×
10.02.2015
216.013.21d0

Результат интеллектуальной деятельности: ОПРЕДЕЛЕНИЕ СТЕПЕНИ ИЗМЕЛЬЧЕНИЯ ИЗМЕЛЬЧАЕМОГО МАТЕРИАЛА, В ЧАСТНОСТИ РУДЫ, В ДРОБИЛКЕ

Вид РИД

Изобретение

№ охранного документа
0002540109
Дата охранного документа
10.02.2015
Аннотация: Изобретение относится к средствам для измельчения или дробления различных материалов и может быть использовано для определения степени измельчения материала. Способ определения степени измельчения измельчаемого материала (120) в дробилке (100) с барабаном (110), приводимым в действие посредством магнитного привода (130), имеющего по меньшей мере один магнитный сегмент(131/1), заключается в том, что по меньшей мере время от времени определяют индуцированное в катушке (133/1) магнитного сегмента (131/1) напряжение (Uind,l) и из определяемого индуцированного напряжения (Uind,l) делают вывод о степени измельчения. Система для осуществления способа содержит измерительное устройство (134/1), выполненное с возможностью определения по меньшей мере время от времени индуцированного в катушке (133/1) магнитного сегмента (133/1) напряжения (Uind,l), и блок (170) обработки данных, выполненный с возможностью вывода степени измельчения из определяемого индуцированного напряжения (Uind,l). Изобретение обеспечивает создание стабильной возможности получения во время процесса измельчения информации о степени измельчения измельчаемого материала. 2 н. и 19 з.п. ф-лы, 5 ил.

Для выполнения возможно более экономичной транспортировки руд и, прежде всего, их оптимального обогащения для процесса металлургического передела, руды в настоящее время подвергают измельчению в непосредственной близости от места добычи и прессуют в окатыши. Процесс измельчения является экстремально энергоемким, примерно 1,4% годовой потребности энергии в мире приходится на добычу и (предварительную) обработку руд. В соответствии с этим, с точки зрения защиты климата и экономии ресурсов важное значение имеет возможно более эффективное с точки зрения потребления энергии выполнение обогащения руд.

При типичной электрической приводной мощности дробилок в диапазоне примерно 20 МВт важное значение имеет управление процессом измельчения, так, что, с одной стороны, свойства измельчаемого материала соответствуют требуемым для изготовления окатышей характеристикам. С другой стороны, по причинам энергетической эффективности процесс измельчения не должен длиться дольше, чем необходимо для достижения этих характеристик. Для этого требуется сенсорная техника, которая, с одной стороны, обеспечивает рациональное значение измерения для оценки степени измельчения. При этом степень измельчения измельчаемого материала задается, по существу, формой отдельных глыб руды, в частности, их диаметром, соответственно, спектром распределения величин. С другой стороны, сенсорная техника должны быть достаточно стабильной для надежной работы в экстремально неблагоприятных условиях, поскольку выход из строя такой сенсорной системы приводит к экстремально высокой стоимости простоя.

Известны способы определения степени измельчения, в которых определяют акустический спектр или же так называемые «акустические характеристики» барабана дробилки во время процесса измельчения. Из спектра можно делать выводы о форме измельчаемого материала, так что на основании оценки спектра можно принимать решение, достигнута ли желаемая степень измельчения. Проверенными способами определения спектра являются:

- измерения с помощью датчиков ускорения, которые закреплены непосредственно на барабане, и

- применение микрофонов, которые направлены на места на наружной обшивке барабана, которые излучают особенно характеристические содержания частот.

Однако при измерении акустического спектра с помощью датчиков ускорения существует трудность передачи сигнала с места барабана к центральному блоку, в котором выполняется оценка измеренных сигналов. С помощью классической электрики, например, с применением кольцевых петель, это едва возможно с достаточной надежностью. Более пригодной для реализации была бы беспроводная сенсорная система, такая как, например, промышленный вариант протокола WLAN, однако в этом случае существует проблема длительного и устойчивого обеспечения системы необходимой электрической энергией.

При снятии акустических характеристик с помощью подходящим образом позиционированных микрофонов, передача корпусного шума из барабана по воздуху к микрофонам связана с потерями, которые при некоторых обстоятельствах сильно искажают важную акустическую информацию, соответственно, приводят к передаче с недостаточным качеством. Кроме того, в экстремально запыленном и загрязненном окружении вызывает сомнение, могут ли микрофоны выполнять требования относительно устойчивости и стабильности.

Поэтому задачей данного изобретения является создание стабильной возможности получения во время процесса измельчения информации о степени измельчения измельчаемого материала.

Эта задача решена с помощью независимых пунктов формулы изобретения. Предпочтительные варианты выполнения следуют из зависимых пунктов формулы изобретения.

