×
27.01.2015
216.013.20fb

Результат интеллектуальной деятельности: СПОСОБ ОСАЖДЕНИЯ ТОНКИХ ПЛЕНОК ОКСИДА ЦЕРИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии тонких пленок, в частности к способу формирования равномерных по толщине пленок оксида церия (CeO) на подложках сложной пространственной конфигурации, и может быть использовано для создания равномерных по толщине пленок оксида церия при решении ряда задач нанотехнологии, энергосберегающих технологий, в электронной, атомной и других областях науки и техники. Способ включает магнетронное распыление металлической мишени церия в рабочей камере в атмосфере, содержащей инертный газ и кислород, и осаждение на подложку слоя оксида церия, при этом подложку размещают на аноде в области зоны активного распыления мишени на расстоянии от мишени R, превышающем глубину зоны термализации L распыленных атомов мишени, при соотношении R/L в диапазоне 1,2÷1,5. Техническим результатом изобретения является формирование равномерных по толщине покрытий оксида церия на подложках сложной пространственной конфигурации. 2 ил., 1 пр.
Основные результаты: Способ осаждения тонких пленок оксида церия, включающий магнетронное распыление металлической мишени церия в рабочей камере, в атмосфере, содержащей инертный газ и кислород, и осаждение на подложку слоя оксида церия, отличающийся тем, что подложку размещают на аноде в области зоны активного распыления мишени на расстоянии от мишени, превышающем глубину зоны термализации распыленных атомов мишени при соотношении R/L в диапазоне 1,2÷1,5, где R - расстояние мишень-подложка, L - глубина зоны термализации.

Изобретение относится к технологии тонких пленок, в частности к способу формирования равномерных по толщине пленок оксида церия (CeO2) на подложках сложной пространственной конфигурации. Под термином подложки «сложной пространственной конфигурации» имеется в виду наличие у поверхности подложки зон, находящихся в области геометрической тени относительно источника (мишени) распыленных атомов. При использовании ионно-плазменного распыления это достигается регулированием режима транспорта распыленных атомов Ce в промежутке дрейфа мишень-подложка и может быть использовано для создания равномерных по толщине пленок оксида церия при решении ряда задач нанотехнологии, энергосберегающих технологий, в электронной, атомной и других областях науки и техники. Изобретение направлено на разработку способа ионно-плазменного нанесения тонких пленок оксида церия и повышение его технологической гибкости применительно к получению тонкопленочных покрытий на протяженные подложки сложной пространственной конфигурации.

Изобретение может быть использовано при напылении тонкопленочных структур оксида церия, как на постоянном токе, так и при высокочастотном напылении.

Одним из известных методов осаждения пленок оксидов металлов является метод магнетронного распыления [Данилин Б.С., Сырчин В.К. Магнетронные распылительные системы. М.: Радио и связь. 1982. 73 с.], он позволяет контролируемым образом, варьируя технологические параметры процесса, изменять условия осаждения и наносить с высокой скоростью роста пленки с заданными электрофизическими свойствами.

При осаждении пленок на подложки сложной пространственной конфигурации формирование их свойств определяется технологическими параметрами процесса осаждения.

Наиболее близким по технической сущности к заявляемому решению является способ ионно-плазменного нанесения тонких пленок в вакууме, основанный на перемещении или вращении подложки в различных направлениях [Данилин Б.С. Применение низкотемпературной плазмы для нанесения тонких пленок. М.: Энергоатомиздат. 1989. 328 с.]. Он заключается в том, что для заданного формирования равномерных по толщине пленок на подложки сложной пространственной конфигурации держатель подложек перемещается или вращается в различных направлениях по заданному алгоритму.

Указанный способ обладает рядом недостатков: сложностью конструкции и низкой технологической гибкостью метода. Сложность конструкции распылительной камеры обусловлена наличием привода перемещения в зоне распыления и сложной системы расположения подложек. Низкая технологическая гибкость связана с тем, что для изменения скорости распыления мишени необходимо изменять алгоритм системы крепления подложек. Вместе с тем перемещение системы расположения подложек, даже в одном технологическом цикле, приводит к кратковременному прерыванию процесса осаждения, связанному с режимом зажигания газового разряда, и, как следствие, к образованию негативного переходного слоя между осаждаемыми слоями. Эти эффекты, связанные с перемещением подложек, делают невозможным реализацию наноразмерных слоев и возможность создания покрытий с равномерным распределением по толщине, необходимых для ряда задач нанотехнологии.

