×
27.01.2015
216.013.21a7

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ 1,2,4-ТРИАЗИНОВОГО РЯДА

Вид РИД

Изобретение

№ охранного документа
0002540063
Дата охранного документа
27.01.2015
Аннотация: Изобретение относится к медицине, а именно к фармацевтике, в частности к способу получения микрокапсул гетероциклических соединений 1,2,4-триазинового ряда, отличающемуся тем, что при получении микрокапсул физико-химическим методом осаждения нерастворителем гетероциклическое соединение растворяют в ДМСО, полученный раствор переносят в водный раствор ПВП, приливают первый осадитель - смесь уксусной кислоты в ацетоне, содержащий октиловый эфир акридонуксусной кислоты (ОэАУК) в качестве ПАВ, а затем второй осадитель - смесь ОэАУК в ацетоне, полученную суспензию отфильтровывают, промывают ацетоном и сушат. Осуществление изобретения позволяет упростить процесс получения микрокапсул и увеличить выход по массе. 3 пр.
Основные результаты: Способ получения микрокапсул гетероциклических соединений 1,2,4-триазинового ряда, отличающийся тем, что при получении микрокапсул физико-химическим методом осаждения нерастворителем гетероциклическое соединение растворяют в ДМСО, полученный раствор переносят в водный раствор ПВП, приливают первый осадитель - смесь уксусной кислоты в ацетоне, содержащий октиловый эфир акридонуксусной кислоты (ОэАУК) в качестве ПАВ, а затем второй осадитель - смесь ОэАУК в ацетоне, полученную суспензию отфильтровывают, промывают ацетоном и сушат.

Изобретение относится к области микрокапсулирования гетероциклических соединений 1,2,4-триазинового ряда, которые применяются в фармацевтической промышленности и сельском хозяйстве в качестве пестицидов.

Ранее были известны способы получения микрокапсул. Так, в пат. 2092155 МПК A61K 047/02, A61K 009/16 опубликован 10.10.1997 Российская Федерация предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. 2095055 МПК A61K 9/52, A61K 9/16, A61K 9/10 Российская Федерация опубликован 10.11.1997 предложен способ получения твердых непористых микросфер включает расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от -15 до -50°C, и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.

Недостатки предложенного способа: длительность процесса, применение специального оборудования.

В пат. 2091071 МПК A61K 35/10 Российская Федерация опубликован 27.09.1997 предложен способ получения препарата путем диспергирования в шаровой мельнице с получением микрокапсул.

Недостатками предложенного способа является длительность процесса и применение шаровой мельницы, использование которой может приводить к разрушению микрокапсул.

В пат. 2076765 МПК B01D 9/02 Российская Федерация опубликован 10.04.1997 предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.

Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.

В пат. 2101010 МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19 Российская Федерация опубликован 10.01.1998 предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; сложность исполнения; длительность процесса.

В пат. 2139046 МПК A61K 9/50, A61K 49/00, A61K 51/00 Российская Федерация опубликован 10.10.1999 предложен способ получения микрокапсул следующим образом. Эмульсию масло-в-воде готовят из органического раствора, содержащего растворенный моно-, ди-, триглицерид, предпочтительно трипальмитин или тристеарин, и возможно, терапевтически активное вещество, и водного раствора, содержащего поверхностно-активное вещество, возможно выпаривают часть растворителя, добавляют редиспергирующий агент и смесь подвергают сушке вымораживанием. Подвергнутую сушке вымораживанием смесь затем снова диспергируют в водном носителе для отделения микрокапсул от остатков органических веществ и полусферические или сферические микрокапсулы высушивают.

Недостатками предложенного способа являются сложность и длительность процесса, использования высушивания вымораживанием, что занимает много времени и замедляет процесс получения микрокапсул.

В пат. 2159037 МПК A01N 25/28, A01N 25/30 Российская Федерация опубликован 20.11.2000 предложен способ получения микрокапсул реакцией полимеризации на границе раздела фаз, содержащие твердый агрохимический материал 0,1-55 мас.%, суспендированный в перемешивающейся с водой органической жидкости, 0,01-10 мас.% неионного диспергатора, активного на границе раздела фаз и не действующего как эмульгатор.

Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя.