В решении, согласно изобретению, используются применяемые в дробилках с электромагнитным приводом барабана для привода барабана магнитные сегменты, в частности, электромагнитные сегменты, для определения акустических характеристик барабана и из них степени измельчения. Это решение позволяет определять степень измельчения без соприкосновения, а также без датчиков.

В отличие от известных из уровня техники подходов, в которых применяются специальные датчики, акустические характеристики дробилки определяются, согласно изобретению, с помощью электромагнитных приводных катушек.

В способе, согласно изобретению, для определения степени измельчения измельчаемого материала в дробилке, при этом дробилка имеет барабан, в котором находится измельчаемый материал и который во время процесса измельчения приводится в действие с помощью магнитного привода по меньшей мере с одним магнитным сегментом тем, что создаваемое с помощью магнитного привода вращающееся магнитное поле приводит во вращение барабан, по меньшей мере время от времени определяют индуцированное в катушке магнитного сегмента напряжение и из определяемого индуцированного напряжения делают вывод о степени измельчения.

При этом из индуцированного напряжения сначала определяют акустический спектр барабана и из акустического спектра делают вывод о степени измельчения.

Определение акустического спектра из степени измельчения осуществляется на основе модели.

Определение индуцированного напряжения и тем самым определение акустического спектра выполняют лишь тогда, когда соотношение VI = IB/IB,max между проходящим для создания магнитного поля в магнитном сегменте моментальным током IB и максимальным, проходящим в катушке для создания вращающегося магнитного поля током IB,max, лежит в заданном диапазоне VI∈[aI;bI], предпочтительно в диапазоне VI∈[-5%;+5%], особенно предпочтительно в диапазоне VI∈[-2%;+2%].

В качестве альтернативного решения, определение индуцированного напряжения и тем самым определение акустического спектра выполняют лишь тогда, когда соотношение VU=US/US,max между прилагаемым для создания магнитного поля в магнитном сегменте моментальным напряжением IS и максимальным, прилагаемым к катушке для создания вращающегося магнитного поля напряжением US,max, лежит в заданном диапазоне VU∈[aU;bU], предпочтительно в диапазоне VU∈ [-5%;+5%], особенно предпочтительно в диапазоне VU∈[-2%;+2%].

Определение индуцированного напряжения и тем самым определение акустического спектра выполняют, в частности, лишь тогда, когда проходящий в магнитном сегменте для создания вращающегося магнитного поля ток IS, соответственно, приложенное для создания этого тока напряжение US имеют по существу значение ноль.

Катушка является служащей для создания вращающегося магнитного поля катушкой. Таким образом, нет необходимости в дополнительных датчиках или других чувствительных элементах, а можно использовать имеющиеся конструктивные элементы.

Индуцированное в катушке напряжение является обусловленным на основании изменения во времени магнитного потока в воздушном зазоре между барабаном и магнитным сегментом напряжением взаимной индукции.

При этом за счет вибраций барабана вызывается изменение во времени воздушного зазора, при этом акустический спектр частот вибраций зависит от степени измельчения, в частности, определяется воспроизводимым образом степенью измельчения, соответственно, в частности, однозначно связан с акустическим спектром, в частности, с точностью до фактора максимально идентичен.

Магнитный привод имеет множество распределенных по окружности барабана магнитных сегментов, при этом для каждого из магнитных сегментов по отдельности определяют индуцированное в катушке соответствующего магнитного сегмента напряжение и из измеренного индуцированного напряжения делают вывод о степени измельчения.

Таким образом, с помощью каждого из магнитных сегментов можно определять индивидуальный акустический спектр тем, что измеряют индуцированное в катушке соответствующего магнитного сегмента напряжение и из измеренного индуцированного напряжения выводят соответствующий акустический спектр.

Определение отдельных индуцированных напряжений, соответственно, акустических спектров можно осуществлять

- периодически вокруг окружности барабана или

- одновременно с помощью нескольких магнитных сегментов.

Система, согласно изобретению, обеспечивает возможность определения степени измельчения измельчаемого материала в дробилке. Дробилка имеет барабан, в котором находится измельчаемый материал во время процесса измельчения и который во время процесса измельчения приводится в действие магнитным приводом, по меньшей мере с одним магнитным сегментом, за счет того, что создаваемое с помощью магнитного привода вращающееся магнитное поле приводит во вращение барабан. Предусмотрены измерительное устройство и блок обработки данных, при этом

- с помощью измерительного устройства определяют по меньшей мере время от времени индуцированное в катушке магнитного сегмента напряжение и

- блок обработки данных выполнен с возможностью вывода степени измельчения из определяемого индуцированного напряжения.

Измерительное устройство предпочтительно является частью магнитного сегмента, т.е. интегрировано в магнитный сегмент или непосредственно соединено с ним. В частности, магнитный сегмент и измерительное устройство образуют единое целое.

