×
27.01.2015
216.013.2032

Результат интеллектуальной деятельности: СПОСОБ БЕССЕНСОРНОГО УПРАВЛЕНИЯ ПОЛОЖЕНИЕМ РОТОРА В БЕСКОНТАКТНЫХ ПОДШИПНИКАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области энергомашиностроения, в частности к электромеханическим преобразователям энергии на бесконтактных подшипниках. Технический результат заключается в повышении точности управления и повышении надежности электрической машины с ротором на бесконтактных подшипниках. Способ бессенсорного управления положением ротора заключается в том, что измеряют электродвижущую силу каждой фазы электрической машины и раскладывают ее на гармонические составляющие, измеряют выходное напряжение машины и представляют его в двухфазной системе координат, в которой рассчитывают эквивалентные токи, измеряют скорость вращения ротора, и по изменению первой, третьей, девятой и сорок третьей гармоники электродвижущей силы судят о пространственном положении ротора, а по изменению напряжений, частоты вращения и эквивалентных токов в двухфазной системе координат судят об угловой координате ротора. Информация об изменении пространственного положения ротора и угловой координате поступает в регулятор и силовой преобразователь, которые регулируют величину воздействия управляющих элементов. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области энергомашиностроения, в частности к электромеханическим преобразователям энергии на бесконтактных подшипниках.

Известен механизм с магнитным подвесом ротора (а.с. СССР №1569932, H02K 7/09, 1990 г.), в котором каждый канал системы содержит датчик положения ротора, пропорционально-интегрально-дифферснциальный регулятор, силовой преобразователь и два электромагнита.

Недостатком данной конструкции является сложность ее технической реализации и невысокая надежность, вызванная тем, что в данной системе применяются датчики перемещения ротора, которые необходимо устанавливать внутри корпуса электромеханического преобразователя энергии.

Известна конструкция системы управления магнитным подшипником (патент РФ №2181922 C2, H02P 6/16, H02K 7/09, H02K 29/06, 2002.04.27), каждый канал управления которой содержит датчик положения ротора, силовой преобразователь, два электромагнита, причем обмотки электромагнитов подключены к силовому преобразователю, каждый канал которого снабжен интегральным регулятором и форсирующим регулятором второго порядка, причем выход интегрального регулятора соединен с прямым входом форсирующего регулятора второго порядка, выход которого соединен со входом силового преобразователя, а выход датчика положения ротора соединен с инверсными входами обоих регуляторов.

Недостатком данной конструкции является сложность ее технической реализации и невысокая надежность, вызванная тем, что в данной системе применяются датчики перемещения ротора.

Известна конструкция магнитного подшипника (патент РФ №2246644 C1, F16C 32/04, 2005.02.20), в которой модуль управления содержит формирователь вектора радиального перемещения ротора, соединенный выходом через блок динамической обработки сигнала радиального отклонения со входом формирователя управляющих токов в обмотках управления радиальной опоры, который выходами подключен ко входам соответствующих усилителей мощности канала стабилизации радиального положения ротора, выходы которых являются первыми управляющими выходами модуля управления, блок контроля процесса управления, выполненный с возможностью передачи управляющей информации в систему автоматического управления машины, выпрямитель напряжения выходами соединен через емкостный фильтр с входами регулятора напряжения и источника вторичного электропитания, выполненного с возможностью подключения к выводам электропитания всех блоков модуля управления, причем один из выходов емкостного фильтра и выход регулятора напряжения являются третьими управляющими выходами модуля управления, при этом входы формирователя вектора радиального перемещения ротора являются первыми информационными входами модуля управления, а формирователь управляющих токов в обмотках управления радиальной опоры выполнен с возможностью реализации векторной стабилизации ротора по осям в радиальных направлениях.

Недостатком данной конструкции также является сложность ее технической реализации и невысокая надежность, вызванная тем, что в данной системе применяются датчики перемещения ротора, которые необходимо устанавливать внутри корпуса электромеханического преобразователя энергии.

Известен способ управления неустойчивостью в гидродинамических подшипниках (патент РФ №2399803, F16C 17/02, 08.06.2005), по которому управления неустойчивостью гидродинамических подшипников, включающих гидродинамические подшипники, используемые в узлах высокоскоростных роторов или валов, включающий использование магнитного подшипника в комбинации с гидродинамическим подшипником, причем гидродинамический подшипник используют в качестве подшипника, воспринимающего основную нагрузку, а магнитный подшипник используют в качестве средства управления неустойчивостью в гидродинамическом подшипнике.

