×
27.01.2015
216.013.2188

СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЖИДКОГО АЗОТА ПУТЕМ РАЗЛОЖЕНИЯ ВОЗДУХА ПРИ НИЗКОЙ ТЕМПЕРАТУРЕ

Вид РИД

Изобретение

№ охранного документа
0002540032
Дата охранного документа
27.01.2015
Аннотация: Группа изобретений относится к способу и устройству для получения жидкого азота путем разложения воздуха при низкой температуре. Способ и устройство служат для получения жидкого азота путем разложения воздуха при низкой температуре в системе дистилляционных колонн для разделения на азот и кислород, содержащей колонну высокого давления, колонну низкого давления и дефлегматор колонны высокого давления. По меньшей мере, часть дроссельного потока, давление которого было снижено, подается в испарительное пространство дефлегматора колонны высокого давления в виде потока охлаждающего средства. Система дистилляционных колонн для разделения на азот и кислород дополнительно имеет дефлегматор колонны низкого давления, пространство для сжижения и испарительное пространство. Часть головного азота колонны низкого давления подается в пространство для сжижения дефлегматора колонны низкого давления и там частично испаряется. Жидкость из нижней области колонны низкого давления, обогащенная кислородом, подается в испарительное пространство дефлегматора колонны низкого давления и там частично испаряется. Группа изобретений направлена на снижение энергопотребления, при этом аппаратные затраты должны удерживаться в определенных рамках. 2 н. и 12 з.п. ф-лы, 6 ил.

Изобретение относится к способу согласно ограничительной части пункта 1 формулы изобретения.

«Первое давление», при котором очищается исходный воздух, составляет 5-12 бар, предпочтительно, 5,5-7,0 бар. Оно примерно равно рабочему давлению колонны высокого давления или немного превышает его.

«Второе давление» значительно выше первого давления. Оно составляет, например, по меньшей мере 50 бар, в частности, 50-80 бар, предпочтительно, 55-70 бар.

«Основной теплообменник» может быть образован одним или несколькими параллельно и/или последовательно соединенными участками теплообменников, например, из одного или нескольких блоков теплообменников.

«Система дистилляционных колонн для разделения на азот и кислород» содержит ровно две дистилляционные колонны, а именно, одну колонну высокого давления и одну колонну (30) низкого давления. Других дистилляционных колонн для разделения на азот и кислород в системе не существует. В принципе могут быть предусмотрены другие дистилляционные колонны для других задач по разделению, например, для получения благородного газа. Однако, предпочтительно, изобретение относится к способам и устройствам, вообще не имеющим никаких других разделительных колон, кроме колонн высокого и колонн низкого давления.

Кроме того, «система дистилляционных колонн для разделения на азот и кислород» содержит также один единственный дефлегматор (головной конденсатор) колонны высокого давления для сжижения головного газа колонны высокого давления, выполненный в виде конденсатора-испарителя и имеющий пространство для сжижения и одно единственное испарительное пространство. Таким образом, в способе и устройстве никакие другие конденсаторы для сжижения головного газа колонны высокого давления не используются. Дефлегматор колонны высокого давления имеет лишь одно единственное испарительное пространство, т.е. все части испарительного пространства сообщаются друг с другом. В частности, дефлегматор колонны высокого давления эксплуатируется не с несколькими охлаждающими средами различного состава, а, предпочтительно, только с одной единственной охлаждающей средой. Как правило, дефлегматор колонны высокого давления имеет также одно единственное пространство для сжижения, в котором сжижается по меньшей мере часть головного газа колонны высокого давления.

«Дроссельный поток» охлаждается и сжижается или - при закритическом давлении - псевдоожижается путем косвенного теплообмена в основном теплообменнике. Уменьшение давления дроссельного потока перед его подачей в систему дистилляционных колонн для разделения на азот и кислород обычно проводится в дроссельном клапане; в порядке альтернативы может осуществляться расширение с выполнением работы в жидкостной турбине. При снижении давления или расширении дроссельного потока образуется двухфазная смесь, состоящая преимущественно из жидкости.