Магнитный привод имеет множество распределенных по окружности барабана магнитных сегментов, при этом для каждого из магнитных сегментов можно по отдельности измерять индуцированное в катушке соответствующего магнитного сегмента напряжение и с помощью блока обработки данных выводить из этих измеренных напряжений соответствующую степень измельчения.

Блок обработки данных предназначен для вычисления из измеренного индуцированного напряжения акустического спектра барабана.

Кроме того, блок обработки данных предназначен для определения, в частности на основе модели, степени измельчения из акустического спектра.

Таким образом, согласно изобретению, предлагается улучшенный способ определения степени измельчения измельчаемого материала в дробилке. Дробилка имеет барабан, в котором находится измельчаемый материал во время процесса измельчения и который во время процесса измельчения приводится в действие магнитным приводом по меньшей мере с одним магнитным сегментом тем, что создаваемое с помощью магнитного привода вращающееся магнитное поле приводит во вращение барабан. Во время процесса измельчения по меньшей мере время от времени измеряется акустический спектр барабана и из акустического спектра делается вывод о степени измельчения. Для определения акустического спектра измеряется индуцированное в катушке магнитного сегмента напряжение, и из измеренного индуцированного напряжения выводится акустический спектр.

Подлежащий оценке шумовой спектр поступает по существу из двух источников. С одной стороны, в нем содержатся шумы, создаваемые приводом, куда относятся также собственные колебания, которые возбуждаются в структуре дробилки. Они являются периодическими и тем самым детерминированными. Поэтому эту долю шумов можно на основе механоакустических моделей дробилки определять количественно и удалять, например, за счет основанной на модели фильтрации. Вторым источником шума является подлежащий измельчению с помощью измельчительных средств измельчаемый материал. Измельчаемый материал имеет форму, которая определяется случайным образом процессом разрушения в каменоломне, соответственно, руднике. Поэтому формы и величины каменных глыб являются стохастическими. В соответствии с этим, создаваемые при падении глыб шумы также имеют стохастический характер. В данном случае нет корреляции во времени отдельных шумов. Это обеспечивает возможность отделения с большой точностью одной доли шумового спектра от другой доли. Источником силы является двигатель, изменение во времени силы которого достаточно точно известно. Тем самым можно также формализовать возбуждение механической структуры дробилки (резонансные функции и т.д.) и удалять из общего спектра. Остается стохастическая составляющая, которая обусловлена по существу пересыпанием кусков породы.

Другие преимущества, признаки и подробности изобретения следуют из приведенного ниже описания примера выполнения со ссылками на прилагаемые чертежи, на которых изображено:

фиг. 1 - поперечный разрез барабана дробилки без измельчаемого материала и с измельчаемым материалом с различной степенью измельчения;

фиг. 2 - акустические спектры в соответствии с показанными на фиг. 1 состояниями;

фиг. 3 - барабан дробилки с магнитным приводом;

фиг. 4 - магнитный сегмент;

фиг. 5 - гистерезисная кривая.

На фигурах идентичные, соответственно, соответствующие друг другу зоны, конструктивные элементы, группы конструктивных элементов или стадии способа обозначены одинаковыми позициями.

На фиг. 1А-1С показан поперечный разрез вращающегося в направлении стрелки Р барабана 110 дробилки 100, например, шаровой дробилки для руды. На фиг. 1А показан барабан 110 без измельчаемого материала, на фиг. 1В и 1С показан барабан с измельчаемым материалом 120 с двумя различными степенями измельчения (на фигурах измельчаемый материал 120 для наглядности обозначен лишь частично). Дополнительно к этому на фиг. 2А-2С показаны соответствующие акустические спектры в виде излучаемой барабаном шумовой интенсивности I(ω) в зависимости от частоты ω. Измерение этого спектра позволяет, как будет пояснено ниже, судить о степени измельчения.

В дробилке 100 для руды с безредукторным электрическим приводом барабан 110 дробилки 100 приводится во вращение Р не с помощью внешнего двигателя с включенным после него редуктором, а с помощью привода 130, который, как упрощенно показано на фиг. 3, имеет множество электромагнитных сегментов 131/1, 131/2, 131/3 (соответственно, 131/i, при i=1,2,3 … ). Управление ими осуществляется с помощью соответствующей силовой электроники 140 через кабели 132/i, 141/i так, что образуется магнитное поле, ориентация которого вращается с постоянной угловой скоростью вокруг оси R барабана 110. С помощью этого вращающегося магнитного поля и соответствующих магнитных сил приводится также во вращение снабженный опорами на своих обоих концах барабан 110. За счет соответствующего электрического управления приводом, соответственно, электромагнитными сегментами 132/i можно изменять скорость вращения магнитного поля и тем самым скорость вращения барабана 110.

