×
10.02.2015
216.013.21d0

Результат интеллектуальной деятельности: ОПРЕДЕЛЕНИЕ СТЕПЕНИ ИЗМЕЛЬЧЕНИЯ ИЗМЕЛЬЧАЕМОГО МАТЕРИАЛА, В ЧАСТНОСТИ РУДЫ, В ДРОБИЛКЕ

Вид РИД

Изобретение

№ охранного документа
0002540109
Дата охранного документа
10.02.2015
Аннотация: Изобретение относится к средствам для измельчения или дробления различных материалов и может быть использовано для определения степени измельчения материала. Способ определения степени измельчения измельчаемого материала (120) в дробилке (100) с барабаном (110), приводимым в действие посредством магнитного привода (130), имеющего по меньшей мере один магнитный сегмент(131/1), заключается в том, что по меньшей мере время от времени определяют индуцированное в катушке (133/1) магнитного сегмента (131/1) напряжение (Uind,l) и из определяемого индуцированного напряжения (Uind,l) делают вывод о степени измельчения. Система для осуществления способа содержит измерительное устройство (134/1), выполненное с возможностью определения по меньшей мере время от времени индуцированного в катушке (133/1) магнитного сегмента (133/1) напряжения (Uind,l), и блок (170) обработки данных, выполненный с возможностью вывода степени измельчения из определяемого индуцированного напряжения (Uind,l). Изобретение обеспечивает создание стабильной возможности получения во время процесса измельчения информации о степени измельчения измельчаемого материала. 2 н. и 19 з.п. ф-лы, 5 ил.

Для выполнения возможно более экономичной транспортировки руд и, прежде всего, их оптимального обогащения для процесса металлургического передела, руды в настоящее время подвергают измельчению в непосредственной близости от места добычи и прессуют в окатыши. Процесс измельчения является экстремально энергоемким, примерно 1,4% годовой потребности энергии в мире приходится на добычу и (предварительную) обработку руд. В соответствии с этим, с точки зрения защиты климата и экономии ресурсов важное значение имеет возможно более эффективное с точки зрения потребления энергии выполнение обогащения руд.

При типичной электрической приводной мощности дробилок в диапазоне примерно 20 МВт важное значение имеет управление процессом измельчения, так, что, с одной стороны, свойства измельчаемого материала соответствуют требуемым для изготовления окатышей характеристикам. С другой стороны, по причинам энергетической эффективности процесс измельчения не должен длиться дольше, чем необходимо для достижения этих характеристик. Для этого требуется сенсорная техника, которая, с одной стороны, обеспечивает рациональное значение измерения для оценки степени измельчения. При этом степень измельчения измельчаемого материала задается, по существу, формой отдельных глыб руды, в частности, их диаметром, соответственно, спектром распределения величин. С другой стороны, сенсорная техника должны быть достаточно стабильной для надежной работы в экстремально неблагоприятных условиях, поскольку выход из строя такой сенсорной системы приводит к экстремально высокой стоимости простоя.

Известны способы определения степени измельчения, в которых определяют акустический спектр или же так называемые «акустические характеристики» барабана дробилки во время процесса измельчения. Из спектра можно делать выводы о форме измельчаемого материала, так что на основании оценки спектра можно принимать решение, достигнута ли желаемая степень измельчения. Проверенными способами определения спектра являются:

- измерения с помощью датчиков ускорения, которые закреплены непосредственно на барабане, и

- применение микрофонов, которые направлены на места на наружной обшивке барабана, которые излучают особенно характеристические содержания частот.

Однако при измерении акустического спектра с помощью датчиков ускорения существует трудность передачи сигнала с места барабана к центральному блоку, в котором выполняется оценка измеренных сигналов. С помощью классической электрики, например, с применением кольцевых петель, это едва возможно с достаточной надежностью. Более пригодной для реализации была бы беспроводная сенсорная система, такая как, например, промышленный вариант протокола WLAN, однако в этом случае существует проблема длительного и устойчивого обеспечения системы необходимой электрической энергией.

При снятии акустических характеристик с помощью подходящим образом позиционированных микрофонов, передача корпусного шума из барабана по воздуху к микрофонам связана с потерями, которые при некоторых обстоятельствах сильно искажают важную акустическую информацию, соответственно, приводят к передаче с недостаточным качеством. Кроме того, в экстремально запыленном и загрязненном окружении вызывает сомнение, могут ли микрофоны выполнять требования относительно устойчивости и стабильности.

Поэтому задачей данного изобретения является создание стабильной возможности получения во время процесса измельчения информации о степени измельчения измельчаемого материала.

Эта задача решена с помощью независимых пунктов формулы изобретения. Предпочтительные варианты выполнения следуют из зависимых пунктов формулы изобретения.

В решении, согласно изобретению, используются применяемые в дробилках с электромагнитным приводом барабана для привода барабана магнитные сегменты, в частности, электромагнитные сегменты, для определения акустических характеристик барабана и из них степени измельчения. Это решение позволяет определять степень измельчения без соприкосновения, а также без датчиков.