Такие способы с использованием жидкого азота, при которых холод в основном теплообменнике передается воздушному потоку («дроссельному потоку»), находящемуся под очень большим давлением, известны из ЕР 316768 А2 (фиг.1), US 5660059 или DE 102004046344. Все эти способы имеют конвенциональную двухколонную систему, в которой дефлегматор колонны высокого давления (основной конденсатор) охлаждается с помощью жидкости снизу колонны низкого давления.

Недостатком этих известных способов является сильное сжижение воздуха, подаваемого в систему дистилляционных колонн. Это приводит к уменьшению разделяющей способности и тем самым к относительно большому энергопотреблению системы.

Поэтому в основу изобретение положена задача создания способа вышеназванного типа и соответствующего устройства, имеющих особенно малое энергопотребление. При этом аппаратные затраты должны удерживаться в определенных рамках.

Эта задача решается с помощью признаков отличительной части пункта 1 формулы изобретения, т.е. с помощью способа, при котором классическая двойная колонна заменяется двумя колоннами, которые обе содержат по дефлегматору (головному конденсатору). При этом дросселированный дроссельный поток по меньшей мере частично подается в дефлегматор колонны высокого давления и вызывает там образование жидкого азота, который в качестве возвратного продукта может подаваться в колонну высокого давления и/или в колонну низкого давления, и/или выделяться непосредственно в виде жидкого продукта под давлением. Таким образом, холод, содержащийся в дроссельном потоке, используется особенно эффективно, и имеет место особенно низкое энергопотребление.

Правда, такие системы колонн известны сами по себе, например, из US 6499312. Однако в этих известных способах дефлегматор колонны высокого давления охлаждается не дроссельным воздушным потоком, а жидкостью из нижней области колонны высокого давления. В отличие от этого изобретение имеет то преимущество, что используется фракция постоянного состава (и тем самым с постоянной температурой) со стороны выпаривания дефлегматора колонны высокого давления. Таким образом, в частности, при изменяющейся нагрузке (недогрузке/перегрузке) устанавливается особенно стабильный режим работы колонн. Даже если состав фракций при изменении нагрузки в колоннах изменяется, температура верха колонны высокого давления остается постоянной, и в подрегулировке рабочих давлений колонн нет необходимости. Кроме того, жидкость из дроссельного потока (с содержанием кислорода около 21 мольного %) закипает при более низкой температуре, чем жидкость внизу колонны высокого давления (с минимальным содержанием кислорода 32 мольных %, как правило, 36-40 мольных %); таким образом, рабочее давление колонны высокого давления в изобретении может удерживаться на относительно низком уровне, и способ работает особенно благоприятно с энергетической точки зрения.

При этом дроссельный поток, давление которого было снижено, может прямо или косвенно подаваться в испарительное пространство дефлегматора колонны высокого давления.

В первом случае поток охлаждающего средства подается непосредственно после снижения давления дроссельного потока прямо в испарительное пространство дефлегматора колонны высокого давления. При этом поток охлаждающего средства может быть образован всем дроссельным потоком или его частью, ответвляющейся сразу же после снижения давления.

В порядке альтернативы или дополнения по меньшей мере часть дроссельного потока, давление которого было снижено, подвергается разделению фаз, и поток охлаждающего средства при разделении фаз образуется по меньшей мере частью жидкой фазы. Предпочтительно, разделение фаз осуществляется в промежуточном месте колонны высокого давления. При этом дроссельный поток (или его часть) подается в колонну высокого давления в промежуточном месте, и поток охлаждающего средства отбирается из улавливающего устройства для жидкости (например, чаши), установленной в этом промежуточном месте. Промежуточное место находится, например, непосредственно над шестой до двенадцатой, предпочтительно, над восьмой до одиннадцатой теоретической тарелкой снизу при общем объеме, например, 40-90, предпочтительно, 40-60 теоретических тарелок в колонне высокого давления (в зависимости от желательной единицы продукта).

Предпочтительно, холод, необходимый для сжижения продукта, производится с помощью двухтурбинной циркуляции воздуха, как она описана в пункте 4 формулы изобретения. Оба детандера, как правило, образованы турбодетандерами. Они, предпочтительно, имеют одинаковое давление на входе (на уровне промежуточного давления или больше) и/или одинаковое давление на выходе (на уровне первого давления).