Для того чтобы измельчать материал 120, соответственно, в поясняемом примере выполнения руды 120, барабан 110 шаровой дробилки 100 сначала снабжается измельчающим средством 150, в случае шаровой дробилки стальными шарами 150 (на фигурах шары 150 для наглядности обозначены лишь частично). Они имеют по меньшей мере в новом состоянии максимально идентичный диаметр. При приведении во вращение барабана 110, шары 150 с помощью находящихся в барабане 110 захватов 160 приводятся в определенной мере в движение, пока они не падают с захватов 160 и ударяются в дно барабана 110 (на фигурах также захваты 160 для наглядности обозначены лишь частично).

На основании значительных масс, которые приводятся в движение в данном случае, в механической структуре барабана 110 возбуждается акустический шумовой спектр I(ω), который создается, с одной стороны, самим приводом вместе с его механическими компонентами, а с другой стороны, приводимыми в движение и снова падающими вниз шарами 150. На основании единообразной величины шаров и небольшого имеющегося демпфирования следует ожидать, что получается акустический спектр I(ω) с характерными резонансными структурами, в которых отражается, с одной стороны, механическая структура дробилки 100, соответственно, барабана 110, однако дополнительно также геометрия и масса шаров 150 в виде характерных частот. Соответствующий спектр I(ω) снабженного лишь шарами 150, но не измельчаемым материалом, барабана 110 схематично показан на фиг. 2А.

При заполнении барабана 110 измельчаемым материалом 120, например, свежей рудой, значительно изменяется измеряемый при вращении барабана 110 акустический спектр I(ω). На основании имеющих нерегулярную форму поверхностей, большого разброса распределения величины глыб 120 руды, а также на основании их структуры поверхности значительно увеличенного трения следует ожидать, что резонансы спектра значительно демпфируются и тем самым становятся шире и менее интенсивными. Образуется широкий акустический непрерывный сигнал, который уменьшается на более высоких частотах. Это показано на фиг. 2В.

При достижении желаемой степени измельчения, руда 120 присутствует в виде мелких зерен. В этом случае при вращении барабана 110 можно измерять сравнительно высокочастотный шум пересыпания. Дополнительно к этому, мелкие зерна руды создают сильное демпфирование, так что резонансы в акустическом спектре I(ω) больше не возникают или едва возникают. Вместо этого следует ожидать непрерывный сигнал с зависимой от частоты акустической интенсивностью I(ω), которая имеет максимум на более высоких частотах (фиг. 2С).

В соответствии с этим, определение акустического спектра позволяет делать выводы о степени измельчения.

На фиг. 4 показана часть барабана 110, а также магнитный сегмент 131/1 приводной системы 130 из электромагнитов 131. За счет создаваемого электромагнитом 131/1 поля в воздушном зазоре g между магнитным сегментом 131/1 и барабаном 110 возникает магнитный поток Φ. При возбуждении вибраций V в барабане 110 на основании процесса измельчения, они приводят к изменению во времени воздушного зазора g:

g(t)=g0+iΣAi sin(ωit-ϕi) (1)

Уравнение 1 описывает изменение во времени воздушного зазора за счет спектра акустического возбуждения, который содержит частоты ωi и соответствующие фазовые сдвиги ϕi.

Изменение во времени воздушного зазора g(t) приводит к изменению магнитного потока Φ за счет зазора g, так что в соответствии с правилом Ленца в катушке 133/1 магнитного сегмента 131/1 индуцируется напряжение Uind, которое противодействует этому изменению потока:

При этом сначала принимается, что изменение потока для небольших геометрических изменений воздушного зазора g происходит линейно относительно g, а затем в соответствии с уравнением (1).

На фиг. 2 показано, что модуляция во времени воздушного зазора g между магнитным сегментом 131/1 и барабаном 110 рудной дробилки 100 приводит к изменяющемуся во времени индукционному напряжению Uind в катушке 133/1 магнитного сегмента 131/1, которое содержит информацию о частотном спектре I(ω), с которым возбуждается барабан на основе процесса измельчения. Поскольку Uind изменяется пропорционально производной во времени от спектра возбуждения, который представляет временную зависимость g(t), то различные частотные составляющие подвергаются взвешиванию с фактором ω. Таким образом, высокие частоты проявляются сильнее, чем низкие частоты.

В соответствии с этим, оценка представленной уравнением (2) доли взаимоиндукции Uind в напряжении на клеммах сегмента 131/1 магнитной катушки поставляет информацию о возбуждении колебаний барабана 110. Таким образом, можно получать из доли напряжения желаемую информацию о степени измельчения руды 120. Например, можно получать спектр I(ω) с помощью анализа Фурье из зависящего от времени сигнала Uind(dt). Возможна также комбинация с синхронной частоте вращения оценкой, с помощью которой можно подавлять вносимые приводом составляющие, которые обычно являются периодическими. Последующее определение степени измельчения из спектра можно осуществлять на основе модели.