В отличие от известных из уровня техники подходов, в которых применяются специальные датчики, акустические характеристики дробилки определяются, согласно изобретению, с помощью электромагнитных приводных катушек.

В способе, согласно изобретению, для определения степени измельчения измельчаемого материала в дробилке, при этом дробилка имеет барабан, в котором находится измельчаемый материал и который во время процесса измельчения приводится в действие с помощью магнитного привода по меньшей мере с одним магнитным сегментом тем, что создаваемое с помощью магнитного привода вращающееся магнитное поле приводит во вращение барабан, по меньшей мере время от времени определяют индуцированное в катушке магнитного сегмента напряжение и из определяемого индуцированного напряжения делают вывод о степени измельчения.

При этом из индуцированного напряжения сначала определяют акустический спектр барабана и из акустического спектра делают вывод о степени измельчения.

Определение акустического спектра из степени измельчения осуществляется на основе модели.

Определение индуцированного напряжения и тем самым определение акустического спектра выполняют лишь тогда, когда соотношение VI = IB/IB,max между проходящим для создания магнитного поля в магнитном сегменте моментальным током IB и максимальным, проходящим в катушке для создания вращающегося магнитного поля током IB,max, лежит в заданном диапазоне VI∈[aI;bI], предпочтительно в диапазоне VI∈[-5%;+5%], особенно предпочтительно в диапазоне VI∈[-2%;+2%].

В качестве альтернативного решения, определение индуцированного напряжения и тем самым определение акустического спектра выполняют лишь тогда, когда соотношение VU=US/US,max между прилагаемым для создания магнитного поля в магнитном сегменте моментальным напряжением IS и максимальным, прилагаемым к катушке для создания вращающегося магнитного поля напряжением US,max, лежит в заданном диапазоне VU∈[aU;bU], предпочтительно в диапазоне VU∈ [-5%;+5%], особенно предпочтительно в диапазоне VU∈[-2%;+2%].

Определение индуцированного напряжения и тем самым определение акустического спектра выполняют, в частности, лишь тогда, когда проходящий в магнитном сегменте для создания вращающегося магнитного поля ток IS, соответственно, приложенное для создания этого тока напряжение US имеют по существу значение ноль.

Катушка является служащей для создания вращающегося магнитного поля катушкой. Таким образом, нет необходимости в дополнительных датчиках или других чувствительных элементах, а можно использовать имеющиеся конструктивные элементы.

Индуцированное в катушке напряжение является обусловленным на основании изменения во времени магнитного потока в воздушном зазоре между барабаном и магнитным сегментом напряжением взаимной индукции.

При этом за счет вибраций барабана вызывается изменение во времени воздушного зазора, при этом акустический спектр частот вибраций зависит от степени измельчения, в частности, определяется воспроизводимым образом степенью измельчения, соответственно, в частности, однозначно связан с акустическим спектром, в частности, с точностью до фактора максимально идентичен.

Магнитный привод имеет множество распределенных по окружности барабана магнитных сегментов, при этом для каждого из магнитных сегментов по отдельности определяют индуцированное в катушке соответствующего магнитного сегмента напряжение и из измеренного индуцированного напряжения делают вывод о степени измельчения.

Таким образом, с помощью каждого из магнитных сегментов можно определять индивидуальный акустический спектр тем, что измеряют индуцированное в катушке соответствующего магнитного сегмента напряжение и из измеренного индуцированного напряжения выводят соответствующий акустический спектр.

Определение отдельных индуцированных напряжений, соответственно, акустических спектров можно осуществлять

- периодически вокруг окружности барабана или

- одновременно с помощью нескольких магнитных сегментов.

Система, согласно изобретению, обеспечивает возможность определения степени измельчения измельчаемого материала в дробилке. Дробилка имеет барабан, в котором находится измельчаемый материал во время процесса измельчения и который во время процесса измельчения приводится в действие магнитным приводом, по меньшей мере с одним магнитным сегментом, за счет того, что создаваемое с помощью магнитного привода вращающееся магнитное поле приводит во вращение барабан. Предусмотрены измерительное устройство и блок обработки данных, при этом

- с помощью измерительного устройства определяют по меньшей мере время от времени индуцированное в катушке магнитного сегмента напряжение и

- блок обработки данных выполнен с возможностью вывода степени измельчения из определяемого индуцированного напряжения.

Измерительное устройство предпочтительно является частью магнитного сегмента, т.е. интегрировано в магнитный сегмент или непосредственно соединено с ним. В частности, магнитный сегмент и измерительное устройство образуют единое целое.

Магнитный привод имеет множество распределенных по окружности барабана магнитных сегментов, при этом для каждого из магнитных сегментов можно по отдельности измерять индуцированное в катушке соответствующего магнитного сегмента напряжение и с помощью блока обработки данных выводить из этих измеренных напряжений соответствующую степень измельчения.

Блок обработки данных предназначен для вычисления из измеренного индуцированного напряжения акустического спектра барабана.

