×
10.01.2015
216.013.1e0c

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ КРЕМНИЕВОГО ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА ДЛЯ ЛЮМИНЕСЦЕНТНОГО НАНОСЕНСОРА КИСЛОРОДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения кремниевых наноструктур. В способе изготовления кремниевого чувствительного элемента для люминесцентного сенсора кислорода на подложке монокристаллического кремния p-типа проводимости с кристаллографической ориентацией поверхности (100) с удельным сопротивлением от 1 до 10 мОм·см выращивается слой пористых кремниевых нанонитей методом последовательного выдерживания в следующих растворах: вначале в водном растворе нитрата серебра с концентрацией от 0.02 до 0.04 моль/л и плавиковой кислоты с концентрацией 5 моль/л в соотношении 1:1 в течение времени от 30 до 60 с для нанесения наночастиц серебра на поверхность кремниевой пластины, затем в смеси плавиковой кислоты с концентрацией 5 моль/л и 30% перекиси водорода в соотношении 10:1 в течение времени от 20 до 60 мин для образования кремниевых нанонитей в результате химического травления кремниевой пластины в местах, покрытых наночастицами серебра, и в завершении - в 65%-ном растворе азотной кислоты в течение времени от 10 до 20 мин для удаления наночастиц серебра и стабилизации поверхности кремниевых нанонитей, в результате чего получаются пористые кремниевые нанонити с длиной от 2 до 5 мкм, размером поперечного сечения от 30 до 300 нм, обладающие люминесценцией в диапазоне от 650 до 850 нм, интенсивность которой зависит от присутствия молекул кислорода. 4 ил.
Основные результаты: Способ изготовления кремниевого чувствительного элемента для люминесцентного сенсора кислорода, заключающийся в том, что на подложке монокристаллического кремния p-типа проводимости с кристаллографической ориентацией поверхности (100) с удельным сопротивлением от 1 до 10 мОм∗см выращивается слой пористых кремниевых нанонитей методом последовательного выдерживания в следующих растворах: вначале в водном растворе нитрата серебра с концентрацией от 0.02 до 0.04 моль/л и плавиковой кислоты с концентрацией 5 моль/л в соотношении 1:1 в течение времени от 30 до 60 с для нанесения наночастиц серебра на поверхность кремниевой пластины; затем в смеси плавиковой кислоты с концентрацией 5 моль/л и 30% перекиси водорода в соотношении 10:1 в течение времени от 20 до 60 мин для образования кремниевых нанонитей в результате химического травления кремниевой пластины в местах, покрытых наночастицами серебра; и в завершении - в 65%-ном растворе азотной кислоты в течение времени от 10 до 20 мин для удаления наночастиц серебра и стабилизации поверхности кремниевых нанонитей, в результате чего получаются пористые кремниевые нанонити с длиной от 2 до 5 мкм, размером поперечного сечения от 30 до 300 нм, обладающие люминесценцией в диапазоне от 650 до 850 нм, интенсивность которой зависит от присутствия молекул кислорода.

Изобретение относится к способам получения кремниевых наноструктур и устройств и может быть использовано для создания чувствительного элемента для люминесцентного сенсора кислорода, который может работать при комнатной температуре и измерять концентрацию молекул кислорода в газах и жидкостях, который может быть использован в аналитической химии, химической и пищевой промышленностях, медицине, биотехнологии, при экологическом мониторинге окружающей среды.

Из уровня техники известны несколько способов изготовления наносенсоров, в качестве чувствительных элементов (ЧЭ) которых выступают кремниевые нанонити.

Так, известен способ изготовления наносенсора (Z. Li, Y. Chen, X. Li, T.I. Kamins, K. Nauka, R.S. Williams. Sequence-specific label-free DNA sensors based on silicon nanowires // Nano Letters. 2004. V.4. PP.245-247), заключающийся в том, что основной ЧЭ наносенсора - кремниевая нанонить с омическими контактами на диэлектрическом слое на кремниевой подложке, которая формируется методами электронной литографии и реактивного ионного травления. К недостаткам данного технического решения относятся следующие. Во-первых, реактивное ионное травление кремниевых нанонитей приводит к дефектообразованию в кремнии (латеральной аморфизации кристалла кремния в нанонити), что снижает чувствительность наносенсоров и ограничивает минимальный размер работоспособных наносенсоров (50 нм ширина нанонити). Во-вторых, получаемые наносенсоры отличаются низкой чувствительностью и высокими шумами, вызванными, по-видимому, особенностями процесса реактивного ионного травления кремниевых нанонитей, сопровождаемого аморфизацией кремния в нанонитях. В результате данное обстоятельство не позволяет снизить ширину получаемых нанонитей до необходимых значений (менее 30 нм). В-третьих, реактивное ионное травление кремниевых нанонитей в структурах кремний-на-изоляторе отличается низкой селективностью по отношению к травлению нижележащего слоя заглубленного окисла кремния и приводит к накоплению подвижного электрического заряда в заглубленном окисле кремния и увеличению токов утечки через заглубленный окисел.

