×
10.01.2015
216.013.1e1d

Результат интеллектуальной деятельности: СПОСОБ ПОВЫШЕНИЯ ИЗНОСОСТОЙКОСТИ РЕЗЬБОВОЙ ПОВЕРХНОСТИ ДЕТАЛИ ИЗ ЛЕГИРОВАННЫХ СТАЛЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к машиностроению и может быть использовано для защитно-упрочняющей обработки и нанесения износостойких покрытий на резьбовые поверхности деталей, применяемых, например, в ролико-винтовых и шарико-винтовых передачах. Способ включает подготовку поверхности под нанесение покрытия и нанесение износостойкого покрытия. При этом подготовку поверхности под нанесение покрытия совмещают с упрочняющей обработкой, проводя ее в следующей последовательности: погружают деталь в электролит, формируют вокруг обрабатываемой поверхности детали парогазовую оболочку и зажигают электрический разряд между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала, при этом обеспечивают режим электролитно-плазменного полирования резьбовой поверхности, а после электролитно-плазменной обработки резьбовой поверхности детали помещают в вакуумную камеру установки для ионно-имплантационной обработки, проводят ионную очистку ионами аргона при энергии от 6 до 8 кэВ и ионно-имплантационную обработку поверхности детали ионами иттербия или азота, а затем в этой же установке ионно-плазменным методом наносят износостойкое покрытие из нитрида титана или нитрида циркония толщиной 0,5-1,0 мкм. Технический результат: повышение эксплуатационных свойств резьбовых поверхностей деталей. 21 з.п. ф-лы, 1 пр.

Изобретение относится к машиностроению и может быть использовано для защитно-упрочняющей обработки и нанесения износостойких покрытий на резьбовые поверхности деталей, применяемых, например, в ролико-винтовых и шарико-винтовых передачах.

Известен способ получения упрочненного слоя на резьбовой поверхности детали из металлов или сплавов лазерным излучением [патент РФ №2047661, МПК C21D 1/09. СПОСОБ ОБРАБОТКИ РЕЗЬБОВОГО ИЗДЕЛИЯ], включающий поверхностную лазерную закалку впадины зубьев. Лазерной закалке подвергают также поверхность выступов зубьев в режиме оплавления. Недостатком известного способа является необходимость использования высокоточного дорогостоящего оборудования и относительно низкая производительность процесса обработки резьбовых поверхностей. При этом с уменьшением размеров резьбовых поверхностей требования к точности обработки таких деталей, как детали ролико-винтовых пар, увеличиваются. Кроме того, возникают сложности проникновения лазерного луча на внутреннюю поверхность деталей малого диаметра и значительной протяженности. Поэтому этот способ имеет ограниченное применение и может быть реализован только для обработки наружных цилиндрических поверхностей.

Известен также способ получения упрочненного слоя на внутренней резьбовой поверхности детали внутренним включающим пластическое деформирование металла метчиком с раздвижными деформируемыми элементами [пат. РФ 2241579, МПК B23G 5/06, B23P 15/52, B24B 39/00, B21H 3/08. Способ статико-импульсного формообразования и упрочнения внутренних резьб и профилей // Ю.С. Степанов, А.В. Киричек и др. - Опубл. БИ 12, 10.12.2004]. В известном способе производят упрочнение статико-импульсной обработкой резьбы, прилагая к ней периодическую динамическую нагрузку. Однако детали, обработанные известным способом, характеризуются наличием микротрещин в поверхностном слое материала, снижающих прочность и износостойкость резьбы. Кроме того, сложность используемого инструмента и технологии упрочнения приводят к возрастанию стоимости обработки детали.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому способу является способ защитно-упрочняющей обработки резьбовой поверхности детали из легированных сталей [патент РФ №2110607, МПК C23C 14/46, C23C 14/58. СПОСОБ ОБРАБОТКИ ПОВЕРХНОСТИ. Дата публ.: 10.05.1998], включающий подготовку поверхности под нанесение покрытия и нанесение износостойкого покрытия. При этом производят нанесение покрытий на поверхность и обработку покрытия высококонцентрированным источником энергии, а покрытие наносят в виде смеси пластичной составляющей и твердой составляющей из тугоплавкого соединения. В качестве покрытия используют смесь металлического титана и нитрида титана, а обработку проводят электронным лучом.