Кроме того, блок обработки данных предназначен для определения, в частности на основе модели, степени измельчения из акустического спектра.

Таким образом, согласно изобретению, предлагается улучшенный способ определения степени измельчения измельчаемого материала в дробилке. Дробилка имеет барабан, в котором находится измельчаемый материал во время процесса измельчения и который во время процесса измельчения приводится в действие магнитным приводом по меньшей мере с одним магнитным сегментом тем, что создаваемое с помощью магнитного привода вращающееся магнитное поле приводит во вращение барабан. Во время процесса измельчения по меньшей мере время от времени измеряется акустический спектр барабана и из акустического спектра делается вывод о степени измельчения. Для определения акустического спектра измеряется индуцированное в катушке магнитного сегмента напряжение, и из измеренного индуцированного напряжения выводится акустический спектр.

Подлежащий оценке шумовой спектр поступает по существу из двух источников. С одной стороны, в нем содержатся шумы, создаваемые приводом, куда относятся также собственные колебания, которые возбуждаются в структуре дробилки. Они являются периодическими и тем самым детерминированными. Поэтому эту долю шумов можно на основе механоакустических моделей дробилки определять количественно и удалять, например, за счет основанной на модели фильтрации. Вторым источником шума является подлежащий измельчению с помощью измельчительных средств измельчаемый материал. Измельчаемый материал имеет форму, которая определяется случайным образом процессом разрушения в каменоломне, соответственно, руднике. Поэтому формы и величины каменных глыб являются стохастическими. В соответствии с этим, создаваемые при падении глыб шумы также имеют стохастический характер. В данном случае нет корреляции во времени отдельных шумов. Это обеспечивает возможность отделения с большой точностью одной доли шумового спектра от другой доли. Источником силы является двигатель, изменение во времени силы которого достаточно точно известно. Тем самым можно также формализовать возбуждение механической структуры дробилки (резонансные функции и т.д.) и удалять из общего спектра. Остается стохастическая составляющая, которая обусловлена по существу пересыпанием кусков породы.

Другие преимущества, признаки и подробности изобретения следуют из приведенного ниже описания примера выполнения со ссылками на прилагаемые чертежи, на которых изображено:

фиг. 1 - поперечный разрез барабана дробилки без измельчаемого материала и с измельчаемым материалом с различной степенью измельчения;

фиг. 2 - акустические спектры в соответствии с показанными на фиг. 1 состояниями;

фиг. 3 - барабан дробилки с магнитным приводом;

фиг. 4 - магнитный сегмент;

фиг. 5 - гистерезисная кривая.

На фигурах идентичные, соответственно, соответствующие друг другу зоны, конструктивные элементы, группы конструктивных элементов или стадии способа обозначены одинаковыми позициями.

На фиг. 1А-1С показан поперечный разрез вращающегося в направлении стрелки Р барабана 110 дробилки 100, например, шаровой дробилки для руды. На фиг. 1А показан барабан 110 без измельчаемого материала, на фиг. 1В и 1С показан барабан с измельчаемым материалом 120 с двумя различными степенями измельчения (на фигурах измельчаемый материал 120 для наглядности обозначен лишь частично). Дополнительно к этому на фиг. 2А-2С показаны соответствующие акустические спектры в виде излучаемой барабаном шумовой интенсивности I(ω) в зависимости от частоты ω. Измерение этого спектра позволяет, как будет пояснено ниже, судить о степени измельчения.

В дробилке 100 для руды с безредукторным электрическим приводом барабан 110 дробилки 100 приводится во вращение Р не с помощью внешнего двигателя с включенным после него редуктором, а с помощью привода 130, который, как упрощенно показано на фиг. 3, имеет множество электромагнитных сегментов 131/1, 131/2, 131/3 (соответственно, 131/i, при i=1,2,3 … ). Управление ими осуществляется с помощью соответствующей силовой электроники 140 через кабели 132/i, 141/i так, что образуется магнитное поле, ориентация которого вращается с постоянной угловой скоростью вокруг оси R барабана 110. С помощью этого вращающегося магнитного поля и соответствующих магнитных сил приводится также во вращение снабженный опорами на своих обоих концах барабан 110. За счет соответствующего электрического управления приводом, соответственно, электромагнитными сегментами 132/i можно изменять скорость вращения магнитного поля и тем самым скорость вращения барабана 110.

Для того чтобы измельчать материал 120, соответственно, в поясняемом примере выполнения руды 120, барабан 110 шаровой дробилки 100 сначала снабжается измельчающим средством 150, в случае шаровой дробилки стальными шарами 150 (на фигурах шары 150 для наглядности обозначены лишь частично). Они имеют по меньшей мере в новом состоянии максимально идентичный диаметр. При приведении во вращение барабана 110, шары 150 с помощью находящихся в барабане 110 захватов 160 приводятся в определенной мере в движение, пока они не падают с захватов 160 и ударяются в дно барабана 110 (на фигурах также захваты 160 для наглядности обозначены лишь частично).