Недостатком такого способа является сложность его технической реализации и невысокая надежность, вызванная тем, что в данной системе применяются датчики перемещения ротора, которые необходимо устанавливать внутри корпуса электромеханического преобразователя энергии.

Известен способ управления ротором в активных магнитных подшипниках (Журавлев Ю.Н. «Активные магнитные подшипники: Теория, расчет, применение» - СПб.: Политехника, 2003. - 206 с.: ил., стр.98), по которому измеряют электрическую величину - ток в обмотки электромагнита активного магнитного подшипника, электрически соединенного с регулятором и силовым преобразователем и по величине тока судят о положении ротора и управляют им.

Недостатком данного способа является невозможность контроля положения ротора при всех типах бесконтактных подшипников, и сложность технической реализации, связанная со значительным количеством информационных каналов, а также невозможность применения данного способа во всех типах гибридных магнитных подшипников (например, в комбинации газовых или гидростатических с магнитными подшипниками на постоянных магнитах).

Наиболее близким к заявляемому по технической сущности и достигаемому результату относится способ бессенсорного управления активными магнитными подшипниками (патент US 5696412 A, H02K 7/09, 20.10.1993), по которому управляющие электромагниты, электрически соединенные с регулятором и силовым преобразователем, помещают коаксиально в упорядоченном массиве, окружающем ротор, и измеряют электрическую величину на их зажимах, в качестве которой выступает падение напряжения, путем сравнения абсолютной величины падения напряжения двух противоположных электромагнитов судят о величине смещения, исходя из которой рассчитывается величина управляющего тока.

Недостатком данного способа является сложность его технической реализации, связанная со значительным количеством информационных каналов и электромагнитов, а также ограниченные функциональные возможности, обусловленные невозможностью применения данного способа во всех типах гибридных магнитных подшипников (например, в комбинации газовых или гидростатических с магнитными подшипниками на постоянных магнитах) и отсутствием возможности измерения угловой координаты.

Задача изобретения - расширение функциональных возможностей, благодаря возможности контроля положения ротора при всех типах бесконтактных подшипников и возможности измерения угловой координаты ротора, повышение надежности электрической машины с ротором на бесконтактных подшипниках, благодаря управлению положением ротора без датчиков, только по параметрам электрической машины, повышение точности контроля и управления, а также упрощение технической реализации, благодаря минимизации количества информационных каналов.

Техническим результатом является повышение точности управления и повышение надежности электрической машины с ротором на бесконтактных подшипниках, а также возможность применения во всех типах гибридных магнитных подшипников.

Поставленная задача решается и указанный результат достигается тем, что в способе бессенсорного управления положением ротора в бесконтактных подшипниках, заключающемся в измерении электрической величины, согласно изобретению, измеряют электродвижущую силу каждой фазы электрической машины и раскладывают ее на гармонические составляющие, измеряют выходное напряжение электрической машины и представляют его в двухфазной системе координат, в которой рассчитывают эквивалентные токи, измеряют скорость вращения ротора, и по изменению первой, третьей, девятой и сорок третьей гармоники электродвижущей силы судят о пространственном положении ротора, а по изменению напряжений, частоты вращения и эквивалентных токов в двухфазной системе координат судят об угловой координате ротора, при этом информация об изменении пространственного положения ротора и угловой координате поступает в регулятор и силовой преобразователь, которые регулируют величину воздействия управляющих элементов.

Кроме того, согласно изобретению, управляющие элементы могут быть выполнены в виде электромагнитов.

Также, согласно изобретению, управляющие элементы могут быть выполнены в виде газовых подшипников.

Также, согласно изобретению, управляющие элементы могут быть выполнены в виде гидродинамических подшипников.

Существо изобретения поясняется чертежами. На фиг.1 изображена расчетная схема электрической машины при смещении ротора. На фиг.2 изображен баланс сил, действующих на ротор на магнитных подшипниках (на фиг.2: R1 - сила реакции первого подшипника, R2 - сила реакции второго подшипника, Fm - сила тяжести, Fц - центробежная сила).

Пример конкретной реализации способа.

Изменение воздушного зазора в электрической машине на бесконтактных подшипниках представляется в виде:

где δ - рабочий воздушный зазор;

δn - номинальный воздушный зазор;

x, y - пространственные координаты ротора (величина смещения ротора по осям x и y);

α - угловая координата ротора (угол поворота ротора).