Недостатками известного способа являются невысокая производительность и точность процесса обработки резьбы, поскольку необходимо каждую деталь обрабатывать индивидуально, при этом обработка электронным лучом нанесенного порошка не позволяет достичь высокой точности, необходимой, например, для таких деталей, как детали ролико-винтовых или шарико-винтовых пар или передач. Кроме того, использование упрочненных по известному способу [патент РФ №2110607, МПК C23C 14/46, C23C 14/58. СПОСОБ ОБРАБОТКИ ПОВЕРХНОСТИ. Дата публ.: 10.05.1998] деталей для таких устройств, как ролико-винтовые передачи, не позволяет получить высокие эксплуатационные свойства, такие как износостойкость, антиадгезионные свойства и низкий коэффициент трения.

Задачей настоящего изобретения является создание такой резьбовой поверхности ответственной высокоточной детали из легированных сталей, которая позволила бы обеспечить их повышенные эксплуатационные свойства (износостойкость и антифрикционные свойства).

Техническим результатом заявляемого способа является повышение эксплуатационных свойств (износостойкости и антифрикционных свойств) резьбовых поверхностей ответственных деталей из легированных сталей за счет защитно-упрочняющей обработки и нанесения износостойкого покрытия.

Технический результат достигается тем, что в способе повышения износостойкости резьбовой поверхности детали из легированных сталей, включающем подготовку поверхности под нанесение покрытия и нанесение износостойкого покрытия, в отличие от прототипа подготовку поверхности под нанесение покрытия совмещают с упрочняющей обработкой, проводя ее в следующей последовательности, погружают деталь в электролит, используя в качестве электролита 3-8% водный раствор сульфата аммония, формируют вокруг обрабатываемой поверхности детали парогазовую оболочку и зажигают электрический разряд между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала, при этом обеспечивают режим электролитно-плазменного полирования резьбовой поверхности: напряжение 260-310 В, температура электролита 70-85°C, ток 0,20-0,55 А/см2, а после электролитно-плазменной обработки резьбовой поверхности детали помещают в вакуумную камеру установки для ионно-имплантационной обработки, проводят ионную очистку ионами аргона при энергии от 6 до 8 кэВ, плотности тока от 100 мкА/см2 до 120 мкА/см2 в течение от 0,2 до 0,8 ч и ионно-имплантационную обработку поверхности детали ионами иттербия или азота при энергии от 20 до 35 кэВ, а затем в этой же установке ионно-плазменным методом наносят износостойкое покрытие из нитрида титана или нитрида циркония толщиной 0,5-1,0 мкм; при этом возможны следующие варианты способа: создание требуемого вакуума производится турбомолекулярным насосом; создают вакуум от 10-5 до 10-7 мм рт.ст.; создают вакуум от 10-5 до 10-7 мм рт.ст.; ионную имплантацию проводят или в импульсном, или в непрерывном режиме; после ионно-имплантационной обработки проводят постимплантационный отжиг.

Технический результат достигается также тем, что в способе повышения износостойкости резьбовой поверхности детали из легированных сталей в качестве деталей из легированных сталей используют детали ролико-винтовой или шарико-винтовой передачи.

Технический результат достигается также тем, что в способе повышения износостойкости резьбовой поверхности детали из легированных сталей после нанесения износостойкого покрытия наносят слой механической смеси нанопорошка оксида кремния 30%-50% в кремнийорганической жидкости - остальное или слой механической смеси нанопорошка оксида кремния 30% - 50% в смеси минеральных или нефтяных масел с добавками кальциевого мыла нафтеновых кислот и кислот окисленного петролатума, затем слой облучают электромагнитным полем от 2-6 МГц высокой частоты в течение от 10 до 20 с, нагревая поверхность обрабатываемой детали до температуры от 680 до 860°C и проводят электромеханическую имплантацию поверхностного слоя положительными ионами тяжелых металлов, пропуская постоянный электрический ток через контакт деталь - имплантируемый упрочняющий металл, причем на поверхности обрабатываемой детали создают поверхностный слой толщиной от 0,1-1,0 мкм путем электромеханической имплантации одного из следующих сплавов: баббита, бронзы, латуни или меди при силе тока от 4-12 А, при времени пропускания тока t=30-60 с.