Поэтому система для определения степени измельчения имеет измерительное устройство 134/1, с помощью которого можно измерять индуцированное напряжение Uind. Для этого измерительное устройство 134/1 соединено с клеммами сегмента 131/1 магнитной катушки, соответственно, катушки 133/1. Индуцированное в катушке 133/1 напряжение Uind вызывает сенсорный ток Iind, который можно измерять, например, на шунтирующем сопротивлении 135/1 измерительного устройства 134/1. Измерительное устройство 134/1 соединено с блоком 170 обработки данных, в котором из измеренного индуцированного напряжения вычисляется на основании анализа Фурье соответствующий спектр I(ω).

В принципе, измерительное устройство 134/1 может быть частью соответствующего магнитного сегмента 131/1. В качестве альтернативного решения, измерительное устройство и соответствующий магнитный сегмент могут быть также расположены отдельно друг от друга. Например, возможно, что измерительное устройство размещено в блоке 170 обработки данных.

Остальные показанные на фиг. 3 магнитные сегменты 131/2, 131/3 выполнены аналогичным образом. Соответствующие измерительные устройства 134/2, 134/3 также соединены с блоком 170 обработки данных и, возможно, расположены в нем.

Однако специально в приводах 130 большой мощности, которые обеспечивают приводную мощность в несколько 10 МВт, предпочтительно применяется особое выполнение системы, согласно изобретению. В таких приводах индуцированные в соответствии с уравнением (2) составляющие Uind взаимной индукции относительно малы по сравнению с соответствующим максимальным напряжением UB,max и током IB,max катушечного сегмента 131, которые могут лежать в диапазоне кВ и кА. Дополнительно к этому, на моментальный сигнал напряжения и тока UB, IB могут накладываться значительные помехи. Тем самым затрудняется оценка сигнала датчика в соответствии с уравнением (2).

Однако специальная ситуация образуется, когда проходящий в катушечном сегменте 131, соответственно, в катушке 133 сегмента 131 магнитной катушки ток IB достигает значения ноль. Хотя в этот момент времени магнитное поле Н=0, однако катушечный сегмент 131 и барабан 110 имеют остаточную магнитную индукцию BR. Это показано на фиг. 5 с помощью гистерезисной кривой намагничивания. При Н=0 в магнитомягких материалах возникает остаточная магнитная индукция BR. Ее можно использовать поясняемым ниже образом, поскольку в системе, согласно фиг. 4, несмотря на отсутствие прохождения тока в катушке 133 магнитного сегмента 131, имеется магнитный поток Φ, так что в соответствии с уравнением (2) индуцируется напряжение Uind взаимной индукции, которое вызывает прохождение сенсорного тока в системе. Его можно измерять, например, на шунтирующем сопротивлении.

Таким образом, измерение напряжения Uind для определения акустического спектра осуществляется в идеальном случае в момент времени t0, когда моментально протекающий в катушке 133 магнитного сегмента 131 ток IB для создания магнитного поля достигает значения ноль, т.е. IB(t0)=0. Поскольку барабан непрерывно вращается, то измерение точно в момент времени, в который IB(t0)=0, трудно реализуемо. Однако для практических целей достаточно, когда измерение напряжения Uind осуществляется не только в этот момент времени t0, а в промежутке времени Δt, в течение которого, например, соотношение VI=IB/IB,max между проходящим моментально током IB и максимальным, проходящим для создания вращающегося магнитного поля током IB,max, лежит в диапазоне, например, VI∈[aI;bI], при этом, например, а=-2% и b=+2%. Значения параметров а, b, естественно, оказывают влияние на точность измерения. Точный диапазон, соответственно, точные границы а, b интервала, можно по отдельности определять экспериментально. Решающее значение имеет то, что имеющееся в этом момент времени, соответственно, в промежутке времени напряжение катушки на несколько порядков больше сигнала измерения.

Аналогичный интервал можно, естественно, задавать также с помощью напряжений UB, UB,max, при этом также в этом случае точные границы а, b интервала необходимо по отдельности определять экспериментально.

В принципе необходимо исходить из того, что сильный ток создает значительно более сильные помехи для оценки сигнала, чем высокое напряжение, поскольку напряжение можно при необходимости лучше отфильтровывать.

При этом в первом варианте выполнения индуцированное напряжение можно действительно измерять лишь в моменты времени t0, соответственно, в промежутках времени Δt. В альтернативном варианте выполнения непрерывно измеряется индуцированное напряжение, однако оно оценивается в блоке 170 обработки данных лишь в момент времени t0, соответственно, в промежутке времени Δt. В соответствии с этим, в данном случае применяется не выражение «измерение напряжения Uind», а выражение «определение напряжения Uind», которое охватывает эти обе возможности выполнения.