Другим техническим решением является способ изготовления наносенсора (Е. Stern, J.F. Klemic, D.A. Routenberg, P.N. Wyrembak, D.B. Turner-Evans, A.D. Hamilton, D.A. La Van, T.M. Fahmy, M.A. Reed. Label-free immunodetection with CMOS-compatible semiconducting nanowires // Nature. 2007. V.445. PP.519-522), заключающийся в том, что ЧЭ наносенсора - кремниевая нанонить с омическими контактами на диэлектрическом слое на кремниевой подложке - формируется жидкостным химическим травлением кремния в гидроксиде тетраметиламмония через маску диэлектрической двуокиси кремния. К недостаткам данного технического решения относится следующее. Во-первых, в связи с особенностями способа, из-за анизотропного жидкостного травления кристалла кремния грань (111) травится в 100 раз медленнее других граней. Минимальная ширина кремниевых нанонитей с сечением в виде трапеции варьируется от 50 нм до 100 нм (ширина верхней грани). Во-вторых, особенности жидкостного травления кремния в углеродсодержащем органическом травителе предъявляют повышенные требования к дефектности маски и слоя кремния, а также дефектности заглубленного окисла в структурах кремний-на-изоляторе и не позволяют из-за капиллярных эффектов и гидродинамики жидкого травителя воспроизводимо снизить ширину получаемых кремниевых нанонитей до необходимых значений (менее 30 нм).

Известен способ изготовления наносенсора (Патент РФ №2359359, H01L 21/308, опубликован 15.11.2007), который позволяет устранить указанные выше недостатки. В способе изготовления наносенсора, заключающемся в том, что на кремниевой подложке создают диэлектрический слой, на поверхности которого формируют слой кремния, из которого через маску травлением формируют нанопроволоку с омическими контактами, травление для формирования нанопроволоки с омическими контактами заданных размеров проводят в парах дифторида ксенона со скоростью от 36 до 100 нм/мин, при температуре от 5 до 20°C, в течение времени от 0,3 до 1,3 мин, слой кремния, из которого травлением формируют нанопроволоку с омическими контактами, создают толщиной от 11 до 45 нм, а в качестве маски для травления используют маску полимера полиметилметакрилата толщиной от 50 до 150 нм. Такой способ изготовления наносенсора позволяет уменьшить размеры и улучшить электрофизические свойства формируемых нанонитей, в том числе снизить токи утечки через нижний диэлектрический слой, увеличить управляемость наносенсора за счет расширения диапазона напряжений от нижнего затвора и повысить чувствительность наносенсоров благодаря большей проводимости при меньшей концентрации носителей заряда.

Известен способ травления материала на основе кремния (Патент РФ №2429553, H01L 21/306, опубликован 23.01.2007). Сущность изобретения состоит в способе травления кремниевой подложки n-типа проводимости с удельным сопротивлением от 2 до 10 Ω*см с образованием кремниевых нитей. Для этого подложку выдерживают в водном растворе - фтористоводородной кислоты или ее соли, при концентрации от 1,5 до 10 М, соли металла при содержании от 5 до 100 мМ, способной к химическому осаждению металла на поверхность кремния в присутствии ионов фторида и спирта при содержании последнего от 1 до 40 об.%. Однако получаемые кремниевые нанонити обладают слабой люминесценцией и не могут быть использованы для создания ЧЭ люминесцентного наносенсора кислорода.

Наиболее близким к теме настоящего исследования является изобретение по патенту US 6815706В2 «Nano optical sensors via molecular self-assembly». В патенте, в частности, описывается изобретение, которое относится к нанооптическим датчикам и фотоприемникам, и, в частности, к таким устройствам и их изготовлению, где используется самосборка молекул. Понятие молекулярной самосборки применяется в покрывании функциональными молекулами поверхности кремниевых нанонитей. Требование к молекулам (гидроксильные группы в молекулах) является минимальным с точки зрения синтетической трудности и совместимости. Самоорганизация будет происходить ультратонкой пленкой с сильной химической связи на поверхности, которая не может быть легко достигнута с помощью других традиционных методов. Таким образом, в обсуждаемом патенте предложен способ создания оптического сенсора на молекулярный кислород с помощью кремниевых нанонитей покрытых органическими соединениями.