Технический результат достигается также тем, что в способе повышения износостойкости резьбовой поверхности детали из легированных сталей после нанесения износостойкого покрытия наносят слой нанокомпозитного состава, содержащего оксид кремния SiO2, растворенный в литоле, затем слой облучают электромагнитным полем от 2÷6 МГц высокой частоты в течение от 10 до 20 с, нагревая поверхность обрабатываемой детали до температуры от 680 до 860°C, и проводят электромеханическую имплантацию поверхностного слоя положительными ионами тяжелых металлов, пропуская постоянный электрический ток через контакт деталь - имплантируемый упрочняющий металл причем на поверхности обрабатываемой детали создают поверхностный слой толщиной от 0,1-1,0 мкм путем электромеханической имплантации одного из следующих сплавов: баббита, бронзы, латуни или меди при силе тока от 4-12 А, при времени пропускания тока t=30-60 с.

Для оценки эксплуатационных свойств деталей из легированных сталей с резьбовыми поверхностями были проведены следующие испытания. Образцы из легированных сталей ШХ-15, 12Х2Н4А и 40ХН2МА были подвергнуты электролитно-плазменной обработке с последующей ионно-имплантационной обработкой и нанесением ионно-плазменным методом изностостойкого покрытия из нитрида титана или нитрида циркония по предлагаемому способу и образцы, обработанные согласно способу-прототипу [Заявка РФ №2011125810. МПК B23G 1/00. Способ изготовления резьбы на детали. Дата публикации заявки: 27.12.2012 Бюл. №36].

Обработка электролитно-плазменным методом. Деталь погружали в электролит и производили ЭПО, используя в качестве электролита 3-8% водный раствор сульфата аммония (по следующим вариантам: 2% - неудовлетворительный результат (Н.Р.); 3% - удовлетворительный результат (У.Р.); 4% - (У.Р.); 5% - (У.Р.); 6% - (У.Р.); 7% - (У.Р.); 8% - (У.Р.); 9% - (Н.Р.)), обеспечивая режим электролитно-плазменного полирования (ЭПП) резьбовой поверхности: напряжение 260-310В (250В - (Н.Р.); (260В - (У.Р.); (280В - (У.Р.); (300В - (У.Р.); 310В - (У.Р.); 320В - (Н.Р.)), температура электролита 70-85°C (60°C - (Н.Р.); 70°C - (У.Р.); 75°C - (У.Р.); 85°C - (У.Р.); 95°C - (Н.Р.)),ток 0,20-0,55 А/см2 - 0,12 А/см2 (Н.Р.); 0,20 А/см2 (У.Р.); 0,33 А/см2 (У.Р.); 0,42 А/см2 (У.Р.); 0,55 А/см2 (У.Р.); 0,63 А/см2 (Н.Р.)).

При ЭПП формировали вокруг обрабатываемой поверхности детали парогазовую оболочку, зажигали электрический разряд между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала (как положительного - анодная, так и отрицательного - катодная обработка).

После электролитно-плазменной обработки резьбовой поверхности детали помещали в вакуумную камеру установки для ионно-имплантационной обработки, проводили ионную очистку ионами аргона при энергии от 6 до 8 кэВ (4,7 кэВ - (Н.Р.); 6 кэВ - (У.Р.); 7 кэВ - (У.Р.); 8 кэВ - (У.Р.); 9,3 кэВ - (Н.Р.)), плотности тока от 100 мкА/см2 до 120 мкА/см2 (90 мкА/см2 - (Н.Р.); 100 мкА/см2 - (У.Р.); 110 мкА/см2 - (У.Р.); 120 мкА/см2 - (У.Р.); 130 мкА/см2 -(Н.Р.)) в течение от 0,2 до 0,8 ч (0,1 ч - (Н.Р.); 0,2 ч - (У.Р.); 0,4 ч - (У.Р.); 0,6 ч - (У.Р.); 0,8 ч - (У.Р.); 1,0 ч - (Н.Р.)) и ионно-имплантационную обработку поверхности детали ионами иттербия при энергии от 20 до 35 кэВ (15 кэВ - (Н.Р.); 20 кэВ - (У.Р.); 25 кэВ - (У.Р.); 30 кэВ - (У.Р.); 35 кэВ - (У.Р.); 40 кэВ - (Н.Р.)) или ионно-имплантационную обработку поверхности детали ионами азота при энергии от 20 до 35 кэВ (15 кэВ - (Н.Р.); 20 кэВ - (У.Р.); 25 кэВ - (У.Р.); 30 кэВ - (У.Р.); 35 кэВ - (У.Р.); 40 кэВ - (Н.Р.)). Нанесение ионно-плазменным методом износостойкого покрытия из нитрида титана или нитрида циркония толщиной 0,5-1,0 мкм (0,3 мкм - (Н.Р.); 0,5 мкм - (У.Р.); 1,0 мкм - (У.Р.); 1,2 мкм - (Н.Р.))