В статье «Разраработка микрокапсулированных и гелеобразных продуктов и материалов для различных отраслей промышленности», Российский химический журнал, 2001, т.XLV, №5-6, с.125-135 описан способ получения микрокапсул лекарственных препаратов методом газофазной полимеризации, так как авторы статьи считают непригодным метод химической коацервации из водных сред для микрокапсулирования лекарственных препаратов вследствие того, что большинство из них являются водорастворимыми. Процесс микрокапсулирования по методу газофазной полимеризации с использованием n-ксилилена включает следующие основные стадии: испарение димера n-ксилилена (170°C), термическое разложение его в пиролизной печи (650°С при остаточном давлении 0,5 мм рт.ст.), перенос продуктов реакции в «холодную» камеру полимеризации (20°C, остаточное давление 0,1 мм рт.ст.), осаждение и полимеризация на поверхности защищаемого объекта. Камера полимеризации выполнена в виде вращающегося барабана, оптимальная скорость для покрытия порошка 30 об/мин. Толщина оболочки регулируется временем нанесения покрытия. Этот метод пригоден для капсулирования любых твердых веществ (за исключением склонных к интенсивной сублимации). Получаемый поли-n-ксилилен высококристаллический полимер, отличающийся высокой ориентацией и плотной упаковкой, обеспечивает конформное покрытие.

Недостатками предложенного способа являются сложность и длительность процесса, использование метода газофазной полимеризации, что делает способ неприменимым для получения микрокапсул лекарственных препаратов в полимерах белковой природы вследствие денатурации белков при высоких температурах.

В статье «Разработка микро- и наносистем доставки лекарственных средств», Российский химический журнал, 2008, т.LII, №1, с.48-57 представлен метод получения микрокапсул с включенными белками, который существенно не снижает их биологической активности, осуществляемый процессом межфазного сшивания растворимого крахмала или гидроксиэтилкрахмала и бычьего сывороточного альбумина (БСА) с помощью терефталоил хлорида. Ингибитор протеиназ-апротинин, либо нативный, либо с защищенным активным центром был микрокапсулирован при его введении в состав водной фазы. Сплющенная форма лиофилизованных частиц свидетельствует о получении микрокапсул или частиц резервуарного типа. Приготовленные таким образом микрокапсулы не повреждались после лиофилизации и легко восстанавливали свою сферическую форму после регидратации в буферной среде. Величина pH водной фазы являлась определяющим при получении прочных микрокапсул с высоким выходом.

Недостатком предложенного способа получения микрокапсул является сложность процесса, что приводит к снижению выхода микрокапсул.

В пат. 2173140 МПК A61K 009/50, A61K 009/127 Российская Федерация опубликован 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-квитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

В пат. WO 2010/137743 JP МПК A01N 25/28; A01N 51/00; A01P 7/04; B01J 13/16 опубликован 02.12.2010 описан метод получения микрокапсул, содержащих пестицидные соединения в эфире жирной кислоты, что задерживает выпуск сроков пестицидных соединений по сравнению с обычными микрокапсулами. В способ. получения микрокапсул входит:

1) выдерживание смеси пестицидного соединения с полиизоцианатом от 20 до 60°C в течение 3 часов или более;

2) добавление к смеси воды, содержащей полиолы или полиамины, а также подготовка образования жидких капель в воде;

3) образование пленки полиуретана или полимочевины вокруг капель.

Недостатками предложенного способа являются применение специального оборудования (роторный гомогенизатор), многостадийность, что усложняет способ получения микрокапсул и делает его длительным.

Наиболее близким методом является способ, предложенный в пат. 2165700 Российская Федерация МПК A01N 25/28, A01N 53/00, A01N 57/00 опубликован 27.04.2001, где описан способ получения микрокапсулированных инсектицидных препаратов, который заключается в следующем: раствор смеси в органическом растворителе, состоящей из природных липидов и фосфорорганического и/или пиретроидного инсектицида в весовом отношении 2-4:1, диспергируют в воде с получением целевого продукта. Использование предложенного способа позволяет значительно упростить процесс инкапсулирования инсектицидов и обеспечивает высокое качество инсектицидного препарата.

Недостатком метода, предложенного в пат. 2165700 является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение процесса получения микрокапсул препарата в водорастворимых полимерах, увеличение выхода по массе.