Задачей, на решение которой направленно заявляемое изобретение, является создание ЧЭ на основе кремниевых нанонитей без добавления дополнительных молекул красителей и использование собственной люминесценции от нанонитей в качестве детектирования молекулярного кислорода, что позволит сделать весь процесс более эффективным, а получаемый оптический сенсор - более простым и надежным.

В предлагаемом изобретении ЧЭ в виде ансамблей кремниевых нанонитей предлагается изготавливать методом химического травления пластин кристаллического кремния заданного уровня легирования, приводящем к формированию слоя кремниевых нанонитей, обладающих фотолюминесценцией в видимом и ближнем инфракрасном диапазонах спектра. При этом детектирование молекул осуществляется за счет тушения люминесценции кремниевых нанонитей. К плюсам данного технического решения относится тот факт, что с помощью выбранного метода формирования ЧЭ имеется возможность получить хорошо люминесцирующие кремниевые нанонити с заданными параметрами структуры. При этом не нужно получать кремниевые нанонити с очень малой шириной (менее 30 нм), а наличие собственной люминесценции у нанонитей избавляет от необходимости внедрять в ЧЭ дополнительные люминесцирующие агенты в виде красителей. Поверхность пористых кремниевых нанонитей покрыта тонким слоем оксида, формируемого в процессе их получения, который защищает их от дальнейшего окисления и модификации при контакте с молекулами окружающей среды, включая атмосферные газы и водные среды при нормальных условиях. В результате получаемый ЧЭ может быть использован для контроля концентрации кислорода в атмосфере и водных средах, включая биологические системы.

Сущность изобретения состоит в способе изготовления кремниевого чувствительного элемента для люминесцентного сенсора кислорода, заключающимся в том, что на подложке монокристаллического кремния p-типа проводимости с кристаллографической ориентацией поверхности (100) с удельным сопротивлением от 1 до 10 мΩ*см выращивается слой пористых кремниевых нанонитей методом последовательного выдерживания в следующих растворах: вначале в водном растворе нитрата серебра с концентрацией от 0.02 до 0.04 моль/л и плавиковой кислоты с концентрацией 5 моль/л в соотношении 1:1 в течение времени от 30 до 60 с для нанесения наночастиц серебра на поверхность кремниевой пластины; затем в смеси плавиковой кислоты с концентрацией 5 моль/л и 30% перекиси водорода в соотношении 10:1 в течение времени от 20 до 60 мин для образования кремниевых нанонитей в результате химического травления кремниевой пластины в местах, покрытых наночастицами серебра; и в завершении - в 65%-ном растворе азотной кислоты в течение времени от 10 до 20 мин для удаления наночастиц серебра и стабилизации поверхности кремниевых нанонитей, в результате чего получаются пористые кремниевые нанонити с длиной от 2 до 5 мкм, размером поперечного сечения от 30 до 300 нм, обладающие люминесценцией в диапазоне от 650 до 850 нм, интенсивность которой зависит от присутствия молекул кислорода.

Техническим результатом изобретения является тот факт, что пористые нанонити обладают собственной люминесценцией и обладают чувствительностью к молекулярному окружению. При этом у слоев от 2 до 4 мкм нанонитей изменение интенсивности люминесценции при адсорбции - десорбции кислорода носит обратимый характер, что дает возможность многократного использования сенсоров на основе кремниевых нанонитей, при этом минимальное количество вещества детектируемых молекул кислорода составляет 1 пмоль.

Люминесценция пористых кремниевых нанонитей возникает вследствие излучательной рекомбинации фотовозбужденных носителей зарядов (экситонов) в нанокристаллах кремния, находящихся на поверхности нанонитей. В результате квантового размерного эффекта энергия рекомбинации экситонов лежит в оптическом диапазоне спектра от 600 до 1000 нм в зависимости от размера нанокристаллов. При адсорбции молекул кислорода на пористую поверхность кремниевых нанонитей формируются заряженные центры, которые тушат экситонную люминесценцию. Вследствие этого происходит уменьшение интенсивности фотолюминесценции кремниевых нанонитей. При десорбции молекул кислорода с поверхности нанонитей заряженные центры, связанные с адсорбированными молекулами кислорода, исчезают и интенсивность фотолюминесценции возрастает. Тем самым, изменение интенсивности фотолюминесценции кремниевых нанонитей из-за наличия молекул кислорода в окружающем их пространстве является обратимым, что позволяет использовать пористые кремниевые нанонити в качестве ЧЭ люминесцентного сенсора кислорода.