Зависимость пространственных координат ротора от изменения гармоник описывается выражением:

k1, k2, k3, k4 - коэффициенты аппроксимирующего полинома;

Δν - величина отклонения гармоники ЭДС относительно симметричного режима.

При этом угловая координата (угол поворота ротора) в выражении (2) определяется из системы уравнений:

LS, R - индуктивность и активное сопротивление фазы;

iq, id - эквивалентные токи в двухфазной системе координат;

Uq, Ud - напряжения в двухфазной системе координат;

Ф - магнитный поток в рабочем зазоре электрической машины;

ω - угловая скорость ротора.

Тогда, при смещении ротора на 25% от номинального положения под действием центробежных сил (фиг.2), например, в высокоскоростном трехфазном магнитоэлектрическом генераторе на магнитных подшипниках возникают колебания ротора, при этом измеряется кривая электродвижущей силы для фаз A, B, C, которая раскладывается на гармонические составляющие, и анализируются первая, третья, девятая, сорок третья гармонические составляющие, так как на данные гармоники смещение ротора оказывает наибольшее влияние. Полученные значения для первой, третьей, девятой, сорок третьей гармоники электродвижущей силы поступают, например, в микропроцессор Arduino, где они сравниваются со значениями симметричного режима, занесенными ранее в память микропроцессора, и если измеренные значения первой, третьей, девятой, сорок третьей гармонических составляющих электродвижущей силы отличаются от занесенных в память микропроцессора значений симметричного режима, то определяется величина отклонения первой, третьей, девятой, сорок третьей гармоники электродвижущей силы относительно симметричного режима и по отклонению судят о положении ротора в пространстве, так для фазы A, B, C высокоскоростного трехфазного магнитоэлектрического генератора на магнитных, газовых или гидродинамических подшипниках значения первой, третьей, девятой, сорок третьей гармоник ЭДС симметричного режима составляют соответственно 117,5 В, 117,55 В, 117,55 В, 7,46 В, 7,524 В, 7,351 В, 3,36 В, 3,335 В, 3,299 В, 7,22 В, 7,285 В, 7,379 В, а измеренные соответственно 120,63 В, 120,58 В, 120,63 В, 7,664 В, 7,649 В, 7,533 В, 3,47 В, 3,451 В, 3,423 В, 7,776 В, 7,803 В, 7,820 В. Угловая координата ротора, определяемая по измеряемому напряжению в двухфазных координатах, частоте вращения и рассчитанному эквивалентному току в двухфазных координатах составляет 25 градусов. Полученные пространственные и угловая координаты ротора поступают в регулятор, изготовленный, например, на микросхеме КР140УД708, транзисторах КТ829, КТ315Г, КТ852, где рассчитывается управляющая величина, которую необходимо подать на управляющие элементы, которыми могу быть электромагниты, газовые или гидродинамические подшипники. Как следствие, посредством силового преобразователя увеличивается воздействие управляющих элементов на ротор высокоскоростного магнитоэлектрического генератора, который под действием силы управляющих элементов возвращается в исходное номинальное положение, и высокоскоростной трехфазный магнитоэлектрический генератор на магнитных, газовых или гидродинамических подшипниках эксплуатируется в нормальном режиме работы.

Таким образом, осуществляется бессенсорное управление положением ротора в бесконтактных подшипниках.

Итак, заявляемое изобретение позволяет расширить функциональные возможности, благодаря возможности контроля положения ротора при всех типах бесконтактных подшипников и возможности измерения угловой координаты ротора, повысить надежность электрической машины с ротором на бесконтактных подшипниках, благодаря управлению положением ротора без датчиков, только по параметрам электрической машины, повысить точность контроля и управления, а также упростить техническую реализацию, благодаря минимизации количества информационных каналов.

В результате повышается точность управления и надежность электрической машины с ротором на бесконтактных подшипниках, а также появляется возможность применения во всех типах гибридных магнитных подшипников.