Надежность полученной так информации о степени измельчения можно дополнительно улучшить тем, что такая оценка сигналов в соответствии с уравнением (2) осуществляется не только в одном из магнитных сегментов 131/1, а во всех или по меньшей мере в нескольких магнитных сегментах 131/i магнитного привода 130. В соответствии с этим, соответствующие магнитные сегменты 131/i имеют указанные выше измерительные устройства 134/i, которые передают соответствующие измеренные индуцированные напряжения Uind,i в блок 170 обработки данных. В этом случае в блоке 170 обработки данных происходит по отдельности для каждого измерительного устройства определение акустического спектра и из него определение степени измельчения, а также, возможно, исключение машинных составляющих за счет синхронной с частотой вращения оценки.

Предпочтительно, отдельные индуцированные напряжения Uind,i измеряют периодически по кругу. Для создания вращающегося магнитного поля с помощью множества магнитных сегментов 131/1, 131/2, 131/3, которые расположены на фиг. 3 вдоль окружности барабана 110, каждый из магнитных сегментов 131/i периодически проходит через состояние, в котором ток IB,i становится равным нулю, при этом длительность периода зависит от скорости вращения магнитного поля. При этом ток IB,i не равен одновременно во всех магнитных катушках нулю. Вместо этого в простейшем варианте выполнения положение того магнитного сегмента 131/i, для которого ток IB,i=0 как бы вращается со скорость вращения вокруг барабана. Другими словами, например, сначала в момент времени t1 для тока IB,i в магнитном сегменте 131/1 справедливо IB,1(t1)=0, затем в момент времени t2>t1 IB,2(t2)=0 в магнитном сегменте 131/2, а затем в момент времени t3>t2 IB,3(t3)=0 в магнитном сегменте 131/3. Затем прохождение по кругу начинается снова, т.е. в момент времени t4>t3 снова IB,1(t4)=0 в магнитном сегменте 131/1 и т.д. В соответствии с этим, напряжение Uind,i измеряется периодически по кругу по окружности барабана, поскольку измерение по указанным выше причинам в идеальном случае осуществляется лишь тогда, когда в соответствующем магнитном сегменте 131/i справедливо IB,i=0.

В принципе, естественно, возможно также, что измерение одновременно выполняется во всех магнитных сегментах 131/i, однако следует учитывать, что при возможно имеющихся больших токах, соответственно напряжениях, измерению Uind,i могут препятствовать помехи.

С помощью корреляционных способов оценки, в которых осуществляется, например, корреляция с частотой вращения и с электрическим управлением мощностью барабана, соответственно, других агрегатов рудной дробилки, о которых также имеется детальная информация относительно, например, управления, соответственно, хода выполнения вращения, и так полученные акустические информации соединяются друг с другом в блоке 170 обработки данных (возможно, с использованием подходящих физических моделей акустического возбуждения дробилки во время различных фаз процесса измельчения), можно значительно повышать стабильность этого способа измерения по сравнению с измерением лишь одной катушки.


ОПРЕДЕЛЕНИЕ СТЕПЕНИ ИЗМЕЛЬЧЕНИЯ ИЗМЕЛЬЧАЕМОГО МАТЕРИАЛА, В ЧАСТНОСТИ РУДЫ, В ДРОБИЛКЕ
ОПРЕДЕЛЕНИЕ СТЕПЕНИ ИЗМЕЛЬЧЕНИЯ ИЗМЕЛЬЧАЕМОГО МАТЕРИАЛА, В ЧАСТНОСТИ РУДЫ, В ДРОБИЛКЕ
ОПРЕДЕЛЕНИЕ СТЕПЕНИ ИЗМЕЛЬЧЕНИЯ ИЗМЕЛЬЧАЕМОГО МАТЕРИАЛА, В ЧАСТНОСТИ РУДЫ, В ДРОБИЛКЕ
ОПРЕДЕЛЕНИЕ СТЕПЕНИ ИЗМЕЛЬЧЕНИЯ ИЗМЕЛЬЧАЕМОГО МАТЕРИАЛА, В ЧАСТНОСТИ РУДЫ, В ДРОБИЛКЕ
ОПРЕДЕЛЕНИЕ СТЕПЕНИ ИЗМЕЛЬЧЕНИЯ ИЗМЕЛЬЧАЕМОГО МАТЕРИАЛА, В ЧАСТНОСТИ РУДЫ, В ДРОБИЛКЕ
ОПРЕДЕЛЕНИЕ СТЕПЕНИ ИЗМЕЛЬЧЕНИЯ ИЗМЕЛЬЧАЕМОГО МАТЕРИАЛА, В ЧАСТНОСТИ РУДЫ, В ДРОБИЛКЕ
ОПРЕДЕЛЕНИЕ СТЕПЕНИ ИЗМЕЛЬЧЕНИЯ ИЗМЕЛЬЧАЕМОГО МАТЕРИАЛА, В ЧАСТНОСТИ РУДЫ, В ДРОБИЛКЕ
ОПРЕДЕЛЕНИЕ СТЕПЕНИ ИЗМЕЛЬЧЕНИЯ ИЗМЕЛЬЧАЕМОГО МАТЕРИАЛА, В ЧАСТНОСТИ РУДЫ, В ДРОБИЛКЕ
ОПРЕДЕЛЕНИЕ СТЕПЕНИ ИЗМЕЛЬЧЕНИЯ ИЗМЕЛЬЧАЕМОГО МАТЕРИАЛА, В ЧАСТНОСТИ РУДЫ, В ДРОБИЛКЕ
Источник поступления информации: Роспатент