На основании значительных масс, которые приводятся в движение в данном случае, в механической структуре барабана 110 возбуждается акустический шумовой спектр I(ω), который создается, с одной стороны, самим приводом вместе с его механическими компонентами, а с другой стороны, приводимыми в движение и снова падающими вниз шарами 150. На основании единообразной величины шаров и небольшого имеющегося демпфирования следует ожидать, что получается акустический спектр I(ω) с характерными резонансными структурами, в которых отражается, с одной стороны, механическая структура дробилки 100, соответственно, барабана 110, однако дополнительно также геометрия и масса шаров 150 в виде характерных частот. Соответствующий спектр I(ω) снабженного лишь шарами 150, но не измельчаемым материалом, барабана 110 схематично показан на фиг. 2А.

При заполнении барабана 110 измельчаемым материалом 120, например, свежей рудой, значительно изменяется измеряемый при вращении барабана 110 акустический спектр I(ω). На основании имеющих нерегулярную форму поверхностей, большого разброса распределения величины глыб 120 руды, а также на основании их структуры поверхности значительно увеличенного трения следует ожидать, что резонансы спектра значительно демпфируются и тем самым становятся шире и менее интенсивными. Образуется широкий акустический непрерывный сигнал, который уменьшается на более высоких частотах. Это показано на фиг. 2В.

При достижении желаемой степени измельчения, руда 120 присутствует в виде мелких зерен. В этом случае при вращении барабана 110 можно измерять сравнительно высокочастотный шум пересыпания. Дополнительно к этому, мелкие зерна руды создают сильное демпфирование, так что резонансы в акустическом спектре I(ω) больше не возникают или едва возникают. Вместо этого следует ожидать непрерывный сигнал с зависимой от частоты акустической интенсивностью I(ω), которая имеет максимум на более высоких частотах (фиг. 2С).

В соответствии с этим, определение акустического спектра позволяет делать выводы о степени измельчения.

На фиг. 4 показана часть барабана 110, а также магнитный сегмент 131/1 приводной системы 130 из электромагнитов 131. За счет создаваемого электромагнитом 131/1 поля в воздушном зазоре g между магнитным сегментом 131/1 и барабаном 110 возникает магнитный поток Φ. При возбуждении вибраций V в барабане 110 на основании процесса измельчения, они приводят к изменению во времени воздушного зазора g:

g(t)=g0+iΣAi sin(ωit-ϕi) (1)

Уравнение 1 описывает изменение во времени воздушного зазора за счет спектра акустического возбуждения, который содержит частоты ωi и соответствующие фазовые сдвиги ϕi.

Изменение во времени воздушного зазора g(t) приводит к изменению магнитного потока Φ за счет зазора g, так что в соответствии с правилом Ленца в катушке 133/1 магнитного сегмента 131/1 индуцируется напряжение Uind, которое противодействует этому изменению потока:

При этом сначала принимается, что изменение потока для небольших геометрических изменений воздушного зазора g происходит линейно относительно g, а затем в соответствии с уравнением (1).

На фиг. 2 показано, что модуляция во времени воздушного зазора g между магнитным сегментом 131/1 и барабаном 110 рудной дробилки 100 приводит к изменяющемуся во времени индукционному напряжению Uind в катушке 133/1 магнитного сегмента 131/1, которое содержит информацию о частотном спектре I(ω), с которым возбуждается барабан на основе процесса измельчения. Поскольку Uind изменяется пропорционально производной во времени от спектра возбуждения, который представляет временную зависимость g(t), то различные частотные составляющие подвергаются взвешиванию с фактором ω. Таким образом, высокие частоты проявляются сильнее, чем низкие частоты.

В соответствии с этим, оценка представленной уравнением (2) доли взаимоиндукции Uind в напряжении на клеммах сегмента 131/1 магнитной катушки поставляет информацию о возбуждении колебаний барабана 110. Таким образом, можно получать из доли напряжения желаемую информацию о степени измельчения руды 120. Например, можно получать спектр I(ω) с помощью анализа Фурье из зависящего от времени сигнала Uind(dt). Возможна также комбинация с синхронной частоте вращения оценкой, с помощью которой можно подавлять вносимые приводом составляющие, которые обычно являются периодическими. Последующее определение степени измельчения из спектра можно осуществлять на основе модели.

Поэтому система для определения степени измельчения имеет измерительное устройство 134/1, с помощью которого можно измерять индуцированное напряжение Uind. Для этого измерительное устройство 134/1 соединено с клеммами сегмента 131/1 магнитной катушки, соответственно, катушки 133/1. Индуцированное в катушке 133/1 напряжение Uind вызывает сенсорный ток Iind, который можно измерять, например, на шунтирующем сопротивлении 135/1 измерительного устройства 134/1. Измерительное устройство 134/1 соединено с блоком 170 обработки данных, в котором из измеренного индуцированного напряжения вычисляется на основании анализа Фурье соответствующий спектр I(ω).