Решение технической задачи достигается способом получения микрокапсул гетероциклических соединений триазинового ряда, отличающимся тем, что при получении микрокапсул физико-химическим методом осаждения нерастворителем в качестве осадителя используется смесь ацетона с уксусной кислотой, а в качестве оболочки микрокапсул - поливиниловый спирт, процесс получения осуществляется без специального оборудования.

Отличительной особенностью предлагаемого метода является использование смеси ацетона с уксусной кислотой (или водой) в качестве осадителя при получении микрокапсул физико-химическим методом осаждения нерастворителем и поливинилпирролидоне (ПВП) - в качестве оболочки микрокапсул.

Результатом предлагаемого метода является получение микрокапсул пестицидов при 25°С в течение 15 минут.

Пример 1. Получение микрокапсул метрибузина в ПВП, соотношение 1:3

В стакан объемом 150 мл помещают 18 г 5% водного раствора ПВП, ставят на магнитную мешалку и включают перемешивание. 0,3 г метрибузина растворяют в 2 мл ДМСО при нагревании. Полученный раствор охлаждают и по каплям переносят в раствор ПВП. После образования 1,2,4-триазидом самостоятельной твердой фазы приливают первый осадитель (5% раствор уксусной кислоты в ацетоне, содержащий 0,2% октилового эфира акридонуксусной кислоты (ОэАУК) в качестве ПАВ) в количестве 50 мл, а затем второй - 0,2% раствор ОэАУК в 15 мл ацетона. Полученную суспензию микрокапсул отфильтровывают на фильтре Шотта и промывают ацетоном. Сушат в эксикаторе над хлористым кальцием.

Получено 1,1 г порошка микрокапсул. Выход составил 91,67%.

ПРИМЕР 2. Получение микрокапсул пропиконазола в ПВП, соотношение 1:3

В стакан объемом 150 мл помещают 18 г 5% водного раствора ПВП, ставят на магнитную мешалку и включают перемешивание. 0,3 г пропиконазола растворяют в 2 мл ДМСО при нагревании. Полученный раствор охлаждают и по каплям переносят в раствор ПВП. После образования 1,2,4-триазидом самостоятельной твердой фазы приливают первый осадитель (5% раствор уксусной кислоты в ацетоне, содержащий 0,2% октилового эфира акридонуксусной кислоты (ОэАУК) в качестве ПАВ) в количестве 50 мл, а затем второй - 0,2% раствор ОэАУК в 15 мл ацетона. Полученную суспензию микрокапсул отфильтровывают на фильтре Шотта и промывают ацетоном. Сушат в эксикаторе над хлористым кальцием.

Получено 1,05 г порошка микрокапсул. Выход составил 87,5%.

ПРИМЕР 3. Получение микрокапсул требуконазола в ПВП, соотношение 1:3

В стакан объемом 150 мл помещают 18 г 5% водного раствора ПВП в бензоле, ставят на магнитную мешалку и включают перемешивание. 0,3 г 1,2,4-триазида растворяют в 2 мл ДМСО при нагревании, добавляют 1 мл спиртового 2% раствора OC-20. Полученный раствор охлаждают и по каплям переносят в раствор ПВП. После образования 1,2,4-триазидом самостоятельной твердой фазы приливают осадитель 3 мл воды с OC-20.

Полученную суспензию микрокапсул отфильтровывают на фильтре Шотта и промывают ацетоном. Сушат в эксикаторе над хлористым кальцием.

Получено 1,11 г порошка микрокапсул. Выход составил 92,5%.

Таким образом, получены микрокапсулы гетероциклических соединений 1,2,4-триазинового ряда. Данная методика характеризуется высокими выходами, простотой исполнения, не требует специального оборудования и применима как для приведенных в примерах веществ, так и для любых других, которые содержат триазиновый цикл. Кроме того описанным способом возможно получение микрокапсул соединений триазинового ряда, которые только будут синтезированы химиками-органиками в будущем. Предложенный метод применим как для фармацевтической, так и в сельскохозяйственной промышленности.