Задачей настоящего изобретения является разработка способа осаждения тонких пленок оксида церия, позволяющего в одном технологическом цикле получать пленки с равномерным распределением по толщине на подложках сложной пространственной конфигурации.

Достигаемым техническим результатом изобретения является формирование равномерных по толщине покрытий оксида церия на подложках сложной пространственной конфигурации.

Технический результат достигается тем, что проводят магнетронное распыление металлической мишени церия в рабочей камере в атмосфере, содержащей инертный газ и кислород, при этом подложку размещают на аноде в области зоны активного распыления мишени на расстоянии от мишени, превышающем глубину зоны термализации распыленных атомов мишени при соотношении R/L в диапазоне 1,2÷1,5, где R - расстояние мишень-подложка, L - глубина зоны термализации.

Сущность предлагаемого способа заключается в следующем. Анализ процессов рассеяния при столкновении атомных частиц в области давлений, характерных для процесса ионно-плазменного распыления, показывает, что нетермализованные атомы распыляемой мишени, сталкиваясь с атомами рабочего газа (аргон или кислородосодержащая атмосфера), достигают поверхности анода, практически сохраняя направленное движение и энергию, полученные ими в плоскости мишени. Направленные потоки термализованных атомов распыляемой мишени достаточно быстро убывают, и их перенос на анод и подложку обеспечивается диффузионными потоками. Величина диффузионных потоков распыленных атомов определяется градиентом плотности термализованных распыленных атомов, граница термализации которых существенным образом зависит как от соотношения масс атомов распыляемой мишени и атомов рабочего газа, так и от начальной энергии распыленных атомов, определяемой энергией связи атомов мишени [Вольпяс В.А., Козырев А.Б. Термализация атомных частиц в газах. // ЖЭТФ. 2011, т.140, вып.1(7), с.196-204.]. Таким образом, в зависимости от состава и давления рабочего газа (которые определяют длину свободного пробега распыленных атомов относительно упругих столкновений), на малых расстояниях от мишени, подложка бомбардируется направленным потоком распыленных атомов мишени со средней энергией 2…10 эВ (масштаб энергий связи атомов мишени). При расстояниях от мишени, превышающих глубину зоны термализации распыленных атомов, на поверхность подложки диффузионными потоками осуществляется доставка атомов распыляемой мишени с энергией ~0.1 эВ (температура атомной подсистемы газоразрядной плазмы). При этом угловое распределение атомов распыляемой мишени, перешедших в диффузионный режим движения, на расстояниях от мишени, превышающих границу зоны термализации, имеет практически изотропный характер. Таким образом, это приводит к их доставке практически на всю поверхность подложки сложной пространственной конфигурации, расположенной вне зоны термализации распыленных атомов мишени.

Сущность изобретения поясняется представленными чертежами: фиг.1 - конструкция магнетронной распылительной системы, где 1 - рабочая камера, 2 - подложка сложной пространственной конфигурации, 3 - зона термализации распыленных атомов мишени, 4 - магнитная система, 5 - мишень, 6 - анод; фиг.2 - неравномерность толщины осажденного слоя оксида церия по радиусу подложки при различных соотношениях R к L.

Рассмотрим суть изобретения при распылении мишени из церия (Ce), поясняющего сущность заявляемого способа. В диапазоне малых давлений рабочего газа (~ до 2 Па) граница зоны термализации L распыленных атомов Ce превышает длину пространства дрейфа мишень-подложка R<L. Поэтому в этом диапазоне малых давлений рабочего газа (~ до 5 Па) наблюдается существенная неравномерность толщины пленки h оксида церия по радиусу подложки r, расположенной в центре магнетронной распылительной системы.