Создание требуемого вакуума производилось турбомолекулярным насосом; создавали вакуум от 10-5 до 10-7 мм рт.ст.

После обработки часть деталей подвергали постимплантационному отжигу в одном вакуумном объеме установки за один технологический цикл.

Ионную имплантацию проводили как в импульсном, так и непрерывном режимах. В качестве деталей из легированных сталей используют детали ролико-винтовой или шарико-винтовой передачи. На обрабатываемую поверхность части деталей наносили следующие слои: - слой из механической смеси нанопорошка оксида кремния 30% - 50% (25% - (Н.Р.); 30% - (У.Р.); 40% - (У.Р.); 50% - (У.Р.); 60% - (Н.Р.)) с кремнийорганической жидкостью (остальное); слой из механической смеси нанопорошка оксида кремния 30% - 50% (25% - (Н.Р.); 30% - (У.Р.); 40% - (У.Р.); 50% - (У.Р.); 60% - (Н.Р.)) в смеси минеральных или нефтяных масел с добавками кальциевого мыла нафтеновых кислот и кислот окисленного петролатума; слой нанокомпозитного состава, содержащего оксид кремния SiO2, растворенный в литоле. Затем слои облучают электромагнитным полем от 2÷6 МГц (1 МГц - (Н.Р.); 2 МГц - (У.Р.); 4 МГц - (У.Р.); 6 МГц - (У.Р.); 8 МГц - (Н.Р.)) в течение от 10 до 20 с (5 с - (Н.Р.); 10 с - (У.Р.); 20 с - (У.Р.); 30 с - (Н.Р.)), нагревая поверхность обрабатываемой детали до температуры от 680 до 860°C (660°C - (Н.Р.); 680°C - (У.Р.); 740°C - (У.Р.); 800°C - (У.Р.); 860°C - (У.Р.); 880°C - (Н.Р.)) и проводят электромеханическую имплантацию поверхностного слоя положительными ионами тяжелых металлов (кобальт, медь, молибден, никель, олово, свинец), пропуская постоянный электрический ток через контакт «деталь -имплантируемый упрочняющий металл». На поверхности обрабатываемой детали создавали поверхностный слой толщиной от 0,1-1,0 мкм (0,05 мкм-(Н.Р.); 0,1 мкм - (У.Р.); 0,3 мкм - (У.Р.); 0,7 мкм - (У.Р.); 1,0 мкм - (У.Р.); 1,2 мкм- (Н.Р.)) путем электромеханической имплантации одного из следующих сплавов: баббита, бронзы, латуни или меди при силе тока от 4-12 А (3 А - (Н.Р.); 4 А - (У.Р.); 6 А - (У.Р.); 8 А - (У.Р.); 12 А - (У.Р.); 14 А - (Н.Р.);), при времени пропускания тока t=30-60 с (20 с - (Н.Р.); 30 с - (У.Р.); 40 с - (У.Р.); 60 с - (У.Р.); 80 с - (Н.Р.)).

Трибологические испытания образцов показали, что износостойкость резьбовых поверхностей по сравнению с образцами, обработанными по способу-прототипу, повысилась в 8-12 раз при снижении коэффициента трения в 1,3-1.5 раз.