Благоприятно, чтобы механическая энергия, выработанная в детандерах, за счет механического соединения передавалась двум последовательно установленным дополнительным компрессорам, в которых часть воздуха подвергалась бы дальнейшему сжатию от промежуточного до высокого давления, что является предметом пункта 5 формулы изобретения. После этого поток высокого давления может быть использован в качестве дроссельного потока; в порядке альтернативы или дополнения оба турбинных потока образуются потоком высокого давления; в этом случае производство холода, а тем самым и производство жидкости могут быть еще более увеличены без необходимости подачи энергии извне.

В одном из предпочтительных вариантов выполнения весь холод, используемый в дефлегматоре колонны высокого давления, предоставляется за счет потока охлаждающего средства. Таким образом, поток охлаждающего средства, образуемый за счет дроссельного потока, представляет собой единый поток, используемый для испарительного пространства дефлегматора колонны высокого давления.

Кроме того, пар, полученный в испарительном пространстве дефлегматора колонны высокого давления, может быть подан в колонну низкого давления, в частности, в ее нижнюю область. Он служит там в качестве поднимающегося пара, предпочтительно, он составляет весь пар, поднимающийся в колонне низкого давления.

В одном из особых вариантов выполнения способа согласно изобретению ни колонна высокого, ни колонная низкого давления не имеют кипятильников для производства пара, поднимающегося из жидкости соответствующей колонны.

Кроме того, благоприятно, чтобы в испарительном пространстве дефлегматора колонны высокого давления производилось лишь частичное выпаривание, а фракция, оставшаяся жидкой, подавалась в испарительное пространство дефлегматора колонны низкого давления. Из последнего небольшое количество жидкости может быть отобрано для промывки.

По меньшей мере часть жидкости, полученной в испарительном пространстве дефлегматора колонны высокого давления, может быть подана в колонну низкого давления и там подвергнуться дальнейшему разделению.

Поток жидкости сырого кислорода, предпочтительно, подается снизу колонны высокого давления в колонну низкого давления.

В дополнение к дроссельному потоку в колонну высокого давления, в частности, в ее нижнюю область, в газообразном состоянии подается разлагаемый воздушный поток, образуемый другой частью исходного очищенного воздуха. Разлагаемый воздушный поток может образовываться за счет части обоих турбинных потоков после расширения с выполнением работы.

В способе согласно изобретению, предпочтительно, по меньшей мере 50 мольных %, в частности, 50-60 мольных %, всего количества исходного воздуха, подаваемого в систему дистилляционных колонн для разделения азота и воздуха, подаются в систему дистилляционных колонн для разделения на азот и кислород в жидком состоянии.

Кроме того, изобретение относится к производству жидкого азота путем разложения воздуха при низкой температуре согласно пункту 14 формулы изобретения.

Ниже изобретение, а также другие детали изобретения более подробно поясняются на примерах выполнения со ссылкой на схематически изображенные чертежи, на которых:

фиг.1 изображает первый пример выполнения способа согласно изобретению,

фиг.2 - второй пример выполнения, на котором показана только система дистилляционных колонн,

фиг.3 - система охлаждения первого примера выполнения в деталях, и

фиг.4-6 - другие варианты системы охлаждения.

На фиг.1 в виде трех заштрихованных прямоугольников разделены этапы процесса: предварительная обработка воздуха, система охлаждения и система дистилляционных колонн для разделения на азот и кислород (слева направо).

Поступающий воздух 1 через фильтр 2 подается в основной воздушный компрессор 3 и там сжимается до первого давления с 5,5 до 7,0 бар, а в устройстве 4 для предварительного охлаждения снова охлаждается до окружающей температуры, например, путем косвенного теплообмена в теплообменнике или непосредственного теплообмена в холодильнике с непосредственным контактом.