В принципе, измерительное устройство 134/1 может быть частью соответствующего магнитного сегмента 131/1. В качестве альтернативного решения, измерительное устройство и соответствующий магнитный сегмент могут быть также расположены отдельно друг от друга. Например, возможно, что измерительное устройство размещено в блоке 170 обработки данных.

Остальные показанные на фиг. 3 магнитные сегменты 131/2, 131/3 выполнены аналогичным образом. Соответствующие измерительные устройства 134/2, 134/3 также соединены с блоком 170 обработки данных и, возможно, расположены в нем.

Однако специально в приводах 130 большой мощности, которые обеспечивают приводную мощность в несколько 10 МВт, предпочтительно применяется особое выполнение системы, согласно изобретению. В таких приводах индуцированные в соответствии с уравнением (2) составляющие Uind взаимной индукции относительно малы по сравнению с соответствующим максимальным напряжением UB,max и током IB,max катушечного сегмента 131, которые могут лежать в диапазоне кВ и кА. Дополнительно к этому, на моментальный сигнал напряжения и тока UB, IB могут накладываться значительные помехи. Тем самым затрудняется оценка сигнала датчика в соответствии с уравнением (2).

Однако специальная ситуация образуется, когда проходящий в катушечном сегменте 131, соответственно, в катушке 133 сегмента 131 магнитной катушки ток IB достигает значения ноль. Хотя в этот момент времени магнитное поле Н=0, однако катушечный сегмент 131 и барабан 110 имеют остаточную магнитную индукцию BR. Это показано на фиг. 5 с помощью гистерезисной кривой намагничивания. При Н=0 в магнитомягких материалах возникает остаточная магнитная индукция BR. Ее можно использовать поясняемым ниже образом, поскольку в системе, согласно фиг. 4, несмотря на отсутствие прохождения тока в катушке 133 магнитного сегмента 131, имеется магнитный поток Φ, так что в соответствии с уравнением (2) индуцируется напряжение Uind взаимной индукции, которое вызывает прохождение сенсорного тока в системе. Его можно измерять, например, на шунтирующем сопротивлении.

Таким образом, измерение напряжения Uind для определения акустического спектра осуществляется в идеальном случае в момент времени t0, когда моментально протекающий в катушке 133 магнитного сегмента 131 ток IB для создания магнитного поля достигает значения ноль, т.е. IB(t0)=0. Поскольку барабан непрерывно вращается, то измерение точно в момент времени, в который IB(t0)=0, трудно реализуемо. Однако для практических целей достаточно, когда измерение напряжения Uind осуществляется не только в этот момент времени t0, а в промежутке времени Δt, в течение которого, например, соотношение VI=IB/IB,max между проходящим моментально током IB и максимальным, проходящим для создания вращающегося магнитного поля током IB,max, лежит в диапазоне, например, VI∈[aI;bI], при этом, например, а=-2% и b=+2%. Значения параметров а, b, естественно, оказывают влияние на точность измерения. Точный диапазон, соответственно, точные границы а, b интервала, можно по отдельности определять экспериментально. Решающее значение имеет то, что имеющееся в этом момент времени, соответственно, в промежутке времени напряжение катушки на несколько порядков больше сигнала измерения.

Аналогичный интервал можно, естественно, задавать также с помощью напряжений UB, UB,max, при этом также в этом случае точные границы а, b интервала необходимо по отдельности определять экспериментально.

В принципе необходимо исходить из того, что сильный ток создает значительно более сильные помехи для оценки сигнала, чем высокое напряжение, поскольку напряжение можно при необходимости лучше отфильтровывать.

При этом в первом варианте выполнения индуцированное напряжение можно действительно измерять лишь в моменты времени t0, соответственно, в промежутках времени Δt. В альтернативном варианте выполнения непрерывно измеряется индуцированное напряжение, однако оно оценивается в блоке 170 обработки данных лишь в момент времени t0, соответственно, в промежутке времени Δt. В соответствии с этим, в данном случае применяется не выражение «измерение напряжения Uind», а выражение «определение напряжения Uind», которое охватывает эти обе возможности выполнения.

Надежность полученной так информации о степени измельчения можно дополнительно улучшить тем, что такая оценка сигналов в соответствии с уравнением (2) осуществляется не только в одном из магнитных сегментов 131/1, а во всех или по меньшей мере в нескольких магнитных сегментах 131/i магнитного привода 130. В соответствии с этим, соответствующие магнитные сегменты 131/i имеют указанные выше измерительные устройства 134/i, которые передают соответствующие измеренные индуцированные напряжения Uind,i в блок 170 обработки данных. В этом случае в блоке 170 обработки данных происходит по отдельности для каждого измерительного устройства определение акустического спектра и из него определение степени измельчения, а также, возможно, исключение машинных составляющих за счет синхронной с частотой вращения оценки.