При увеличении давления рабочего газа граница зоны термализации L распыленных атомов Ce становится соизмеримой с длиной пространства дрейфа мишень-подложка R≈L и распределение толщины пленки h(r) оксида церия по радиусу подложки становится более равномерным. Это обусловлено тем, что при увеличении давления рабочего газа длина зоны термализации L для распыленных атомов Ce уменьшается и становится соизмеримой с длиной пространства дрейфа мишень-подложка R.

В диапазоне высоких давлений рабочего газа (~ более 10 Па) граница зоны термализации L распыленных атомов Ce становится меньше длины пространства дрейфа мишень-подложка R>L. При этом распределение толщины пленки h(r) оксида церия по радиусу подложки становится практически равномерным. Но при увеличении давления рабочего газа достаточно быстро уменьшается скорость доставки распыленных атомов Ce на подложку, поэтому необходимо выбирать оптимальное соотношение величины давления рабочего газа и длины пространства дрейфа мишень-подложка.

Пример конкретной реализации способа

Подложку сложной пространственной конфигурации 1 (фиг.1) размещают в центре анода 6 (фиг.1) на оси магнетронной распылительной системы вне зоны термализации распыленных атомов мишени 3 (фиг.1) и при заданном расстоянии мишень-подложка R выбирают величину давления рабочего газа, соответствующую соотношению R/L≈1.2…1.5. Соотношение R/L из указанного диапазона выбирается из заданной величины неравномерности толщины Δh/h осаждаемой пленки оксида церия. Осаждение оксида церия осуществляется методом магнетронного распыления металлической мишени Ce (99,9%) при давлении 8 Па в среде аргона и кислорода. Расход аргона и кислорода составляет 40 см3/мин и 35 см3/мин соответственно. Соотношение длины пространства дрейфа мишень-подложка к зоне термализации в процессе распыления равняется R/L=1.4. В этих условиях были синтезированы пленки оксида церия с неравномерностью по толщине Δh/h=3%.

Таким образом, заявленный способ позволяет получать равномерные по толщине пленки оксида церия на подложках сложной пространственной конфигурации.

Способ осаждения тонких пленок оксида церия, включающий магнетронное распыление металлической мишени церия в рабочей камере, в атмосфере, содержащей инертный газ и кислород, и осаждение на подложку слоя оксида церия, отличающийся тем, что подложку размещают на аноде в области зоны активного распыления мишени на расстоянии от мишени, превышающем глубину зоны термализации распыленных атомов мишени при соотношении R/L в диапазоне 1,2÷1,5, где R - расстояние мишень-подложка, L - глубина зоны термализации.
СПОСОБ ОСАЖДЕНИЯ ТОНКИХ ПЛЕНОК ОКСИДА ЦЕРИЯ
СПОСОБ ОСАЖДЕНИЯ ТОНКИХ ПЛЕНОК ОКСИДА ЦЕРИЯ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 42.
10.04.2015
№216.013.3f09

Многовходовой сумматор

Изобретение относится к вычислительной технике, предназначено для суммирования двоичных чисел и может быть использовано в системах передачи и обработки информации для цифровой обработки сигналов, при решении комбинаторных задач. Техническим результатом являются уменьшение аппаратных затрат и...
Тип: Изобретение
Номер охранного документа: 0002547625
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.4114

Способ получения и детектирования ионов изотопов торий-229 и торий-232 с различной кратностью заряда

Изобретение относится к области метрологии и может быть использовано для определения частоты и времени, в частности при создании атомных стандартов частоты и атомных часов. В заявленном способе получения и детектирования ионов изотопов торий-229 и торий-232 с различной кратностью заряда...
Тип: Изобретение
Номер охранного документа: 0002548158
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.49b7

Способ высокочувствительного контроля долгоживущего глобального радионуклида с в газовой фазе технологического процесса переработки отработавшего ядерного топлива в режиме реального времени

Изобретение относится к измерительной технике и может найти применение в атомной энергетике, охране окружающей среды для высокочувствительного контроля долгоживущего глобального радионуклида C в газовой фазе технологического процесса переработки отработавшего ядерного топлива в режиме реального...
Тип: Изобретение
Номер охранного документа: 0002550378
Дата охранного документа: 10.05.2015
27.05.2015
№216.013.4ebd

