×
20.01.2015
216.013.2018

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ НАНОСТРУКТУРИРОВАННОГО ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА ДАТЧИКА ВАКУУМА И ДАТЧИК ВАКУУМА

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и может использоваться при изготовлении датчиков вакуума для измерения давления разреженного газа в вакуумных установках различного назначения. Предложен способ изготовления наноструктурированного чувствительного элемента датчика вакуума, заключающийся в образовании гетероструктуры из различных материалов, в которой формируют тонкопленочный полупроводниковый резистор, после чего ее закрепляют в корпусе датчика, а контактные площадки соединяют с выводами корпуса при помощи контактных проводников. Тонкопленочный полупроводниковый резистор формируют в виде сетчатой наноструктуры (SiO)(SnO)(InO), где 40% - массовая доля диоксида кремния (SiO), 50% - массовая доля диоксида олова (SnO), 10% - массовая доля оксида индия (InO), путем нанесения золя ортокремниевой кислоты, содержащего гидроксид олова, на подложку из кремния с помощью центрифуги и последующим отжигом, который приготавливают в два этапа, на первом этапе смешивают тетраэтоксисилан и этиловый спирт, затем на втором этапе в полученный раствор вводят дистиллированную воду, соляную кислоту (HCl) и двухводный хлорид олова (SnCl·2HO), а также дополнительно 4,5-водный нитрат индия (In(NO)·4,5HO). Предложен также датчик вакуума с наноструктурой, изготовленной по предлагаемому способу. Технический результат - повышенная чувствительность датчика по сравнению с ранее известными. 2 н. и 1 з.п. ф-лы, 3 ил.

Предлагаемое изобретение относится к измерительной технике и может быть использовано при изготовлении датчиков вакуума для измерения давления разреженного газа в вакуумных установках различного назначения.

Известны датчики вакуума, содержащие терморезистор, выполняющий функции чувствительного элемента, и способы их изготовления [1-3]. Известны датчики давления на основе нано- и микроэлектромеханических систем, содержащие тонкопленочный резистор, и способы их изготовления [4, 5]. Их общим недостатком является низкая чувствительность в области низкого вакуума.

Наиболее близким по технической сущности к предлагаемому решению является способ изготовления датчика вакуума с наноструктурой [6]. Он заключается в том, что образуют наноструктурированный чувствительный элемент - гетероструктуру из различных материалов, в которой формируют тонкопленочный полупроводниковый резистор, после чего ее закрепляют в корпусе датчика, а контактные площадки соединяют с выводами корпуса при помощи контактных проводников. Тонкопленочный полупроводниковый резистор формируют в виде сетчатой наноструктуры (SiO2)50%(SnO2)50%, путем нанесения золя ортокремниевой кислоты, содержащего гидроксид олова, на подложку из кремния с помощью центрифуги и последующим отжигом, который приготавливают в два этапа, на первом этапе смешивают тетраэтоксисилан и этиловый спирт, затем на втором этапе в полученный раствор вводят дистиллированную воду, соляную кислоту (HCl) и двухводный хлорид олова (SnCl2·2H2O). Тетраэтоксисилан (ТЭОС) и этиловый спирт (95%) смешивают в соотношении 1:1,047 при комнатной температуре и выдерживают определенное время, а на втором этапе в полученный раствор вводят дистиллированную воду в соотношении 1:0,323 соляную кислоту (HCl) в соотношении 1:0,05, двухводный хлорид олова (SnCl2·2H2O) в соотношении 1:0,399 и перемешивают определенное время, где за единицу принят объем ТЭОС. После смешивания тетраэтоксисилана и этилового спирта на первом этапе смесь выдерживают в течение 30 минут до перехода ко второму этапу, а на втором этапе после введения дистиллированной воды, соляной кислоты (HCl) и двухводного хлорида олова (SnCl2·2H2O) смесь перемешивают в течение 60 минут. Золь ортокремниевой кислоты, содержащий гидроксид олова, наносят на подложку из кремния (Si) с помощью центрифуги с использованием дозатора при скорости вращения центрифуги 3000 об/мин в течение 2 минут, а отжиг осуществляют при температуре 600°С в течение 30 минут в воздушной среде.