Предпочтительно, отдельные индуцированные напряжения Uind,i измеряют периодически по кругу. Для создания вращающегося магнитного поля с помощью множества магнитных сегментов 131/1, 131/2, 131/3, которые расположены на фиг. 3 вдоль окружности барабана 110, каждый из магнитных сегментов 131/i периодически проходит через состояние, в котором ток IB,i становится равным нулю, при этом длительность периода зависит от скорости вращения магнитного поля. При этом ток IB,i не равен одновременно во всех магнитных катушках нулю. Вместо этого в простейшем варианте выполнения положение того магнитного сегмента 131/i, для которого ток IB,i=0 как бы вращается со скорость вращения вокруг барабана. Другими словами, например, сначала в момент времени t1 для тока IB,i в магнитном сегменте 131/1 справедливо IB,1(t1)=0, затем в момент времени t2>t1 IB,2(t2)=0 в магнитном сегменте 131/2, а затем в момент времени t3>t2 IB,3(t3)=0 в магнитном сегменте 131/3. Затем прохождение по кругу начинается снова, т.е. в момент времени t4>t3 снова IB,1(t4)=0 в магнитном сегменте 131/1 и т.д. В соответствии с этим, напряжение Uind,i измеряется периодически по кругу по окружности барабана, поскольку измерение по указанным выше причинам в идеальном случае осуществляется лишь тогда, когда в соответствующем магнитном сегменте 131/i справедливо IB,i=0.

В принципе, естественно, возможно также, что измерение одновременно выполняется во всех магнитных сегментах 131/i, однако следует учитывать, что при возможно имеющихся больших токах, соответственно напряжениях, измерению Uind,i могут препятствовать помехи.

С помощью корреляционных способов оценки, в которых осуществляется, например, корреляция с частотой вращения и с электрическим управлением мощностью барабана, соответственно, других агрегатов рудной дробилки, о которых также имеется детальная информация относительно, например, управления, соответственно, хода выполнения вращения, и так полученные акустические информации соединяются друг с другом в блоке 170 обработки данных (возможно, с использованием подходящих физических моделей акустического возбуждения дробилки во время различных фаз процесса измельчения), можно значительно повышать стабильность этого способа измерения по сравнению с измерением лишь одной катушки.


ОПРЕДЕЛЕНИЕ СТЕПЕНИ ИЗМЕЛЬЧЕНИЯ ИЗМЕЛЬЧАЕМОГО МАТЕРИАЛА, В ЧАСТНОСТИ РУДЫ, В ДРОБИЛКЕ
ОПРЕДЕЛЕНИЕ СТЕПЕНИ ИЗМЕЛЬЧЕНИЯ ИЗМЕЛЬЧАЕМОГО МАТЕРИАЛА, В ЧАСТНОСТИ РУДЫ, В ДРОБИЛКЕ
ОПРЕДЕЛЕНИЕ СТЕПЕНИ ИЗМЕЛЬЧЕНИЯ ИЗМЕЛЬЧАЕМОГО МАТЕРИАЛА, В ЧАСТНОСТИ РУДЫ, В ДРОБИЛКЕ
ОПРЕДЕЛЕНИЕ СТЕПЕНИ ИЗМЕЛЬЧЕНИЯ ИЗМЕЛЬЧАЕМОГО МАТЕРИАЛА, В ЧАСТНОСТИ РУДЫ, В ДРОБИЛКЕ
ОПРЕДЕЛЕНИЕ СТЕПЕНИ ИЗМЕЛЬЧЕНИЯ ИЗМЕЛЬЧАЕМОГО МАТЕРИАЛА, В ЧАСТНОСТИ РУДЫ, В ДРОБИЛКЕ
ОПРЕДЕЛЕНИЕ СТЕПЕНИ ИЗМЕЛЬЧЕНИЯ ИЗМЕЛЬЧАЕМОГО МАТЕРИАЛА, В ЧАСТНОСТИ РУДЫ, В ДРОБИЛКЕ
ОПРЕДЕЛЕНИЕ СТЕПЕНИ ИЗМЕЛЬЧЕНИЯ ИЗМЕЛЬЧАЕМОГО МАТЕРИАЛА, В ЧАСТНОСТИ РУДЫ, В ДРОБИЛКЕ
ОПРЕДЕЛЕНИЕ СТЕПЕНИ ИЗМЕЛЬЧЕНИЯ ИЗМЕЛЬЧАЕМОГО МАТЕРИАЛА, В ЧАСТНОСТИ РУДЫ, В ДРОБИЛКЕ
ОПРЕДЕЛЕНИЕ СТЕПЕНИ ИЗМЕЛЬЧЕНИЯ ИЗМЕЛЬЧАЕМОГО МАТЕРИАЛА, В ЧАСТНОСТИ РУДЫ, В ДРОБИЛКЕ
Источник поступления информации: Роспатент

Показаны записи 841-850 из 1 427.
19.01.2018
№218.016.07ac

Газовая турбина, содержащая корпус компрессора с впускным отверстием для охлаждения корпуса компрессора, и использование указанной газовой турбины