Электролюминесцентное устройство

Изобретение относится к электролюминесцентному устройству. Устройство включает дырочный инжектирующий слой, дырочный транспортный слой, электронный блокирующий слой, активный люминесцентный слой на основе люминесцентного вещества, дырочно-блокирующий слой, электронный транспортный слой,...
Тип: Изобретение
Номер охранного документа: 0002551675
Дата охранного документа: 27.05.2015
27.05.2015
№216.013.4f08

Способ изготовления трубных заготовок из металлических порошков

Изобретение относится к порошковой металлургии. Металлический порошок засыпают в матрицу. Засыпку порошка уплотняют и формируют центральное отверстие в уплотненной засыпке путем высоковольтного разряда под вакуумом с остаточным давлением 6-10 Па. Затем проводят очистку поверхности полученной...
Тип: Изобретение
Номер охранного документа: 0002551750
Дата охранного документа: 27.05.2015
10.07.2015
№216.013.5faf

Ядерный реактор на быстрых нейтронах

Изобретение относится к ядерной технике, а именно к конструкции отражателей нейтронов быстрых ядерных реакторов. В ядерном реакторе активная зона окружена свинцовым отражателем нейтронов. В прилегающей части к активной зоне отражателя находится свинец, в котором более 90% изотопа Pb, а в...
Тип: Изобретение
Номер охранного документа: 0002556036
Дата охранного документа: 10.07.2015
20.12.2015
№216.013.9c15

Отклоняющая система для управления плоской электромагнитной волной

Изобретение относится к области телекоммуникационных технологий, а более конкретно - к устройствам для управления плоскими электромагнитными волнами. Технический результат заключается в обеспечении снижения величины управляющего напряжения и вносимых электромагнитных потерь. Отклоняющая система...
Тип: Изобретение
Номер охранного документа: 0002571582
Дата охранного документа: 20.12.2015
20.06.2016
№217.015.0477

Интерферометр для измерения линейных перемещений сканера зондового микроскопа

Изобретение относится к контрольно-измерительной технике и предназначено для измерения линейных перемещений по трем взаимоортогональным осям. Интерферометр содержит одночастотный лазер, коллиматор для ввода излучения в транспортное волокно, коллиматор, вводящий излучение в оптическую схему,...
Тип: Изобретение
Номер охранного документа: 0002587686
Дата охранного документа: 20.06.2016
20.04.2016
№216.015.3383

Полупроводниковый лазер на основе эпитаксиальной гетероструктуры

Использование: для полупроводниковых лазеров, возбуждаемых током, светом, электронным пучком. Сущность изобретения заключается в том, что конструкция полупроводникового лазера на основе гетероструктуры, содержащая лазерный кристалл, теплоотвод со стороны эпитаксиальных слоев гетероструктуры,...
Тип: Изобретение
Номер охранного документа: 0002582302
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.369d

Мощный сверхвысокочастотный транзистор на основе нитрида галлия

Изобретение относится к приборам твердотельной электроники и, в частности, к конструкции мощных транзисторов для СВЧ применений. Предлагается мощный сверхвысокочастотный транзистор на основе нитрида галлия, состоящий из подложки, гетероэпитаксиальной структуры на основе соединений нитрида...
Тип: Изобретение
Номер охранного документа: 0002581726
Дата охранного документа: 20.04.2016
Показаны записи 21-30 из 45.
20.04.2015
№216.013.4114

Способ получения и детектирования ионов изотопов торий-229 и торий-232 с различной кратностью заряда

Изобретение относится к области метрологии и может быть использовано для определения частоты и времени, в частности при создании атомных стандартов частоты и атомных часов. В заявленном способе получения и детектирования ионов изотопов торий-229 и торий-232 с различной кратностью заряда...
Тип: Изобретение
Номер охранного документа: 0002548158
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.49b7

Способ высокочувствительного контроля долгоживущего глобального радионуклида с в газовой фазе технологического процесса переработки отработавшего ядерного топлива в режиме реального времени

