 0002510630
Дата охранного документа: 10.04.2014
27.04.2014
№216.012.bd71

Способ получения ультрадисперсных порошков интерметаллидов иттрия с кобальтом

Изобретение относится к электрохимическому получению ультрадисперсных порошков интерметаллидов иттрия с кобальтом для создания магнитных материалов и ячеек хранения информации. Порошок получают путем электролиза расплава при температуре 700°С и плотностях катодного тока 2,6-3,2 А/см, в среде...
Тип: Изобретение
Номер охранного документа: 0002514237
Дата охранного документа: 27.04.2014
20.01.2015
№216.013.1f92

Электролитический способ получения наноразмерного порошка дисилицида церия

Изобретение относится к получению нанопорошков дисилицида церия и может быть использовано для изготовления токопроводящих и резистивных элементов интегральных схем. Способ электролитического получения наноразмерного порошка дисилицида церия включает синтез дисилицида церия из расплавленных сред...
Тип: Изобретение
Номер охранного документа: 0002539523
Дата охранного документа: 20.01.2015
10.02.2015
№216.013.2417

Способ добычи и переработки молибденсодержащих руд

Изобретение относится к горной промышленности и может быть использовано при добыче и переработке молибденсодержащих руд. Способ добычи и переработки молибденсодержащих руд включает районирование карьерного поля, оконтуривание различных по технологическим свойствам участков рудного массива,...
Тип: Изобретение
Номер охранного документа: 0002540692
Дата охранного документа: 10.02.2015
25.08.2017
№217.015.d1e5

Электрохимический способ получения наноразмерных порошков интерметаллидов гольмия и никеля в галогенидных расплавах

Изобретение относится к электрохимическому получению наноразмерных порошков интерметаллидов гольмия и никеля, которые могут быть использованы в качестве катализаторов в химической и нефтехимической промышленности, в водородной энергетике для обратимого сорбирования водорода, а также для...
Тип: Изобретение
Номер охранного документа: 0002621508
Дата охранного документа: 06.06.2017
20.11.2017
№217.015.ef7b

Электрохимический способ получения порошка силицида вольфрама

Изобретение относится к электрохимическому способу получения порошка силицида вольфрама, включающий электролиз расплава при температуре 850-950°С, содержащего хлорид натрия, вольфрамат натрия и диоксид кремния. Способ характеризуется тем, что дополнительно вводят фторид натрия при следующем...
Тип: Изобретение
Номер охранного документа: 0002629190
Дата охранного документа: 25.08.2017
29.12.2017
№217.015.f041

Электрохимический способ получения борида молибдена

Изобретение относится к электрохимическому синтезу борида молибдена, включающему электролиз расплава, содержащего хлорид калия, молибдат натрия и оксид бора, хлорид натрия. Способ характеризуется тем, что дополнительно вводят фторид натрия, а также для повышения чистоты и снижения температуры...
Тип: Изобретение
Номер охранного документа: 0002629188
Дата охранного документа: 25.08.2017
Показаны записи 1-10 из 14.
27.03.2013
№216.012.313c

Способ получения композиций карбида вольфрама с платиной

Изобретение относится к электрохимическому способу получения композиций карбида вольфрама с платиной и может быть использовано для создания нового поколения топливных элементов и электролизеров для электрохимического получения водорода. Получение композиции карбида вольфрама с платиной,...
Тип: Изобретение
Номер охранного документа: 0002478142
Дата охранного документа: 27.03.2013
20.02.2014
№216.012.a27f

Электролитический способ получения ультрадисперсного порошка гексаборида гадолиния

Изобретение относится к электролитическим способам получения чистого ультрадисперсного порошка гексаборида гадолиния. Порошок синтезируют электролизом из расплавленной среды, включающей хлорид гадолиния и фторборат калия в фоновом электролите при температуре 550±10°C в атмосфере очищенного и...
Тип: Изобретение
Номер охранного документа: 0002507314
Дата охранного документа: 20.02.2014
10.04.2014
№216.012.af73