Предварительно охлажденный воздух под первым давлением очищается в очищающем устройстве 5 для предварительной очистки, содержащем адсорбер с молекулярным ситом. Очищенный воздух 6 (Воздух) подается в систему охлаждения, служащую для охлаждения исходного воздуха и для производства холода для сжижения. Там исходный очищенный воздух 6 сначала по меньшей мере частично смешивается с рециркуляционным потоком 7 с получением циркуляционного потока 8. Циркуляционный поток 8 в циркуляционном компрессоре 9 с дополнительным холодильником 10 сжимается далее до промежуточного давления 30-40 бар. Весь сжатый до промежуточного давления воздух 11 сжимается далее в двух последовательно соединенных дополнительных компрессорах 12, 14 до высокого давления по меньшей мере 50 бар, в частности, 50-80 бар, предпочтительно, до 55-70 бар. За дополнительными компрессорами 12, 14 следуют, соответственно, дополнительные холодильники 13, 15.

Сжатый воздух 16 высокого давления разделяется на два частичных потока 17, 18. Первый частичный поток 17 содержит дроссельный поток и первый турбинный поток, вместе поступающие на холодный конец основного теплообменника 19 и охлаждающиеся до первой промежуточной температуры, являющейся промежуточной между окружающей температурой и точкой росы. При этой промежуточной температуре первый турбинный поток 20 ответвляется от первого частичного потока. Остаток продолжает охлаждаться в основном теплообменнике до холодного конца, псевдоожижается и образует дроссельный поток 21, содержащий немногим более половины всего количества воздуха 1. Первый турбинный поток 20 в первой холодной турбине 22 расширяется с выполнением работы примерно до первого давления и до температуры на несколько градусов выше точки росы. Отработавший расширенный первый турбинный поток 23 полностью или в основном является газообразным и образует в первой части газообразный разлагаемый воздушный поток 24. Остаток 25 подается на холодный конец основного теплообменника 19 и снова нагревается примерно до окружающей температуры.

Второй частичный поток сжатого воздуха высокого давления 16 образует второй турбинный поток 18. Последний примерно при окружающей температуре и при высоком давлении расширяется с выполнением работы во второй (теплой) турбине 26 также примерно до первого давления. Отработавший расширенный второй частичный поток 27 со второй промежуточной температурой снова поступает в основной теплообменник 19 и там соединяется с частью 25 отработавшего первого частичного потока 23, образуя рециркуляционный поток 7, снова подаваемый в циркуляционный компрессор 9.

Газообразный разлагаемый воздушный поток 24 (Воздух) и дроссельный поток 21 (Стр. воздух) поступают в систему дистилляционных колонн для разделения на азот и кислород, содержащую колонну 28 высокого давления и дефлегматор 29 колонны высокого давления, колонну 30 низкого давления и дефлегматор 31 колонны низкого давления. Рабочее давление колонны 28 высокого давления составляет 5,5-7,0 бар. Газообразный разлагаемый воздушный поток 24 подается непосредственно в нижнюю область колонны 28 высокого давления. Давление дроссельного потока 21 снижается в дроссельном клапане 32 до давления менее 4 бар и полностью подается в испарительное пространство дефлегматора колонны высокого давления в качестве потока 33 охлаждающего средства.

Головной газ 34 колонны 28 высокого давления практически состоит из чистого азота, и его первая часть 35 (в молярном количестве, составляющем несколько менее половины поступающего количества воздуха 1) подается в пространство для сжижения дефлегматора 29 колонны высокого давления и там в основном полностью сжижается. Первая часть 37 жидкости 36, полученной в дефлегматоре колонны высокого давления, в порядке рециркуляции подается в колонну 28 высокого давления. Остаток 38 после охлаждения в противоточном теплообменнике 39 для переохлаждения охлаждается и через дроссельный клапан 40 в порядке рециркуляции подается в колонну 30 низкого давления, работающую при давлении ниже 4 бар. Жидкость, скапливающаяся внизу колонны 28 высокого давления, в виде потока 41 жидкости сырого кислорода через противоточный теплообменник 39 для переохлаждения и через дроссельный клапан 42 подается в испарительное пространство дефлегматора 31 колонны низкого давления.