СПОСОБ БЕССЕНСОРНОГО УПРАВЛЕНИЯ ПОЛОЖЕНИЕМ РОТОРА В БЕСКОНТАКТНЫХ ПОДШИПНИКАХ
СПОСОБ БЕССЕНСОРНОГО УПРАВЛЕНИЯ ПОЛОЖЕНИЕМ РОТОРА В БЕСКОНТАКТНЫХ ПОДШИПНИКАХ
Источник поступления информации: Роспатент

Показаны записи 131-140 из 141.
19.01.2018
№218.016.05f3

Электропривод летательного аппарата (варианты)

Группа изобретений относится к авиакосмическим летательным аппаратам. Электропривод для летательного аппарата содержит корпус, шарико-винтовую пару, состоящую из гайки и винта, аксиальный подшипник, электродвигатель, зубчатую передачу, датчик положения ротора, демпфер и систему управления....
Тип: Изобретение
Номер охранного документа: 0002630966
Дата охранного документа: 15.09.2017
20.01.2018
№218.016.153d

Устройство защиты от короткого замыкания высокотемпературного стартер-генератора обращённой конструкции

Использование: в области электротехники. Технический результат: защита от короткого замыкания стартер-генератора обращенной конструкции в составе газотурбинного двигателя в температурном режиме до 450°С за счет механического расцепления статора с неподвижным стержнем, сопровождающегося...
Тип: Изобретение
Номер охранного документа: 0002634836
Дата охранного документа: 07.11.2017
20.01.2018
№218.016.1b7e

Гибридный магнитный подшипник с использованием сил лоренца (варианты)

Изобретение относится к области энергомашиностроения и может быть использовано для обеспечения бесконтактного вращения ротора электрических машин. Отличие по первому варианту гибридного магнитного подшипника с использованием сил Лоренца состоит в том, что введены две управляющие m-фазные...
Тип: Изобретение
Номер охранного документа: 0002636629
Дата охранного документа: 24.11.2017
04.04.2018
№218.016.2f3d

Способ управления системой защиты магнитоэлектрического генератора от короткого замыкания

Использование: в области электротехники. Технический результат: повышение надежности системы управления, системы защиты и пожаробезопасности магнитоэлектрического генератора. Согласно способу после обнаружения короткого замыкания на фазной обмотке генератора, данную обмотку последовательно...
Тип: Изобретение
Номер охранного документа: 0002644586
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.2f5d

Гибридный магнитопровод статора электромеханических преобразователей энергии

Изобретение относится к области электромашиностроения и может быть использовано в электромеханических преобразователях энергии автономных объектов. Техническим результатом является повышение надежности, механической прочности, энергоэффективности и минимизация тепловыделений электромеханических...
Тип: Изобретение
Номер охранного документа: 0002644577
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.330e

Устройство и способ автоматизированной очистки солнечной панели

Изобретение относится к системам автоматической очистки солнечных панелей. Устройство очистки солнечной панели, содержащее источник питания, соединенный с солнечной панелью, датчики контроля загрязнения и провода, расположенные на поверхности солнечной панели, отличающееся тем, что провода...
Тип: Изобретение
Номер охранного документа: 0002645444
Дата охранного документа: 21.02.2018
18.05.2018
№218.016.50dd

Амортизатор безрезонансный

Изобретение относится к области машиностроения. Амортизатор содержит расположенные в корпусе амортизатора на его оси эластомерные элементы. Эластомерные элементы выполнены в виде сборной комбинации из двух элементов, расположенных по одной с каждой стороны оси амортизатора. Внешняя поверхность...
Тип: Изобретение
Номер охранного документа: 0002653321
Дата охранного документа: 07.05.2018
19.04.2019
№219.017.3211

Способ получения ультрамелкозернистой структуры в заготовках из металлов и сплавов

Изобретение относится к деформационной обработке металлов и сплавов и может быть использовано в машиностроении, авиа-двигателестроении, автомобильной промышленности. Способ включает многократное повторение операций осадка-протяжка с приложением деформирующего усилия поочередно по трем осям...
Тип: Изобретение
Номер охранного документа: 0002456111
Дата охранного документа: 20.07.2012
19.06.2019
№219.017.89c9

Способ линейной сварки трением деталей из титановых сплавов

Изобретение может быть использовано при соединении трением деталей в виде пера лопатки и диска турбомашины, в частности при производстве или ремонте моноблоков турбомашин из титановых сплавов. На стадии нагрева заготовки прижимают друг к другу по контактным поверхностям с усилием,...
Тип: Изобретение
Номер охранного документа: 0002456141
Дата охранного документа: 20.07.2012
19.06.2019
№219.017.89cf

Способ линейной сварки трением заготовок из титановых сплавов для моноблоков турбомашин

Изобретение может быть использовано при производстве или ремонте моноблоков турбомашин из титановых сплавов. На стадии нагрева заготовки прижимают друг к другу по контактным поверхностям с усилием, обеспечивающим давление процесса сварки стыка при заданной амплитуде и частоте относительного...
Тип: Изобретение
Номер охранного документа: 0002456143
Дата охранного документа: 20.07.2012
Показаны записи 131-140 из 191.
25.08.2017
№217.015.ae97