Электролитический способ получения ультрадисперсного порошка гексаборида диспрозия

Изобретение относится к электролитическим способам получения чистого гексаборида диспрозия. В качестве источника диспрозия используют безводный трихлорид диспрозия, источника бора - фторборат калия, фонового электролита - эквимольную смесь хлоридов калия и натрия. Электролиз ведут в...
Тип: Изобретение
Номер охранного документа: 0002510630
Дата охранного документа: 10.04.2014
27.04.2014
№216.012.bd71

Способ получения ультрадисперсных порошков интерметаллидов иттрия с кобальтом

Изобретение относится к электрохимическому получению ультрадисперсных порошков интерметаллидов иттрия с кобальтом для создания магнитных материалов и ячеек хранения информации. Порошок получают путем электролиза расплава при температуре 700°С и плотностях катодного тока 2,6-3,2 А/см, в среде...
Тип: Изобретение
Номер охранного документа: 0002514237
Дата охранного документа: 27.04.2014
20.01.2015
№216.013.1f92

Электролитический способ получения наноразмерного порошка дисилицида церия

Изобретение относится к получению нанопорошков дисилицида церия и может быть использовано для изготовления токопроводящих и резистивных элементов интегральных схем. Способ электролитического получения наноразмерного порошка дисилицида церия включает синтез дисилицида церия из расплавленных сред...
Тип: Изобретение
Номер охранного документа: 0002539523
Дата охранного документа: 20.01.2015
10.02.2015
№216.013.2417

Способ добычи и переработки молибденсодержащих руд

Изобретение относится к горной промышленности и может быть использовано при добыче и переработке молибденсодержащих руд. Способ добычи и переработки молибденсодержащих руд включает районирование карьерного поля, оконтуривание различных по технологическим свойствам участков рудного массива,...
Тип: Изобретение
Номер охранного документа: 0002540692
Дата охранного документа: 10.02.2015
25.08.2017
№217.015.d1e5

Электрохимический способ получения наноразмерных порошков интерметаллидов гольмия и никеля в галогенидных расплавах

Изобретение относится к электрохимическому получению наноразмерных порошков интерметаллидов гольмия и никеля, которые могут быть использованы в качестве катализаторов в химической и нефтехимической промышленности, в водородной энергетике для обратимого сорбирования водорода, а также для...
Тип: Изобретение
Номер охранного документа: 0002621508
Дата охранного документа: 06.06.2017
20.11.2017
№217.015.ef7b

Электрохимический способ получения порошка силицида вольфрама

Изобретение относится к электрохимическому способу получения порошка силицида вольфрама, включающий электролиз расплава при температуре 850-950°С, содержащего хлорид натрия, вольфрамат натрия и диоксид кремния. Способ характеризуется тем, что дополнительно вводят фторид натрия при следующем...
Тип: Изобретение
Номер охранного документа: 0002629190
Дата охранного документа: 25.08.2017
29.12.2017
№217.015.f041

Электрохимический способ получения борида молибдена

Изобретение относится к электрохимическому синтезу борида молибдена, включающему электролиз расплава, содержащего хлорид калия, молибдат натрия и оксид бора, хлорид натрия. Способ характеризуется тем, что дополнительно вводят фторид натрия, а также для повышения чистоты и снижения температуры...
Тип: Изобретение
Номер охранного документа: 0002629188
Дата охранного документа: 25.08.2017
29.12.2017
№217.015.f050

Электролитический способ получения наноразмерных порошков силицидов лантана

Изобретение относится к электролитическому способу получения наноразмерных порошков силицидов лантана, включающему синтез силицидов редкоземельного элемента из расплавленных сред в атмосфере очищенного и осушенного аргона. Способ характеризуется тем, что синтез проводят из галогенидного...
Тип: Изобретение
Номер охранного документа: 0002629184
Дата охранного документа: 25.08.2017
+ добавить свой РИД