Датчик вакуума с наноструктурой, изготовленный по способу [6] содержит корпус, установленную в нем гетерогенную структуру из тонких пленок материалов, образованную на подложке из полупроводника, тонкопленочный полупроводниковый резистор и контактные площадки к нему, сформированные в гетерогенной структуре (наноструктурированном чувствительном элементе), выводы корпуса и контактные проводники, соединяющие контактные площадки с выводами корпуса. Полупроводниковый резистор изготовлен в виде сетчатой наноструктуры (SiO2)50%(SnO2)50%, где 50% - массовая доля диоксида кремния (SiO2), 50% - массовая доля диоксида олова (SnO2).

Недостатком такого способа и датчика вакуума на его основе является относительно низкая чувствительность при измерении давлений в области низкого вакуума.

Техническим результатом изобретения является повышение чувствительности датчика вакуума.

Это достигается тем, что в известном способе изготовления наноструктурированного чувствительного элемента датчика вакуума, заключающемся в том, что образуют гетероструктуру из различных материалов, в которой формируют тонкопленочный полупроводниковый резистор в виде сетчатой наноструктуры путем нанесения золя ортокремниевой кислоты, содержащего гидроксид олова, на подложку из кремния с помощью центрифуги и последующим отжигом, который приготавливают в два этапа, на первом этапе смешивают тетраэтоксисилан (ТЭОС) и этиловый спирт, смесь выдерживают около 30 минут, затем на втором этапе в полученный раствор вводят дистиллированную воду, соляную кислоту (HCl), двухводный хлорид олова (SnCl2·2H2O) и перемешивают около 60 минут, после чего его закрепляют в корпусе датчика, а контактные площадки соединяют с выводами корпуса при помощи контактных проводников, в соответствии с предлагаемым изобретением, сетчатую наноструктуру полупроводникового резистора формируют в виде (SiO2)40%(SnO2)50%(In2O3)10%, где 40% - массовая доля диоксида кремния (SiO2), 50% - массовая доля диоксида олова (SnO2), 10% - массовая доля оксида индия (In2O3), а на втором этапе дополнительно вводят 4,5-водный нитрат индия (In(NO3)3·4,5H2O).

В этом способе изготовления наноструктурированного чувствительного элемента датчика вакуума на втором этапе в полученный раствор до перемешивания вводят 4,5-водный нитрат индия (In(NO3)3·4,5H2O) в соотношении 1:0,08, а двухводный хлорид олова (SnCl2·2H2O) в соотношении 1:0,320, при этом дистиллированную воду вводят в соотношении 1:0,323, а соляную кислоту (HCl) в соотношении 1:0,05, где за единицу принят объем ТЭОС.

При этом в датчике вакуума, изготовленному по предлагаемому способу, содержащем корпус, установленную в нем гетерогенную структуру из тонких пленок материалов, образованную на подложке из полупроводника, тонкопленочный полупроводниковый резистор в виде сетчатой наноструктуры и контактные площадки к нему, сформированные в гетерогенной структуре, выводы корпуса и контактные проводники, соединяющие контактные площадки с выводами корпуса, в соответствии с предлагаемым изобретением, сетчатая наноструктура полупроводникового резистора сформирована в виде (SiO2)40%(SnO2)50%(In2O3)10%, где 40% - массовая доля диоксида кремния (SiO2), 50% - массовая доля диоксида олова (SnO2), 10% - массовая доля оксида индия (In2O3).

На фиг.1 показана конструкция датчика вакуума, который изготавливается по предлагаемым способам. Датчик вакуума содержит корпус 1 (фиг.1), наноструктурированный чувствительный элемент - гетерогенную структуру 2 (из тонких пленок материалов), в которой сформирован тонкопленочный полупроводниковый резистор 3, контактные площадки 4, контактные проводники 5, выводы корпуса 6, штуцер 7, изоляторы 8, подложку 9 (из кремния), основание для крепления гетерогенной структуры 10.