Показаны записи 571-580 из 1 427.
10.06.2016
№216.015.4888

Способ оптимизированного функционирования рельсового транспортного средства с электрическим приводом на заданном участке пути

Изобретение относится к системам управления движением поездов. Способ заключается в том, что определяют затраты на вводимую на участке пути электрическую энергию и/или нагрузку на окружающую среду при производстве вводимой на участке пути электрической энергии. При этом путь рельсовой сети...
Тип: Изобретение
Номер охранного документа: 0002587126
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.48d6

Способ и устройство для контроля тормозной системы тормозного оборудования рельсового транспортного средства

Группа изобретений относится к контролю тормозной системы тормозного оборудования с несколькими тормозными системами рельсового транспортного средства. Устройство для контроля тормозной системы тормозного оборудования включает измерительные устройства (1) для измерения замедления рельсового...
Тип: Изобретение
Номер охранного документа: 0002586911
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.48f4

Коммутационное устройство для транспортного средства с электрическим приводом и электрическое транспортное средство

Группа изобретений относится к электрическим тяговым системам транспортных средств. Коммутационное устройство содержит переключательный блок (28), который выполнен с возможностью соединения или разъединения приводного блока (14) транспортного средства с находящейся под высоким напряжением линии...
Тип: Изобретение
Номер охранного документа: 0002586810
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4923

Кабина машиниста локомотива

Изобретение относится к области автоматики на железнодорожном транспорте. Кабина машиниста локомотива включает дисплей на лобовом стекле с индикацией информации, релевантной для рельсового транспортного средства, в поле зрения машиниста локомотива, блок формирования изображения дисплея на...
Тип: Изобретение
Номер охранного документа: 0002586815
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.492c

Резонаторное устройство и способ для возбуждения резонатора

В способе возбуждения резонатора, который имеет резонансную частоту, резонатор в течение первого временного интервала возбуждается с первой частотой, которая отличается от резонансной частоты на первую разность частот. В течение второго временного интервала резонатор возбуждается с второй...
Тип: Изобретение
Номер охранного документа: 0002586410
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4936

Уплотнительный элемент для уплотнения зазора

Изобретение относится к уплотнительному элементу (1) для уплотнения зазора (5) между двумя конструктивными элементами (2а, 2b), в частности к уплотнительной системе (2с) газотурбинной установки. Элемент проходит вдоль основной линии (21) и имеет контурированное поперечное сечение в рифленой...
Тип: Изобретение
Номер охранного документа: 0002586805
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4941

Способ быстрого подключения парогенератора

Изобретение относится к энергетике. Способ подключения, по меньшей мере, одного второго парогенератора к первому парогенератору в энергетической установке, содержащей, по меньшей мере, два парогенератора и одну паровую турбину, заключается в том, что используемая для приведения в движение...
Тип: Изобретение
Номер охранного документа: 0002586415
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.49cf

Матричный инвертор и способ формирования переменного напряжения во второй сети переменного напряжения из переменного напряжения в первой сети переменного напряжения посредством матричного инвертора

Изобретение относится к матричному инвертору (MU), который соединен с первой и второй многофазной сетью (N1, N2) переменного напряжения. С первой сетью (N1) переменного напряжения соединены соответственно первые индуктивные схемные элементы (Su1, Sv1, Sw1), и со второй сетью (N2) переменного...
Тип: Изобретение
Номер охранного документа: 0002586323
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.49e4

Устройство и способ получения, в частности in situ получения, углеродсодержащего вещества из подземного месторождения

Группа изобретений относится к устройству и способу извлечения углеводородсодержащего вещества, в частности битума или сверхтяжелой нефти, из пластового резервуара. К пластовому резервуару может быть подведена тепловая энергия для уменьшения вязкости вещества, для чего предусмотрен по меньшей...
Тип: Изобретение
Номер охранного документа: 0002586344
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.49f1