Поток 33 охлаждающего средства почти полностью испаряется в дефлегматоре колонны высокого давления, в жидком виде отбирается лишь относительно небольшое количество, необходимое для промывки и регулирования. Пар 43, выработанный в испарительном пространстве дефлегматора 29 колонны высокого давления, подается непосредственно в нижнюю область колонны 30 низкого давления. Оставшаяся фракция 44 из испарительного пространства дефлегматора 29 колонны высокого давления направляется через дроссельный клапан 45 в испарительное пространство дефлегматора 31 колонны низкого давления.

Обогащенная кислородом жидкость 80, скапливающаяся внизу колонны 30 низкого давления, после переохлаждения в противоточном теплообменнике 39 для переохлаждения и после дросселирования также подается в испарительное пространство дефлегматора 31 колонны низкого давления.

Головной азот 46 колонны 30 низкого давления направляется в пространство для сжижения дефлегматора 31 колонны низкого давления и там в основном полностью сжижается. Жидкость, скапливающаяся внизу колонны 28 высокого давления, в виде потока 41 жидкости сырого кислорода через противоточный теплообменник 39 для переохлаждения и дроссельный клапан 42 подается в испарительное пространство дефлегматора 31 низкого давления, находящееся под давлением 1,4-1,6 бар.

Холодный газ из дефлегматора 31 колонны низкого давления сначала пропускается через противоточный теплообменник 39 для переохлаждения и при этом охлаждает жидкости. После этого он по трубопроводам 56 и 57 перетекает в основной теплообменник и там охлаждает теплые воздушные потоки. По трубопроводу 62 промывается также дефлегматор 31 колонны низкого давления, для чего отбирается небольшое количество жидкости (Очистка). Теплый остаточный газ 57/58 (Остаток/обычный газ) после использования в виде генераторного газа 59 в очищающем устройстве 5 для очистки непосредственно (60) или косвенно (61) выбрасывается в окружающую среду (Окр.ср.).

Первая часть 48 жидкости 47 из пространства для сжижения дефлегматора 31 колонны низкого давления в порядке рециркуляции подается в колонну 30 низкого давления. Остаток 49, 51 в виде жидкого азота (ЖА на хранение) находится под давлением свыше 3 бар и накапливается в не показанном резервуаре для жидкости. С помощью дросселирования 53 небольшого количества 52 жидкого азота 49, 51 его можно переохладить в переохладителе 50. Испарившийся при этом азот 54 смешивается с остаточным газом 56 из дефлегматора 31 колонны низкого давления (Остаток).

Небольшое количество головного газа 35 колонны 28 высокого давления может быть получено в виде газообразного сжатого азота 63, 64. Эта фракция (PGAN) из колонны 28 высокого давления также направляется в основной теплообменник 19 и способствует охлаждению теплых воздушных потоков.

На фиг.2 давление дроссельного потока 21 в дроссельном клапане 232 сначала снижается до рабочего давления колонны 28 высокого давления и подается в нее в промежуточном месте. В колонне высокого давления происходит разделение фаз. Затем после соответствующего дальнейшего дросселирования по меньшей мере часть жидкой составляющей дроссельного потока, давление которого уменьшено, подается в испарительное пространство дефлегматора колонны высокого давления в качестве потока 270, 233 охлаждающего средства. Таким образом, газообразная составляющая дроссельного потока 21 присутствует в колонне 28 высокого давления в качестве поднимающегося пара.

На фиг.3-7 изображены различные схемы системы охлаждения, которые могут, соответственно, комбинироваться с каждой из систем дистилляционных колонн, описанных на фиг.1 и 2.

На фиг.3 в увеличенном виде изображен лишь частичный разрез фиг.1. Этот вариант выполнения имеет то преимущество, что в теплой турбине 26 давление снижается с особенно высокого давления (высокого давления, под которым находится также дроссельный поток 21) при соответствующем падении ее температуры. Предварительного охлаждения второго турбинного потока 18 в основном теплообменнике 19 в этом случае не требуется. Нет необходимости ни в каком трубопроводе от основного теплообменника 19 к теплой турбине 26, теплообменник прост и экономичен в изготовлении.

На фиг.4 для разнообразия предварительному охлаждению подвергается также второй турбинный поток 18 в основном теплообменнике 419.