Таким образом, проведенные сравнительные испытания показали, что применение в способе повышения износостойкости резьбовой поверхности детали из легированных сталей, включающем подготовку поверхности под нанесение покрытия и нанесение износостойкого покрытия, подготовку поверхности под нанесение покрытия совмещают с упрочняющей обработкой, проводя ее в следующей последовательности, погружают деталь в электролит, используя в качестве электролита 3-8% водный раствор сульфата аммония, формируют вокруг обрабатываемой поверхности детали парогазовую оболочку и зажигают электрический разряд между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала; обеспечивают режим электролитно-плазменного полирования резьбовой поверхности: напряжение 260-310 В, температура электролита 70-85°C, ток 0,20-0,55 А/см2; после электролитно-плазменной обработки резьбовой поверхности детали помещают в вакуумную камеру установки для ионно-имплантационной обработки, проводят ионную очистку ионами аргона при энергии от 6 до 8 кэВ, плотности тока от 100 мкА/см2 до 120 мкА/см2 в течение от 0,2 до 0,8 ч и ионно-имплантационную обработку поверхности детали ионами иттербия или азота при энергии от 20 до 35 кэВ; затем в этой же установке ионно-плазменным методом наносят износостойкое покрытие из нитрида титана или нитрида циркония толщиной 0,5-1,0 мкм; при этом возможны следующие варианты способа: создание требуемого вакуума производится турбомолекулярным насосом; создают вакуум от 10-5 до 10-7 мм рт.ст.; создают вакуум от 10-5 до 10-7 мм рт.ст.; ионную имплантацию проводят, или в импульсном или в непрерывном режиме; после ионно-имплантационной обработки проводят постимплантационный отжиг; в качестве деталей из легированных сталей используют детали ролико-винтовой или шарико-винтовой передачи; на обрабатываемую поверхность детали наносят слой механической смеси нанопорошка оксида кремния 30% - 50% в кремнийорганической жидкости - остальное или слой механической смеси нанопорошка оксида кремния 30% - 50% в смеси минеральных или нефтяных масел с добавками кальциевого мыла нафтеновых кислот и кислот окисленного петролатума; затем слой облучают электромагнитным полем от 2-6 МГц высокой частоты в течение от 10 до 20 с; нагревают поверхность обрабатываемой детали до температуры от 680 до 860°C; проводят электромеханическую имплантацию поверхностного слоя положительными ионами тяжелых металлов, пропуская постоянный электрический ток через контакт «деталь - имплантируемый упрочняющий металл»; на поверхности обрабатываемой детали создают поверхностный слой толщиной от 0,1-1,0 мкм путем электромеханической имплантации одного из следующих сплавов: баббита, бронзы, латуни или меди при силе тока от 4-12 А при времени пропускания тока t=30-60 с или на обрабатываемую поверхность детали наносят слой нанокомпозитного состава, содержащего оксид кремния SiO2, растворенный в литоле; затем слой облучают электромагнитным полем от 2÷6 МГц высокой частоты в течение от 10 до 20 с, нагревая поверхность обрабатываемой детали до температуры от 680 до 860°C; проводят электромеханическую имплантацию поверхностного слоя положительными ионами тяжелых металлов, пропуская постоянный электрический ток через контакт «деталь - имплантируемый упрочняющий металл»; на поверхности обрабатываемой детали создают поверхностный слой толщиной от 0,1-1,0 мкм путем электромеханической имплантации одного из следующих сплавов: баббита, бронзы, латуни или меди при силе тока от 4-12 А при времени пропускания тока t=30-60 с - позволяет повысить по сравнению с прототипом износостойкость и антифрикционные свойства, что подтверждает заявленный технический результат предлагаемого изобретения повышение эксплуатационных свойств (износостойкости и антифрикционных свойств) резьбовых поверхностей ответственных деталей из легированных сталей за счет обеспечения высокоточной защитно-упрочняющей обработки.