Изобретение относится к измерительной технике и может найти применение в атомной энергетике, охране окружающей среды для высокочувствительного контроля долгоживущего глобального радионуклида C в газовой фазе технологического процесса переработки отработавшего ядерного топлива в режиме реального...
Тип: Изобретение
Номер охранного документа: 0002550378
Дата охранного документа: 10.05.2015
27.05.2015
№216.013.4ebd

Электролюминесцентное устройство

Изобретение относится к электролюминесцентному устройству. Устройство включает дырочный инжектирующий слой, дырочный транспортный слой, электронный блокирующий слой, активный люминесцентный слой на основе люминесцентного вещества, дырочно-блокирующий слой, электронный транспортный слой,...
Тип: Изобретение
Номер охранного документа: 0002551675
Дата охранного документа: 27.05.2015
27.05.2015
№216.013.4f08

Способ изготовления трубных заготовок из металлических порошков

Изобретение относится к порошковой металлургии. Металлический порошок засыпают в матрицу. Засыпку порошка уплотняют и формируют центральное отверстие в уплотненной засыпке путем высоковольтного разряда под вакуумом с остаточным давлением 6-10 Па. Затем проводят очистку поверхности полученной...
Тип: Изобретение
Номер охранного документа: 0002551750
Дата охранного документа: 27.05.2015
10.07.2015
№216.013.5faf

Ядерный реактор на быстрых нейтронах

Изобретение относится к ядерной технике, а именно к конструкции отражателей нейтронов быстрых ядерных реакторов. В ядерном реакторе активная зона окружена свинцовым отражателем нейтронов. В прилегающей части к активной зоне отражателя находится свинец, в котором более 90% изотопа Pb, а в...
Тип: Изобретение
Номер охранного документа: 0002556036
Дата охранного документа: 10.07.2015
20.12.2015
№216.013.9c15

Отклоняющая система для управления плоской электромагнитной волной

Изобретение относится к области телекоммуникационных технологий, а более конкретно - к устройствам для управления плоскими электромагнитными волнами. Технический результат заключается в обеспечении снижения величины управляющего напряжения и вносимых электромагнитных потерь. Отклоняющая система...
Тип: Изобретение
Номер охранного документа: 0002571582
Дата охранного документа: 20.12.2015
20.06.2016
№217.015.0477

Интерферометр для измерения линейных перемещений сканера зондового микроскопа

Изобретение относится к контрольно-измерительной технике и предназначено для измерения линейных перемещений по трем взаимоортогональным осям. Интерферометр содержит одночастотный лазер, коллиматор для ввода излучения в транспортное волокно, коллиматор, вводящий излучение в оптическую схему,...
Тип: Изобретение
Номер охранного документа: 0002587686
Дата охранного документа: 20.06.2016
20.04.2016
№216.015.3383

Полупроводниковый лазер на основе эпитаксиальной гетероструктуры

Использование: для полупроводниковых лазеров, возбуждаемых током, светом, электронным пучком. Сущность изобретения заключается в том, что конструкция полупроводникового лазера на основе гетероструктуры, содержащая лазерный кристалл, теплоотвод со стороны эпитаксиальных слоев гетероструктуры,...
Тип: Изобретение
Номер охранного документа: 0002582302
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.369d

Мощный сверхвысокочастотный транзистор на основе нитрида галлия

Изобретение относится к приборам твердотельной электроники и, в частности, к конструкции мощных транзисторов для СВЧ применений. Предлагается мощный сверхвысокочастотный транзистор на основе нитрида галлия, состоящий из подложки, гетероэпитаксиальной структуры на основе соединений нитрида...
Тип: Изобретение
Номер охранного документа: 0002581726
Дата охранного документа: 20.04.2016
20.05.2016
№216.015.402c

Светодиодная лампа

Изобретение относится к области светотехники. Техническим результатом является возможность формирования различных диаграмм излучения, улучшение оптических характеристик в широком спектральном диапазоне, повышение эффективности теплоотвода, увеличение уровня защиты конструкции от влияния...
Тип: Изобретение
Номер охранного документа: 0002584000
Дата охранного документа: 20.05.2016
+ добавить свой РИД