В примере выполнения на фиг.5 давление на входе второй (теплой) турбины 26 ниже и находится на уровне промежуточного давления. Кроме того, второй турбинный поток 518 ответвляется от циркуляционного потока 11, сжатого до промежуточного давления, еще до обоих дополнительных компрессоров 12, 14, подвергается предварительному охлаждению в основном теплообменнике 19 и, наконец, подается в турбину 26.

На фиг.6 основной теплообменник 19 дополнительно охлаждается с помощью холодильной машины. Такая холодильная машина может быть также добавлена в варианте выполнения на фиг.4.


СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЖИДКОГО АЗОТА ПУТЕМ РАЗЛОЖЕНИЯ ВОЗДУХА ПРИ НИЗКОЙ ТЕМПЕРАТУРЕ
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЖИДКОГО АЗОТА ПУТЕМ РАЗЛОЖЕНИЯ ВОЗДУХА ПРИ НИЗКОЙ ТЕМПЕРАТУРЕ
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЖИДКОГО АЗОТА ПУТЕМ РАЗЛОЖЕНИЯ ВОЗДУХА ПРИ НИЗКОЙ ТЕМПЕРАТУРЕ
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЖИДКОГО АЗОТА ПУТЕМ РАЗЛОЖЕНИЯ ВОЗДУХА ПРИ НИЗКОЙ ТЕМПЕРАТУРЕ
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЖИДКОГО АЗОТА ПУТЕМ РАЗЛОЖЕНИЯ ВОЗДУХА ПРИ НИЗКОЙ ТЕМПЕРАТУРЕ
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЖИДКОГО АЗОТА ПУТЕМ РАЗЛОЖЕНИЯ ВОЗДУХА ПРИ НИЗКОЙ ТЕМПЕРАТУРЕ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 114.
16.06.2018
№218.016.635b

Стимулирующие текучие среды на основе смеси шфлу

Изобретение относится к стимулирующим текучим средам для гидроразрыва углеводородсодержащего пласта и системному оборудованию для них. Технический результат – повышение экономичности, эффективности и безопасности обработки. Стимулирующая текучая среда содержит проппант и не разделенную на...
Тип: Изобретение
Номер охранного документа: 0002657569
Дата охранного документа: 14.06.2018
05.07.2018
№218.016.6c1e

Установка разделения воздуха, способ получения продукта, содержащего аргон, и способ изготовления установки разделения воздуха

Предложена установка (100) разделения воздуха для получения продукта, содержащего аргон, низкотемпературным разделением сжатого и охлажденного исходного воздуха и способы ее работы. Установка (100) имеет колонну (1) высокого давления, образованную несколькими секциями колонну низкого давления с...
Тип: Изобретение
Номер охранного документа: 0002659698
Дата охранного документа: 03.07.2018
24.07.2018
№218.016.7448

Способ для сжижения обогащенной углеводородом фракции

Описан способ сжижения обогащенной углеводородом фракции, в частности природного газа, за счет косвенного теплообмена с холодильной смесью контура циркуляции холодильной смеси. Холодильная смесь сжимается, разделяется на жидкую фазу, которая обогащена высококипящими компонентами (HMR)...
Тип: Изобретение
Номер охранного документа: 0002662005
Дата охранного документа: 23.07.2018
17.08.2018
№218.016.7cb6

Резервуар для хранения сжиженных горючих газов

Резервуар (80) для хранения сжиженных криогенных газов пулевидной формы полной герметизации содержит внутренний (82) и внешний резервуары (83) из криогенной стали, ножки для опоры резервуара (80) для хранения на опорной конструкции (81) и выпускную трубу (84), сообщающуюся с внутренней частью...
Тип: Изобретение
Номер охранного документа: 0002663930
Дата охранного документа: 13.08.2018
26.09.2018
№218.016.8bfb

Комбинированная сепарация высококипящих и низкокипящих компонентов из природного газа

Изобретение относится к способу сепарации высококипящих и низкокипящих компонентов из обогащенного углеводородами сырья. Сырье (1) частично конденсируют (Е1, Е2) и путем ректификации (Т1) отделяют обогащенную высококипящими компонентами жидкую фракцию (8) (стадия сепарации 1). Обедненную...
Тип: Изобретение
Номер охранного документа: 0002668053
Дата охранного документа: 25.09.2018
11.10.2018
№218.016.9029