Согласно предлагаемого способа золь ортокремниевой кислоты, содержащий гидроксид олова, приготавливают в два этапа для нанесения на подложку 9 из кремния (фиг.1). На первом этапе смешивают тетраэтоксисилан и этиловый спирт, смесь выдерживают в течение 30 минут до перехода ко второму этапу. Время выдержки установлено, исходя из времени протекания реакции обменного взаимодействия между тетраэтоксисиланом и этиловым спиртом, в результате которой образуется этиловый эфир ортокремневой кислоты. На втором этапе после введения дистиллированной воды, соляной кислоты (HCl), двухводного хлорида олова (SnCl2·2H2O) и 4,5-водного нитрата индия (In(NO3)3·4,5H2O) смесь перемешивают в течение 60 минут. Время процесса установлено, исходя из времени протекания реакции гидролиза эфира, в результате которой образуется ортокремневая кислота. А также, исходя из того, что за это же время на этом этапе происходит образование гидроксида олова (Sn(OH)2) и протекает реакция поликонденсации ортокремневой кислоты.

Золь ортокремниевой кислоты, содержащий гидроксид олова и гидроксид индия, наносят на подложку 9 (фиг.1) из кремния (Si) с помощью центрифуги с использованием дозатора при скорости вращения центрифуги 3000 об/мин в течение 2 минут. Использование таких режимов центрифуги позволяет достичь необходимой толщины, равномерности и сетчатой наноструктуры пленки (SiO2)40%(SnO2)50%(In2O3)10% (тонкопленочного полупроводникового резистора 3), а также частично удалить растворитель из этой пленки.

В качестве подложки из кремния (Si) могут быть использованы пластины кремния КЭФ (111) толщиной 200-300 мкм не окисленные, и окисленные промышленным способом в кислороде. Последние имеют окисный слой SiO2, толщина которого около 800 нм.

Отжиг осуществляют при температуре 600°С в течение 30 минут в воздушной среде. Использование таких параметров процесса позволяет окончательно удалить растворитель из пор на поверхности и в объеме пленки, а также осуществить реакции по разложению ортокремневой кислоты (Si(OH)4) до диоксида кремния (SiO2) и гидроксида олова (Sn(OH)2) до диоксида олова (SnO2), а также гидроксида (In(ОН)3) до оксида индия (In2O3).

Наличие окисного слоя SiO2 на поверхности подложки из Si не препятствует электрическому соединению тонкопленочного полупроводникового резистора 3 (фиг.1), выполненного в виде сетчатой наноструктуры (SiO2)40%(SnO2)50%(In2O3)10%, с полупроводниковой подложкой 9. При изготовлении контактных площадок 4 к такому резистору из Ag путем вжигания при температуре 600°С обеспечивается электрическое соединение тонкопленочного полупроводникового резистора 3 и подложки 9 в местах контактных площадок 4. То есть тонкопленочный полупроводниковый резистор 3 оказывается параллельно включенным полупроводниковому резистору, в качестве которого выступает полупроводниковая подложка 9. При этом тонкий окисный слой SiO2 является одной из пленок материалов гетерогенной структуры 2 (фиг.1).

Датчик вакуума работает следующим образом. Тонкопленочный полупроводниковый резистор 3 при помощи выводов корпуса 6 включают в мостовую измерительную цепь (мост) в качестве одного из ее плеч, с помощью подстроечного резистора (на рисунке не показан), мост балансируют (показания измерительного прибора устанавливают на нуль при начальном давлении, выбранном за точку отсчета).

При увеличении или уменьшении давления в корпусе датчика вакуума увеличивается или уменьшается (соответственно) количество молекул газа, которые участвуют в теплообмене. Если количество молекул газа уменьшается (вследствие уменьшения давления), уменьшается теплоотдача от чувствительного элемента - гетерогенной структуры 2 и тонкопленочного полупроводникового резистора 3 (сформированного в ней). Их температура нагрева увеличивается, следовательно, уменьшается сопротивление тонкопленочного полупроводникового резистора 3 (сопротивление полупроводников уменьшается с повышением температуры).

Так как тонкопленочный полупроводниковый резистор 3 включают в мостовую измерительную цепь, то с изменением давления происходит ее разбаланс, который является функцией давления.

Поскольку тонкопленочный полупроводниковый резистор 3 изготовлен по предлагаемому способу в виде сетчатой наноструктуры (SiO2)40%(SnO2)50%(In2O3)10%, на основе золя ортокремниевой кислоты, содержащего гидроксид олова и гидроксид индия, на подложке из кремния, то с уменьшением давления в сетчатой наноструктуре (SiO2)40%(SnO2)50%(In2O3)10%, происходит процесс десорбции газов, в частности кислорода, приводящий к уменьшению сопротивления тонкопленочного полупроводникового резистора 3. Дополнительное приращение к изменению сопротивления резистора повышает чувствительность в диапазоне низкого вакуума.