Электромагнитная машина ударного действия

Изобретение относится к электромагнитной машине ударного действия. Электромагнитная машина ударного действия содержит корпус, на котором закреплен электромагнит с магнитопроводом, рейку, выполненную с возможностью вращения на оси, закрепленной в боковой стенке корпуса, и шток, выполненный с...
Тип: Изобретение
Номер охранного документа: 0002612865
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.bc8f

Способ тепловой защиты поршня двигателя внутреннего сгорания из алюминиевых сплавов

Изобретение относится к области двигателестроения и может быть использовано в двигателях внутреннего сгорания для создания теплозащитных покрытий на поршнях из алюминиевых сплавов. Способ тепловой защиты поршня двигателя внутреннего сгорания включает нанесение теплоизолирующего покрытия на...
Тип: Изобретение
Номер охранного документа: 0002616146
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.c6b5

Способ термомеханической обработки полуфабрикатов из алюминиевых сплавов систем al-cu, al-cu-mg и al-cu-mn-mg для получения изделий с повышенной прочностью и приемлемой пластичностью

Изобретение относится к области металлургии, а именно к термомеханической обработке полуфабрикатов из алюминиевых сплавов систем Al-Cu, Al-Cu-Mg и Al-Cu-Mn-Mg, и может быть использовано в авиастроении, судостроении, транспортном машиностроении и других областях промышленности для получения...
Тип: Изобретение
Номер охранного документа: 0002618593
Дата охранного документа: 04.05.2017
25.08.2017
№217.015.c868

Электромагнитная машина вибрационного действия для ручного инструмента

Изобретение относится к электротехнике, к ручным инструментам, предназначенным для чеканки при изготовлении картин на металле и ювелирных изделий. Технический результат состоит в повышении точности позиционирования ручного инструмента. В электромагнитной машине вибрационного действия для...
Тип: Изобретение
Номер охранного документа: 0002619075
Дата охранного документа: 11.05.2017
26.08.2017
№217.015.d54c

Электродинамический тормоз

Использование: относится к электрическим машинам и может быть использовано в стыковочных узлах авиакосмической техники. Технический результат состоит в повышении надежности системы измерения и управления и силовой системы, а также снижении массогабаритных показателей элементов за счет...
Тип: Изобретение
Номер охранного документа: 0002623103
Дата охранного документа: 22.06.2017
26.08.2017
№217.015.d600

Тепловой генератор электрической энергии для космического аппарата

Изобретение относится к электротехнике и может применяться для создания генераторов на космических аппаратах, в которых солнечная тепловая энергия преобразуется в электрическую. Технический результат заключается в снижении удельной массы теплового генератора, обеспечении выработки электрической...
Тип: Изобретение
Номер охранного документа: 0002622907
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.d641

Осадительный электрод электрофильтра (варианты)

Группа изобретений относится к электрической очистке газов от взвешенных частиц в различных отраслях промышленности. Устройство по первому варианту содержит отдельные элементы, выполненные в виде полых барабанов, закрепленных на изоляторах и оси, имеющей на обоих концах резьбу, для стыковки...
Тип: Изобретение
Номер охранного документа: 0002622953
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.e409

Магнитотепловой генератор для космического аппарата

Изобретение относится к области энергетики, может применяться для создания генераторов на космических аппаратах, в которых солнечная тепловая энергия преобразуется в электрическую. Технический результат заключается в снижении удельной массы, обеспечении выработки электрической энергии из...
Тип: Изобретение
Номер охранного документа: 0002626412
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e547

Система на магнитных подшипниках

Изобретение относится к электротехнике и может быть использовано в качестве подвеса ротора электрических машин. Технический результат заключается в повышении надежности. Левый пассивный магнитный подшипник выполнен в виде комбинированного радиально-аксиального магнитного подшипника, состоящего...
Тип: Изобретение
Номер охранного документа: 0002626461
Дата охранного документа: 28.07.2017
29.12.2017
№217.015.f376

Способ стабилизации выходного напряжения магнитоэлектрического генератора

Изобретение относится к области электротехники и может быть использовано в магнитоэлектрических генераторах автономных систем электроснабжения. Техническим результатом является повышение КПД и повышение точности регулирования напряжения за счет саморегулирования напряжения магнитоэлектрического...
Тип: Изобретение
Номер охранного документа: 0002637767
Дата охранного документа: 07.12.2017
+ добавить свой РИД