Обкладка резервуара для криогенно сжиженных веществ

Изобретение относится к резервуару для хранения сжиженного газа, включающему закрытую бетонную оболочку (1) для размещения емкости (2), стенки которого находятся на расстоянии от внутренней стенки бетонной оболочки (1), причем бетонная оболочка (1) в области стенки снабжена на внутренней...
Тип: Изобретение
Номер охранного документа: 0002669083
Дата охранного документа: 08.10.2018
15.10.2018
№218.016.927e

Обработка газов

Изобретение относится к обработке газов. Для восстановления серы из содержащего сероводород потока газа осуществляют следующие стадии. Создают поток газа, содержащий сероводород, и пропускают поток газа в устройство, содержащее области термической и каталитической обработки. Каталитическая...
Тип: Изобретение
Номер охранного документа: 0002669606
Дата охранного документа: 12.10.2018
19.10.2018
№218.016.93dd

Теплообменник, имеющий сборный канал для отвода жидкой фазы

Изобретение касается теплообменника (1) для непрямого теплообмена между первой средой (F1) и второй средой (F2), имеющего кожух (2), который имеет затрубное пространство (3) для помещения жидкой фазы (L1) первой среды (F1), по меньшей мере один расположенный в затрубном пространстве (3)...
Тип: Изобретение
Номер охранного документа: 0002669991
Дата охранного документа: 17.10.2018
27.10.2018
№218.016.978a

Колонна с жидкостными распределителями и массообменными тарелками из уголковых профилей

Изобретение относится к колонне, предназначенной, в частности, для массо- и/или энергообмена между жидкостной фазой и направленной в противотоке к ней газообразной фазой. Колонна содержит боковую стенку, проходящую вдоль продольной оси колонны и окружающую внутреннее пространство колонны,...
Тип: Изобретение
Номер охранного документа: 0002670891
Дата охранного документа: 25.10.2018
01.11.2018
№218.016.988f

Способ удаления кислотных газов из природного газа

Изобретение относится к способу удаления кислотных газов, прежде всего диоксида углерода и сероводорода, из богатой углеводородом фракции, прежде всего природного газа. В предложенном способе богатая углеводородом фракция (1) охлаждается и частично конденсируется (Е1-Е4), а получающаяся при...
Тип: Изобретение
Номер охранного документа: 0002671253
Дата охранного документа: 30.10.2018
Показаны записи 61-63 из 63.
20.01.2018
№218.016.1b35

Многопламенная горелка и способ нагрева заготовки

Изобретение относится к области энергетики. Многопламенная горелка (10) имеет некоторое количество горелочных головок (1) и предусмотренных для них соединительных труб (4), которые выполнены для того, чтобы при питании топливом создавать по меньшей мере один факел пламени горелки,...
Тип: Изобретение
Номер охранного документа: 0002635949
Дата охранного документа: 17.11.2017
20.01.2018
№218.016.1cd8

Улучшенный пузырьками проппант для гидроразрыва в скважинах

Изобретение относится к производству проппанта и его суспензии в жидкости для гидроразрыва. Способ формирования газонаполненных пузырьков на поверхности частицы проппанта, содержащий этапы помещения частиц проппанта в воду при рабочем давлении 8000-12000 фунтов на квадратный дюйм, создание...
Тип: Изобретение
Номер охранного документа: 0002640614
Дата охранного документа: 10.01.2018
13.02.2018
№218.016.219f

Способ низкотемпературного разделения воздуха в установке для разделения воздуха и установка для разделения воздуха

Группа изобретений относится к разделению воздуха. Охлажденный воздух (AIR) при первом разделительном давлении в первой разделительной колонне (S1) разделяют на обогащенную азотом головную фракцию и обогащенную кислородом нижнюю фракцию. Дополнительный охлажденный воздух (AIR) в смесительной...
Тип: Изобретение
Номер охранного документа: 0002641766
Дата охранного документа: 22.01.2018
+ добавить свой РИД