Сетчатая наноструктура (SiO2)40%(SnO2)50%(In2O3)10%, представляет собой зерна диоксида олова (SnO2) с примесью оксида индия (In2O3), заключенные в диэлектрическую матрицу диоксида кремния (SiO2), размер которых соизмерим с размерами области пространственного заряда (длинной экранирования Дебая). Наличие в такой сетке захваченных из окружающей среды атомов газа, в частности кислорода, уменьшает размер областей пространственного заряда, зоны их перекрытия и тем самым препятствует перемещению электрических зарядов по сетке. При десорбции происходит возвращение электронов в зону проводимости полупроводников, и проводимость растет (сопротивление уменьшается).

На фиг.2 представлены зависимости относительного изменения сопротивления (R/R0) полупроводникового резистора 3 от давления (Р): кривая 1 - (SiO2)50%(SnO2)50%, кривая 2 - (SiO2)40%(SnO2)50%(In2O3)10%. видно, что в случае сетчатой наноструктуры (SiO2)40%(SnO2)50%(In2O3)10% (кривая 2) относительное изменение сопротивления при том же давлении значительно больше, чем в случае сетчатой наноструктуры (SiO2)50%(SnO2)50% (кривая 1). Соответственно, чувствительность датчика вакуума с тонкопленочным полупроводниковым резистором в виде сетчатой наноструктуры (SiO2)40%(SnO2)50%(In2O3)10% существенно выше, чем (SiO2)50%(SnO2)50%.

На фиг.3 представлена морфология поверхности тонкопленочного полупроводникового резистора в виде сетчатой наноструктуры (SiO2)40%(SnO2)50%(In2O3)10%, полученная с помощью атомно-силового микроскопа (АСМ). Сетчатая наноструктура (SiO2)40%(SnO2)50%(In2O3)10%, представляет собой зерна диоксида олова (SnO2) с примесью оксида индия (In2O3), заключенные в диэлектрическую матрицу диоксида кремния (SiO2), размер которых соизмерим с размерами области пространственного заряда (длинной экранирования Дебая). Введение каталитической добавки оксида индия (In2O3) в двухкомпонентную систему на основе диоксидов олова и кремния (SiO2-SnO2) приводит к росту концентрации наноразмерных пор и повышению степени модуляции размеров проводящих каналов из-за возрастания влияния дебаевских областей обеднения носителями заряда. Это приводит к большему изменению сопротивления тонкопленочного полупроводникового резистора при понижении давления.

Дополнительное приращение к изменению сопротивления тонкопленочного полупроводникового резистора 3 (фиг.1), повышающее чувствительность в диапазоне низкого вакуума, подтверждается результатами экспериментальных исследований сетчатой наноструктуры (SiO2)40%(SnO2)50%(In2O3)10%, которые представлены на фиг.2.

Благодаря отличительным признакам изобретения повышается чувствительность.

В результате испытаний экспериментальных образцов датчиков вакуума, изготовленных в соответствии с формулой изобретения, установлено, что наноструктурированные чувствительные элементы с сетчатой нано-структурой (SiO2)40%(SnO2)50%(In2O3)10% позволяют значительно повысить чувствительность.

Предлагаемый способ изготовления наноструктурированного чувствительного элемента и датчика вакуума выгодно отличаются от известных и могут найти широкое применение.

Источники информации, принятые во внимание при экспертизе

1. А.с. СССР №1285327, МПК G01L 21/12 Теплоэлектрический вакуумметр / Тихонов А.И., Васильев В.А., Тельпов С.Е. // Бюл. №3 от 23.01.1987 г.

2. А.с. СССР №1420407, МПК G01L 21/12 Теплоэлектрический преобразователь давления / Васильев В.А., Тельпов С.Е., Тихонов А.И., Горбачева А.В. // Бюл. №32 от 30.08.1988 г.

3. Булыга А.В. Полупроводниковые теплоэлектрические вакуумметры. (Библиотека по автоматике, выпуск 177). - М. - Л.: Изд-во Энергия, 1966. - С.115-116.