Источник поступления информации: Роспатент

Показаны записи 601-610 из 672.
20.06.2019
№219.017.8daf

Способ получения нанокапсул биопага-д в каппа-каррагинане

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул биопага-Д в оболочке из каппа-каррагинана. Способ характеризуется тем, что к суспензии каппа-каррагинана в гексане прибавляют 0,01 г Е472с в качестве...
Тип: Изобретение
Номер охранного документа: 0002691954
Дата охранного документа: 19.06.2019
11.07.2019
№219.017.b24c

Способ производства хлеба, содержащего наноструктурированный тиамин

Изобретение относится к пищевой промышленности. Способ производства хлеба включает замес теста из дрожжей хлебопекарных прессованных, соли поваренной пищевой, воды питьевой, муки пшеничной высшего сорта, его брожение, разделку, расстойку тестовых заготовок и их выпечку. В процессе...
Тип: Изобретение
Номер охранного документа: 0002694040
Дата охранного документа: 08.07.2019
19.07.2019
№219.017.b62f

Способ получения нанокапсул сухого экстракта босвеллии в гуаровой камеди

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта босвеллии характеризуется тем, что сухой экстракт босвеллии добавляют в суспензию гуаровой камеди в циклогексане в присутствии 0,01 г сложного эфира глицерина с...
Тип: Изобретение
Номер охранного документа: 0002694822
Дата охранного документа: 17.07.2019
19.07.2019
№219.017.b64a

Способ получения нанокапсул доксициклина в гуаровой камеди

Изобретение относится к области нанотехнологии, медицины, фармакологии и ветеринарной медицины. Способ получения нанокапсул доксициклина характеризуется тем, что в суспензию гуаровой камеди в гексане и 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют порошок...
Тип: Изобретение
Номер охранного документа: 0002694776
Дата охранного документа: 16.07.2019
19.07.2019
№219.017.b683

Способ получения нанокапсул сухого экстракта хвоща в каппа-каррагинане

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта хвоща характеризуется тем, что сухой экстракт хвоща добавляют в суспензию каппа-каррагинана в гексане в присутствии 0,01 г сложного эфира глицерина с одной-двумя...
Тип: Изобретение
Номер охранного документа: 0002694821
Дата охранного документа: 17.07.2019
19.07.2019
№219.017.b6ad

Способ получения нанокапсул сухого экстракта красной щетки

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта красной щетки характеризуется тем, что в качестве оболочки нанокапсул используется каппа-каррагинан, а в качестве ядра - сухой экстракт красной щетки, при этом сухой...
Тип: Изобретение
Номер охранного документа: 0002694823
Дата охранного документа: 17.07.2019
08.08.2019
№219.017.bd15

Способ получения нанокапсул витамина рр (николинамида)

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул витамина РР в альгинате натрия характеризуется тем, что в качестве оболочки используется альгинат натрия, а в качестве ядра - витамин РР при массовом соотношении ядро:оболочка 1:3, или...
Тип: Изобретение
Номер охранного документа: 0002696771
Дата охранного документа: 06.08.2019
15.08.2019
№219.017.bfc8

Способ получения нанокапсул этилнитрата

Изобретение относится к области нанотехнологии, конкретно к способу получения нанокапсул этилнитрата. Способ характеризуется тем, что в качестве оболочки нанокапсул используют каппа-каррагинан, а в качестве ядра - этилнитрат, при этом этилнитрат медленно добавляют в суспензию каппа-каррагинана...
Тип: Изобретение
Номер охранного документа: 0002697252
Дата охранного документа: 13.08.2019
15.08.2019
№219.017.bfd0

Способ получения нанокапсул тринитротолуола

Изобретение относится к области нанотехнологии, конкретно к способу получения нанокапсул тринитротолуола. Способ характеризуется тем, что в качестве оболочки нанокапсул используют гуаровую камедь, а в качестве ядра - тринитротолуол, при этом тринитротолуол медленно добавляют в суспензию...
Тип: Изобретение
Номер охранного документа: 0002697253
Дата охранного документа: 13.08.2019
23.08.2019
№219.017.c23f

Способ получения нанокапсул сухого экстракта рейши (ganoderma lucichum karst.)