Источник поступления информации: Роспатент

Показаны записи 51-60 из 75.
25.08.2017
№217.015.a16e

Способ химико-термической обработки детали из сплава на основе титана

Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из сплава на основе титана, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения. Способ химико-термической...
Тип: Изобретение
Номер охранного документа: 0002606352
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a2c6

Способ алмазно-электрохимического шлифования

Изобретение относится к комбинированным методам обработки, сочетающим механическое и электрохимическое воздействие на обрабатываемую заготовку, и может быть использовано при алмазно-электрохимическом шлифовании деталей из труднообрабатываемых сталей и сплавов. Шлифование осуществляют...
Тип: Изобретение
Номер охранного документа: 0002607060
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.bbae

Способ защиты интерметаллидного сплава от высокотемпературного окисления

Изобретение относится к химической обработке поверхности конструкционных сплавов, а именно к защите интерметаллидных сплавов на основе алюминидов титана от высокотемпературного окисления, и может быть использовано для защиты лопаток турбины или компрессора, работающих при температурах до 800°C....
Тип: Изобретение
Номер охранного документа: 0002615963
Дата охранного документа: 11.04.2017
26.08.2017
№217.015.e86c

Способ химико-термической обработки детали из легированной стали

Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из легированных сталей, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения, режущего инструмента и штамповой...
Тип: Изобретение
Номер охранного документа: 0002627551
Дата охранного документа: 08.08.2017
26.08.2017
№217.015.ed18

Способ повышения адгезионной прочности покрытия tin и (ti+v)n к подложке титанового сплава вт-6

Изобретение относится к способу нанесения защитного покрытия из слоев TiN и (Ti+V)N на подложку из титанового сплава ВТ-6. Осуществляют одновременное напыление слоев TiN и (Ti+V)N на подложку из титанового сплава ВТ-6 с помощью двух электродуговых испарителей с чередованием времени нанесения...
Тип: Изобретение
Номер охранного документа: 0002628594
Дата охранного документа: 21.08.2017
26.08.2017
№217.015.edc7

Способ изготовления комбинированной полой лопатки турбомашины из алюминиевого сплава

Изобретение относится к способам изготовления лопаток турбомашин. Способ изготовления полой лопатки турбомашины из алюминиевого сплава заключается в формировании элементов спинки и корыта лопатки путем придания пластинам из алюминиевого сплава заданного профиля и размеров, их фиксации,...
Тип: Изобретение
Номер охранного документа: 0002628843
Дата охранного документа: 22.08.2017
19.01.2018
№218.016.081d

Способ нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочного никелевого сплава

Изобретение относится к способу нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочного никелевого сплава и может быть использовано для гравюр штампов, применяемых для горячей объемной изотермической штамповки металлических деталей. Способ...
Тип: Изобретение
Номер охранного документа: 0002631573
Дата охранного документа: 25.09.2017
19.01.2018
№218.016.082f

Способ нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочной стали

Изобретение относится к способу нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочной стали и может быть использовано при изготовлении лопаток газотурбинных двигателей горячей штамповкой. Способ включает помещение штампа в вакуумную камеру, создание...
Тип: Изобретение
Номер охранного документа: 0002631572
Дата охранного документа: 25.09.2017
20.01.2018
№218.016.0fe9

Способ изготовления пустотелой лопатки турбомашины

Изобретение относится к способам изготовления пустотелых лопаток турбомашин. Способ получения пустотелой лопатки турбомашины, заключающийся в формировании элементов спинки и корыта лопатки путем придания пластинам заданного профиля и размеров, их фиксации, обеспечивающей заданный профиль и...
Тип: Изобретение
Номер охранного документа: 0002633564
Дата охранного документа: 13.10.2017
20.01.2018
№218.016.12f4

Способ ионного азотирования режущего инструмента из легированной стали

Изобретение относится к металлургии, а именно к способам химико-термической обработки деталей из легированных инструментальных сталей, и может быть использовано в машиностроении для поверхностного упрочнения режущего инструмента. Способ ионного азотирования режущего инструмента из легированной...
Тип: Изобретение
Номер охранного документа: 0002634400
Дата охранного документа: 26.10.2017
Показаны записи 51-60 из 138.
20.01.2018
№218.016.0fe9

Способ изготовления пустотелой лопатки турбомашины

Изобретение относится к способам изготовления пустотелых лопаток турбомашин. Способ получения пустотелой лопатки турбомашины, заключающийся в формировании элементов спинки и корыта лопатки путем придания пластинам заданного профиля и размеров, их фиксации, обеспечивающей заданный профиль и...
Тип: Изобретение
Номер охранного документа: 0002633564
Дата охранного документа: 13.10.2017
20.01.2018
№218.016.12f4