4. Патент РФ №2398195, МПК G01L 9/04, В82В 3/00 Способ изготовления нано- и микроэлектромеханической системы датчика давления и датчик давления на его основе / Белозубов Е.М., Васильев В.А., Чернов П.С. // Бюл. №24 от 27.08.2010 г.

5. Патент РФ №2430342, МПК G01L 9/00 Полупроводниковый датчик давления с частотным выходным сигналом / Васильев В.А., Громков Н.В., Москалев С.А. // Бюл. №27 от 27.09.2011 г.

6. Патент РФ №2485465, МПК G01L 21/12, В82В 3/00, B82Y 15/00 Способ изготовления датчика вакуума с наноструктурой и датчик вакуума на его основе / Аверин И.А., Васильев В.А., Карманов А.А., Печерская P.M., Пронин И.А. // Бюл. №17 от 20.06.2013 г.


СПОСОБ ИЗГОТОВЛЕНИЯ НАНОСТРУКТУРИРОВАННОГО ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА ДАТЧИКА ВАКУУМА И ДАТЧИК ВАКУУМА
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОСТРУКТУРИРОВАННОГО ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА ДАТЧИКА ВАКУУМА И ДАТЧИК ВАКУУМА
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОСТРУКТУРИРОВАННОГО ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА ДАТЧИКА ВАКУУМА И ДАТЧИК ВАКУУМА
Источник поступления информации: Роспатент

Показаны записи 91-95 из 95.
26.08.2017
№217.015.e8b6

Способ получения фотокатализатора на основе механоактивированного порошка оксида цинка

Изобретение относится к области нанотехнологий, а именно к способам получения фотокатализаторов для разложения веществ, загрязняющих воздух и воду, и может быть использовано в химической, фармацевтической и биосинтетической промышленности. Способ заключается в том, что порошок ZnO подвергают...
Тип: Изобретение
Номер охранного документа: 0002627496
Дата охранного документа: 08.08.2017
26.08.2017
№217.015.ecd4

Способ оценки информации о системе с настройкой на основе адаптивной модели и устройство для его реализации

Изобретение относится к технологиям сетевой связи. Технический результат заключается в повышении эффективности мониторинга системы. Способ оценки информации о системе с настройкой на основе адаптивной модели и устройство для его реализации, в котором записывают в запоминающие устройства...
Тип: Изобретение
Номер охранного документа: 0002628474
Дата охранного документа: 17.08.2017
19.01.2018
№218.016.0728

Устройство и способ управления самочувствительным ультразвуковым пьезоэлектрическим двигателем

Изобретение относится к области электротехники и может быть использовано в устройствах микро- и нанопозиционирования различного назначения, замыкания контактов, системах автоматики, индикации и других. Техническим результатом является упрощение конструкции, уменьшение массогабаритных...
Тип: Изобретение
Номер охранного документа: 0002631332
Дата охранного документа: 21.09.2017
19.01.2018
№218.016.07ee

Универсальный модуль частотного интегрирующего развёртывающего преобразователя для датчиков физических величин

Изобретение относится к измерительной технике и может быть использовано при создании вторичных измерительных преобразователей, работающих совместно с датчиками резистивного и емкостного типов, предназначенных для измерения различных физических величин (температуры, давления, влажности, силы и...
Тип: Изобретение
Номер охранного документа: 0002631494
Дата охранного документа: 22.09.2017
15.04.2020
№220.018.148a

Способ изготовления газового сенсора на основе механоактивированного порошка оксида цинка и газовый сенсор на его основе

Изобретение относится к области микро- и наноэлектроники и может быть использовано при изготовлении газовых сенсоров нового поколения. Предложен способ изготовления газового сенсора, содержащего корпус, установленную в нем на основании гетероструктуру, в которой формируют газочувствительный...
Тип: Изобретение
Номер охранного документа: 0002718710
Дата охранного документа: 14.04.2020
Показаны записи 91-100 из 113.
25.08.2017
№217.015.bad6

Способ неинвазивной экспресс-диагностики диабета второго типа методом ик-спектроскопии