Изобретение относится к энергетике. Газовая турбина, содержащая ротор в сборе и корпус компрессора. При этом корпус компрессора содержит внутреннюю камеру корпуса компрессора для размещения ротора в сборе и внешнюю камеру для охлаждения корпуса компрессора. Внутренняя камера корпуса компрессора...
Тип: Изобретение
Номер охранного документа: 0002631472
Дата охранного документа: 22.09.2017
19.01.2018
№218.016.081c

Защитное покрытие и компонент газовой турбины с таким покрытием

Изобретение относится к области металлургии, а именно к защитным покрытиям для компонентов газовой турбины. Защитное покрытие компонента газовой турбины содержит, вес.%: Со 15-39, Cr 10-25, Al 5-15, Y 0,05-1, Fe 0,5-10, Mo 0,05-2, никель и примеси - остальное. Защитное покрытие характеризуется...
Тип: Изобретение
Номер охранного документа: 0002631552
Дата охранного документа: 25.09.2017
19.01.2018
№218.016.09e1

Устройство для механической обработки клапанов и способ механической обработки клапана

Изобретение относится к области металлообработки, осуществляемой с помощью роботизированных устройств, и может быть использовано при механической обработке клапанов. Устройство (1) для механической обработки клапанов содержит плоское основание (3), установленный на нем с возможностью...
Тип: Изобретение
Номер охранного документа: 0002632043
Дата охранного документа: 02.10.2017
19.01.2018
№218.016.0aa5

Управление мощностью в сети распределения энергии

Изобретение относится к области электротехники и может быть использовано в сетях распределения мощности. Техническим результатом является обеспечение возможности непрерывной коррекции и динамической поддержки сети (2) распределения энергии или в сети (2) распределения энергии. В устройстве для...
Тип: Изобретение
Номер охранного документа: 0002632212
Дата охранного документа: 03.10.2017
19.01.2018
№218.016.0b27

Трехточечный вентильный преобразователь

Изобретение относится к области электротехники. Предложен трехточечный вентильный преобразователь (1) с активными фиксаторами уровня, который содержит по меньшей мере одну полумостовую схему (5), включенную в контур (2) постоянного напряжения. Данная или каждая полумостовая схема (5) содержит...
Тип: Изобретение
Номер охранного документа: 0002632185
Дата охранного документа: 04.10.2017
19.01.2018
№218.016.0e32

Устройство и способ контроля силового полупроводникового переключателя

Изобретение относится к контролю силового полупроводникового переключателя. Сущность: устройство включает средства (30) для нагружения силового полупроводникового переключателя (10) HF-напряжением (U) с частотой выше порога переключения силового полупроводникового переключателя (10), средства...
Тип: Изобретение
Номер охранного документа: 0002633294
Дата охранного документа: 11.10.2017
19.01.2018
№218.016.0e3a

Лопасть ротора турбомашины, диск ротора турбомашины, ротор турбомашины и газотурбинный двигатель с разными углами контактной поверхности хвостовика и гнезда

Лопасть ротора турбомашины имеет хвостовик елочной формы для закрепления на диске ротора. Хвостовик содержит нижнюю часть хвостовика и боковые стороны хвостовика, причем каждая боковая сторона хвостовика имеет первый, второй и третий выступ, содержащие соответственно первую, вторую и третью...
Тип: Изобретение
Номер охранного документа: 0002633287
Дата охранного документа: 11.10.2017
19.01.2018
№218.016.0e74

Локальное улучшение перемешивания воздуха и топлива в горелках, снабженных завихрителями, имеющими скрещенные в наружной области концы лопаток

Изобретение относится к области энергетики. Горелка (1), имеющая выполненный в поперечном сечении по существу кольцевой канал (4) подачи воздуха и предварительного перемешивания, по которому при эксплуатации протекают воздух и топливо, который образован наружной оболочкой (5) и втулкой (6) и в...
Тип: Изобретение
Номер охранного документа: 0002633475
Дата охранного документа: 12.10.2017
19.01.2018
№218.016.0e85

Транспортное средство, имеющее телескопическую входную лестницу

Изобретение относится к области транспортного машиностроения. Транспортное средство имеет входную дверь, лестницу, расположенную под входной дверью, и привод. Привод переводит входную лестницу из вдвинутого положения в выдвинутое положение. Для удержания входной лестницы в ее вдвинутом...
Тип: Изобретение
Номер охранного документа: 0002633446
Дата охранного документа: 12.10.2017
19.01.2018
№218.016.0eba

Резьбовой хвостовик, соединительный узел, газотурбинный двигатель и способ сборки ротора турбомашины газотурбинного двигателя

Резьбовой хвостовик ротора турбомашины предназначен для взаимодействия с резьбовым дополнительным компонентом ротора турбомашины, имеющим цилиндрическую первую резьбу с постоянным шагом и постоянным углом профиля. Резьбовой хвостовик имеет вторую резьбу с постоянным шагом и постоянным углом...
Тип: Изобретение
Номер охранного документа: 0002633199
Дата охранного документа: 11.10.2017
Показаны записи 841-850 из 943.
29.12.2017
№217.015.fb6f