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта рейши в оболочке из альгината натрия. Способ характеризуется тем, что сухой экстракт рейши добавляют в суспензию альгината натрия в метаноле в...
Тип: Изобретение
Номер охранного документа: 0002697840
Дата охранного документа: 21.08.2019
Показаны записи 601-610 из 686.
12.09.2019
№219.017.ca87

Способ получения нанокапсул сухого экстракта муира пуамы (ptychopetatum olacoides)

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта муира пуамы характеризуется тем, что в качестве оболочки нанокапсул используют альгинат натрия, в качестве ядра - сухой экстракт муиры пуамы, при этом сухой экстракт...
Тип: Изобретение
Номер охранного документа: 0002699790
Дата охранного документа: 11.09.2019
13.09.2019
№219.017.caaf

Способ производства мороженого с наноструктурированным тиамином

Изобретение относится к пищевой промышленности. Предложен способ производства мороженого, содержащего тиамин. В процессе производства в получаемый продукт вводят наноструктурированный тиамин в альгинате натрия или в каррагинане из расчета 3 г наноструктурированной добавки на 1000 г готового...
Тип: Изобретение
Номер охранного документа: 0002699979
Дата охранного документа: 11.09.2019
02.10.2019
№219.017.ccdc

Способ получения нанокапсул l-метионина

22 Изобретение относится к области нанотехнологии, конкретно к способу получения нанокапсул L-метионина. Способ характеризуется тем, что L-метионин добавляют в суспензию каппа-каррагинана в бензоле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при...
Тип: Изобретение
Номер охранного документа: 0002701142
Дата охранного документа: 25.09.2019
18.10.2019
№219.017.d77e

Способ получения нанокапсул сухого экстракта гуараны

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта гуараны характеризуется тем, что сухой экстракт гуараны добавляют в суспензию каппа-каррагинана в циклогексане в присутствии 0,01 г сложного эфира глицерина с...
Тип: Изобретение
Номер охранного документа: 0002703271
Дата охранного документа: 16.10.2019
18.10.2019
№219.017.d7bb

Способ получения нанокапсул витамина в

Изобретение относится к области нанотехнологии, медицины, ветеринарии и пищевой промышленности. Способ получения нанокапсул витамина В в каппа-каррагинане характеризуется тем, что в качестве оболочки используется каппа-каррагинан, а в качестве ядра - витамин В, при массовом соотношении...
Тип: Изобретение
Номер охранного документа: 0002703269
Дата охранного документа: 16.10.2019
24.10.2019
№219.017.d964

Способ производства мороженого с наноструктурированной фолиевой кислотой

Изобретение относится к пищевой промышленности. Способ производства мороженого, содержащего фолиевую кислоту, предусматривает введение в процессе производства в получаемый продукт наноструктурированной добавки из расчета 2,5 г добавки на 1000 г готового мороженого. Наноструктурированная добавка...
Тип: Изобретение
Номер охранного документа: 0002703798
Дата охранного документа: 22.10.2019
24.10.2019
№219.017.dab6

Способ получения нанокапсул сухого экстракта барбариса

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта барбариса в оболочке из каппа-каррагинана. Способ характеризуется тем, что сухой экстракт барбариса добавляют в суспензию каппа-каррагинана в...
Тип: Изобретение
Номер охранного документа: 0002703993
Дата охранного документа: 23.10.2019
14.11.2019
№219.017.e1db

Способ получения нанокапсул сухого экстракта алоэ в каппа-каррагинане

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Для получения нанокапсул сухой экстракт алоэ добавляют в суспензию каппа-каррагинана в циклогексане в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя...
Тип: Изобретение
Номер охранного документа: 0002705894
Дата охранного документа: 12.11.2019
15.11.2019
№219.017.e27d

Способ получения нанокапсул сухого экстракта босвеллии

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта босвеллии в оболочке из каппа-каррагинана. Способ характеризуется тем, что сухой экстракт босвеллии добавляют в суспензию каппа-каррагинана в...
Тип: Изобретение
Номер охранного документа: 0002705987
Дата охранного документа: 13.11.2019
22.11.2019
№219.017.e49f

Способ получения нанокапсул l-метионина

Изобретение относится к области нанотехнологии, конкретно к способу получения нанокапсул L-метионина. Способ характеризуется тем, что L-метионин добавляют в суспензию гуаровой камеди в гексане в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и...
Тип: Изобретение
Номер охранного документа: 0002706687
Дата охранного документа: 20.11.2019
+ добавить свой РИД