Схемное устройство с полупроводниковым переключателем и относящейся к нему схемой управления

Изобретение относится к области вычислительной техники и может быть использовано в схемном устройстве с полупроводниковым переключателем. Техническим результатом является создание устройства переключения, с помощью которого ток может переключаться и при относительно больших мощностях....
Тип: Изобретение
Номер охранного документа: 0002586870
Дата охранного документа: 10.06.2016
Показаны записи 571-580 из 943.
10.04.2016
№216.015.2b1b

Коаксиальный волновод с вч передатчиком

Изобретение относится к коаксиальному волноводу с центральным проводником и с гильзообразным проводником, который окружает центральный проводник, причем гильзообразный проводник имеет щель, и предусмотрен ВЧ передатчик для ввода ВЧ мощности в щель. Технический результат - возможность комбинации...
Тип: Изобретение
Номер охранного документа: 0002579748
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2bc7

Переходная сцепка, подвижной состав, включающий в себя по меньшей мере две единицы подвижного состава, сцепные устройства которых сцеплены посредством такого рода переходной сцепки, и способ сцепления сцепных устройств двух единиц подвижного состава

Изобретение относится к железнодорожному транспорту и может быть использовано для сцепления сцепных устройств единиц подвижного состава. Переходная сцепка для сцепления сцепных устройств двух единиц подвижного состава, имеющего воздуховоды, содержит два соединительных устройства для разъёмного...
Тип: Изобретение
Номер охранного документа: 0002579377
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2df3

Способ автономной локализации самоходного моторизованного транспортного средства

Изобретение относится к способу автономной локализации самоходного моторизованного транспортного средства внутри известной окружающей среды с применением по меньшей мере одного датчика. Техническим результатом является повышение надежности регистрации ориентиров. В способе автономной...
Тип: Изобретение
Номер охранного документа: 0002579978
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e16

Устройство преобразования напряжения

Изобретение относится к области электротехники и может быть использовано для потребителей, питающихся от сети. Техническим результатом является повышение точности установки отношения паразитных индуктивностей трансформатора между рабочими режимами. Устройство преобразования напряжения с по...
Тип: Изобретение
Номер охранного документа: 0002579751
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e54

Избирательное управление двигателем переменного тока или двигателем постоянного тока

Изобретение относится к области электротехники и может быть использовано для управления приводами, используемыми на подводных лодках. Техническим результатом является обеспечение возможности избирательного управления двигателями переменного или постоянного тока. В устройстве (1) для...
Тип: Изобретение
Номер охранного документа: 0002579439
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e6b

Газовая турбина и способ балансировки вращающейся части газовой турбины

Газовая турбина содержит систему балансировки вращающейся части, включающую балансировочный весовой элемент и крепежный элемент. Балансировочный весовой элемент выполнен с первым и вторым отверстиями, при этом первое и второе отверстия выполнены с возможностью съемной установки крепежного...
Тип: Изобретение
Номер охранного документа: 0002579613
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2eb0

Способ и блок управления для распознавания манипуляций в сети транспортного средства

Изобретение относится к контролю информационной безопасности. Технический результат - обеспечение безопасности сети транспортного средства. Способ распознавания манипулирования в по меньшей мере одной сети транспортного средства транспортного средства, имеющий следующие этапы: определение...
Тип: Изобретение
Номер охранного документа: 0002580790
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2ecd

Усилительное устройство для управляемого возврата мощности потерь

Изобретение относится к усилительным устройствам и может быть использовано в мощных передатчиках. Достигаемый технический результат - уменьшение модуляционных нелинейностей и уменьшение нелинейных искажений. Усилительное устройство для начального сигнала (s), имеющего начальную частоту (f),...
Тип: Изобретение
Номер охранного документа: 0002580025
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30a5

Электростатический инжектор частиц для высокочастотного ускорителя заряженных частиц

Изобретение относится к области ускорительной техники. На входе первого объемного резонатора предусмотрен электрод, который подключен к источнику постоянного напряжения и на основе которого формируется потенциальная яма, которая обуславливает ускорение частиц, испускаемых источником ионов, к...
Тип: Изобретение
Номер охранного документа: 0002580950
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.32d0

Пробоотборное устройство для отбора проб капель и газа в узких каналах газовой турбины или любого другого устройства с масляным сапуном

Группа изобретений относится к области техники измерения выбросов от газовых турбинных двигателей в целях соблюдения государственных и региональных стандартов окружающей среды. Аналитическое устройство (100) для анализа состава текучей среды, такой как масляный туман, газовой турбины содержит...
Тип: Изобретение
Номер охранного документа: 0002581086
Дата охранного документа: 10.04.2016
+ добавить свой РИД