Коммутационное устройство

Изобретение относится к электротехнике. Коммутационное устройство, содержащее первый комплект (3) контактов и второй комплект (4) контактов, подвижный относительно первого комплекта (3) контактов, имеет изоляционное сопловое устройство (12). Изоляционное сопловое устройство (12) опирается на...
Тип: Изобретение
Номер охранного документа: 0002629568
Дата охранного документа: 30.08.2017
29.12.2017
№217.015.fb8a

Масса для пазовой заглушки, пазовая заглушка и способ изготовления пазовой заглушки

Изобретение относится к пазовой заглушке для электрических машин. Масса (7) для пазовой заглушки для электрической машины, которая для приема электрической проводной системы (3) имеет, по меньшей мере, один паз (2) с пазовым отверстием (5), содержит магнитный наполнитель, в частности...
Тип: Изобретение
Номер охранного документа: 0002640029
Дата охранного документа: 26.12.2017
29.12.2017
№217.015.fb8d

Многоуровневый преобразователь

Изобретение относится к области электротехники и может быть использовано в многоуровневом преобразователе. Техническим результатом является снижение вибраций в многоуровневом преобразователе. Многоуровневый преобразователь (5) содержит по меньшей мере два последовательно соединенных подмодуля...
Тип: Изобретение
Номер охранного документа: 0002640038
Дата охранного документа: 26.12.2017
29.12.2017
№217.015.fc14

Электрическая машина с комбинированным воздушно-водяным охлаждением

Электрическая машина содержит корпус (1), в котором расположены статор (2) и ротор (4). Корпус (1) проходит, если смотреть в направлении оси вращения (5), от переднего конца (6) к заднему концу (7). Корпус (1) имеет либо вблизи переднего конца (6) воздуховпускное отверстие (10) и вблизи заднего...
Тип: Изобретение
Номер охранного документа: 0002638562
Дата охранного документа: 14.12.2017
29.12.2017
№217.015.fc4e

Определение местоположения рельсовых транспортных средств

Техническое решение относится к области железнодорожной автоматики и телемеханики для определения местоположения рельсовых транспортных средств. В способе с помощью устройства контроля незанятости пути генерируют сигнал занятости, который указывает занятие рельсовым транспортным средством...
Тип: Изобретение
Номер охранного документа: 0002638052
Дата охранного документа: 11.12.2017
29.12.2017
№217.015.fc53

Способ управления работой камеры сгорания газотурбинного двигателя

Изобретение относится к энергетике. Способ управления работой камеры сгорания газотурбинного двигателя, содержащего компрессор, две горелки, камеру сгорания, расположенную ниже по потоку за указанными горелками, турбину, два температурных датчика ниже по потоку за указанной камерой сгорания....
Тип: Изобретение
Номер охранного документа: 0002638245
Дата охранного документа: 12.12.2017
29.12.2017
№217.015.fcfd

Способ эксплуатации паровой турбины с двумя подводящими паропроводами

Изобретение относится к паротурбинной установке и к способу эксплуатации паровой турбины (2), причем пар подается в паровую турбину через первый клапан (3) в первом подводящем паропроводе (5) и второй клапан (4) во втором подводящем паропроводе (6), причем клапаны регулируются асимметрично по...
Тип: Изобретение
Номер охранного документа: 0002638689
Дата охранного документа: 15.12.2017
29.12.2017
№217.015.fd16

Способ колебательной сварки

Изобретение относится к области сварочного производства. Источник (13) энергии для сварки, выполненный с возможностью импульсного лазерного излучения, и элемент (10) для подвода сварочного материала, выполненный с возможностью подвода материала в виде порошка, перемещают вдоль направления...
Тип: Изобретение
Номер охранного документа: 0002638488
Дата охранного документа: 13.12.2017
29.12.2017
№217.015.fd64

Конструкция с соединительным валом газовой турбины, содержащая гильзу, расположенную между соединительным валом и ротором

Раскрыты роторный узел и способ сборки роторного узла, предназначенного, как правило, для газотурбинного двигателя 10. Роторный узел 36 имеет ось 26 вращения, по меньшей мере один ротор 30, вал 24, имеющий отверстие 44, проходящее в аксиальном направлении, стяжную шпильку 38, проходящую в...
Тип: Изобретение
Номер охранного документа: 0002638227
Дата охранного документа: 12.12.2017
29.12.2017
№217.015.fe3f

Масса для пазовой заглушки, пазовая заглушка и способ изготовления пазовой заглушки

Изобретение касается массы (7) для пазовой заглушки для электрической машины, которая для приема электрической проводной системы (3) имеет, по меньшей мере, один паз (2) с пазовым отверстием (5). Масса (7) для пазовой заглушки содержит магнитный наполнитель, в частности магнитомягкий...
Тип: Изобретение
Номер охранного документа: 0002638563
Дата охранного документа: 14.12.2017
+ добавить свой РИД