Изобретение относится к медицине, в частности эндокринологии, и может быть использовано для неинвазивной экспресс-диагностики диабета второго типа. Проводят забор слюны человека. С помощью метода ИК-Фурье спектроскопии записывают ИК-спектры полос поглощения подсушенного при 20°С материала. При...
Тип: Изобретение
Номер охранного документа: 0002615722
Дата охранного документа: 07.04.2017
25.08.2017
№217.015.bce2

Способ нанесения гальванических покрытий сплавом олово-цинк

Изобретение относится к области гальваностегии, в частности к нанесению гальванических покрытий сплавом олово-цинк с содержанием цинка в сплаве 20-80%, и может быть использовано для нанесения защитных покрытий, в том числе в виде альтернативы кадмиевым покрытиям. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002616314
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.bd37

Самочувствительный многослойный пьезоэлектрический актюатор

Изобретение относится к области метрологии. Пьезоэлектрический актюатор содержит пьезокерамические секции, каждая из которых состоит из пары соединенных механически друг с другом пьезоэлементов, имеющих на одной плоской поверхности грани по одному плоскому электроду, а на другой противоположной...
Тип: Изобретение
Номер охранного документа: 0002616225
Дата охранного документа: 13.04.2017
25.08.2017
№217.015.c95a

Датчик давления на основе нано- и микроэлектромеханической системы с балочным упругим элементом

Изобретение относится к измерительной технике, в частности к микромеханическим датчикам, и может быть использовано для создания датчиков для измерения давлений жидких и газообразных агрессивных сред в условиях воздействия широкого диапазона стационарных и нестационарных температур. Датчик...
Тип: Изобретение
Номер охранного документа: 0002619447
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.c969

Сборно-разборный коленчатый вал двс

Изобретения относятся к области машиностроения, а именно к механизмам машин, в составе которых используется кривошипный вал, например к механизмам преобразования поршневых машин. Сборно-разборный коленчатый вал содержит две расположенные соосно коренные шейки (3, 10) и одну коренную втулку (8),...
Тип: Изобретение
Номер охранного документа: 0002619413
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.cdb1

Система анализа и обработки информации об инновационном потенциале для управления приборостроительным предприятием

Изобретение относится к системам анализа и обработки информации об инновационном потенциале предприятий. Техническим результатом является повышение эффективности обработки информации об инновационном потенциале для принятия решений по управлению предприятием. Система содержит: модуль приема...
Тип: Изобретение
Номер охранного документа: 0002619718
Дата охранного документа: 17.05.2017
25.08.2017
№217.015.d139

Способ получения керамических покрытий на деталях из сталей

Изобретение относится к области гальванотехники и может быть использовано в машиностроении и других отраслях промышленности. Способ включает химическую подготовку поверхностей деталей, флюсование в расплавах хлоридов щелочных и щелочноземельных металлов при температуре 700…800°C, жидкостное...
Тип: Изобретение
Номер охранного документа: 0002622073
Дата охранного документа: 09.06.2017
25.08.2017
№217.015.d140

Способ утилизации отработанного медно-аммиачного раствора

Изобретение относится к утилизации отработанных медно-аммиачных растворов травления печатных плат. Способ включает обработку отработанного концентрированного медно-аммиачного раствора раствором соляной или серной кислоты до рН 5,5-6,5 для отделения ионов меди в виде осадка гидроксида меди....
Тип: Изобретение
Номер охранного документа: 0002622072
Дата охранного документа: 09.06.2017
26.08.2017
№217.015.d619

Способ оценки информации об эффективности функционирования системы и устройство на его основе для решения задач управления, контроля и диагностики

Изобретение относится к способу и устройству оценки информации об эффективности функционирования системы для решения задач управления, контроля и диагностики. Технический результат заключается в повышении эффективности обработки данных. В способе записывают в запоминающие устройства исходные...
Тип: Изобретение
Номер охранного документа: 0002622858
Дата охранного документа: 20.06.2017
26.08.2017
№217.015.d63c

Система преобразования, анализа и оценки информационных признаков объекта

Изобретение относится к системе преобразования, анализа и оценки информационных признаков объекта. Технический результат заключается в повышении эффективности обработки данных. Система содержит блок формирования информационных признаков системы (1), блок сравнения и выбора существенных...
Тип: Изобретение
Номер охранного документа: 0002622857
Дата охранного документа: 20.06.2017
+ добавить свой РИД