Способ ионного азотирования режущего инструмента из легированной стали

Изобретение относится к металлургии, а именно к способам химико-термической обработки деталей из легированных инструментальных сталей, и может быть использовано в машиностроении для поверхностного упрочнения режущего инструмента. Способ ионного азотирования режущего инструмента из легированной...
Тип: Изобретение
Номер охранного документа: 0002634400
Дата охранного документа: 26.10.2017
20.01.2018
№218.016.1d36

Способ изготовления полой лопатки газотурбинного двигателя

Изобретение относится к области обработки металлов давлением и может быть использовано для изготовления полой лопатки вентилятора газотурбинного двигателя из титанового сплава. Используют трехслойные заготовки обшивок и/или заполнителя, причем внешние слои заготовок выполняют из титанового...
Тип: Изобретение
Номер охранного документа: 0002640692
Дата охранного документа: 11.01.2018
20.01.2018
№218.016.1d66

Способ формирования нанокристаллического поверхностного слоя на деталях из алюминиевых сплавов (варианты)

Изобретение относится к способу формирования нанокристаллического поверхностного слоя на деталях из алюминиевых сплавов (варианты) и может быть использовано для обработки лопаток газотурбинных двигателей. Формируют аморфный поверхностный слой путем бомбардировки его ионами одного из следующих...
Тип: Изобретение
Номер охранного документа: 0002640687
Дата охранного документа: 11.01.2018
10.05.2018
№218.016.4182

Способ обработки лопаток турбомашин из железохромоникелевых сплавов

Изобретение относится к технологии электролитно-плазменного полирования поверхности деталей. Способ включает полирование поверхности пера лопатки электролитно-плазменным методом, включающим погружение лопатки в электролит, формирование вокруг обрабатываемой поверхности лопатки парогазовой...
Тип: Изобретение
Номер охранного документа: 0002649128
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.44c8

Способ упрочняющей обработки деталей из титановых сплавов с ультрамелкозернистой структурой

Изобретение относится к способу упрочняющей обработки деталей из титановых сплавов с ультрамелкозернистой структурой и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защитно-упрочняющей обработки пера рабочих лопаток компрессора ГТД или паровой...
Тип: Изобретение
Номер охранного документа: 0002649928
Дата охранного документа: 05.04.2018
10.05.2018
№218.016.4b27

Способ упрочнения деталей из жаропрочных сплавов

Изобретение относится к машиностроению и может быть использовано для упрочнения деталей из жаропрочных сплавов. Упрочнение деталей проводят дробеструйной обработкой шариками и микрошариками твердостью HRC 60-64, при давлении 0,6 МПа. Обработку проводят в несколько этапов: на первом этапе...
Тип: Изобретение
Номер охранного документа: 0002651847
Дата охранного документа: 24.04.2018
09.06.2018
№218.016.5aa2

Способ защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии

Изобретение относится к способу защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии. Осуществляют упрочняющую обработку микрошариками, полирование кромок лопаток блиска, ионно-плазменную модификацию материала поверхностного слоя лопаток блиска с последующим...
Тип: Изобретение
Номер охранного документа: 0002655563
Дата охранного документа: 28.05.2018
03.07.2018
№218.016.69c2

Способ изготовления раскатных колец с регулярной микроструктурой

Изобретение относится к способам раскатки заготовки в виде кольца. Раскатку заготовки осуществляют роликовыми инструментами. Вначале роликовым инструментом формируют регулярный микрорельеф поверхности за счет микрорельефа на его рабочей поверхности, а затем выглаживают поверхность микрорельефа...
Тип: Изобретение
Номер охранного документа: 0002659501
Дата охранного документа: 02.07.2018
13.07.2018
№218.016.70eb

Установка для ионно-плазменного модифицирования и нанесения покрытий на моноколеса с лопатками

Изобретение относится к технике для нанесения покрытий на детали машин, а именно к вакуумной ионно-плазменной обработке поверхностей, и может быть использовано для нанесения функциональных покрытий на моноколеса турбомашин. Установка для вакуумной ионно-плазменной обработки поверхности...
Тип: Изобретение
Номер охранного документа: 0002661162
Дата охранного документа: 12.07.2018
+ добавить свой РИД