Сущность изобретения поясняется следующими фотографиями и чертежами.

На фиг.1 представлена фотография в сканирующем электронном микроскопе слоя кремниевых нанонитей, обозначенных цифрой 1, полученных на подложке кристаллического кремния, обозначенных цифрой 2, по заявляемому способу.

На фиг.2 представлена фотография в просвечивающем электронном микроскопе одиночной кремниевой нанонити, взятой из слоя, полученного по заявляемому способу, который демонстрирует пористую структуру получаемых нанонитей.

На фиг.3 представлена схема возможного люминесцентного наносенсора кислорода с ЧЭ на основе кремниевых нанонитей. При этом устройство, показанное на фиг.3, содержит источник возбуждающего света - фотодиод 1 с длиной волны излучения от 300 до 400 нм; ЧЭ на основе пористых кремниевых нанонитей 2; система фокусирующих линз 3 для сбора излучения фотолюминесценции от кремниевых нанонитей 2; светофильтр 4, выделяющий нужную длину волны фотолюминесценции в диапазоне от 720 до 780 нм, соответсующем максимуму спектра фотолюминесценции; фотоприемное устройство 5 в виде фотодиода для регистрации люминесцентного сигнала от ЧЭ.

На фиг.4 показаны спектры фотолюминесценции слоя пористых кремниевых нанонитей, находящихся в атмосфере азота и кислорода при давлении 1 атм., демонстрирующие принцип формирования отклика предлагаемого ЧЭ, где кривая 1 (сплошная линия) представляет собой спектр фотолюминесценции кремниевых нанонитей в атмосфере азота, кривая 2 (пунктирная линия) - спектр фотолюминесценции кремниевых нанонитей после напуска кислорода, а кривая 3 (штрихпунктирная линия) - спектр фотолюминесценции кремниевых нанонитей после откачки кислорода и напуска азота. Данные фиг.4 показывают уменьшение интенсивности фотолюминесценции в атмосфере кислорода примерно в 2 раза (кривая 2) относительно интенсивности исходной фотолюминесценции в атмосфере азота (кривая 1). При этом интенсивность фотолюминесценции нанонитей при их повторном помещении в атмосферу азота практически полностью восстанавливалась (кривая 3). Представленные на фиг.4 данные свидетельствуют о том, что ЧЭ на основе кремниевых нанонитей чувствителен к кислороду, при этом интенсивность люминесценции при адсорбции - десорбции кислорода носит обратимый характер, что дает возможность многократного использования наносенсоров с ЧЭ на основе кремниевых нанонитей. При этом минимальное количество вещества детектируемых молекул определяется стабильностью интенсивности возбуждающего света светодиода 1 на фиг.3 и чувствительностью фотодетектора 5 на фиг.3, и для существующих в настоящее время устройств может составлять не менее 1 пмоль.

Следующий пример иллюстрирует предложенный способ изготовления ЧЭ для люминесцентного наносенсора кислорода.

Пример.

Берется пластина кремния площадью 1 см2 p-типа проводимости с кристаллографической ориентацией поверхности (100) с удельным сопротивлением 2 мΩ*см и погружается в плавиковую кислоту (49%) на время от 5 до 10 с для удаления поверхностного оксида. После чего пластина кремния помещается в ячейку для жидкостного химического травления с 50 мл раствора следующего состава:

25 мл нитрата серебра с концентрацией 0.02 моль/л;

25 мл плавиковой кислоты с концентрацией 5 моль/л.

Пластина кремния оставляется на 30 с для нанесения наночастиц серебра на поверхность кремниевой пластины.

После чего кремниевая пластина с нанесенными наночастицами серебра на ее поверхности помещается в 110 мл травящего раствора следующего состава:

10 мл перекиси водорода (30%);

100 мл плавиковой кислоты с концентрацией 5 моль/л.

Пластина кремния оставляется на 20 мин для образования кремниевых нанонитей в результате химического травления кремниевой пластины в местах, покрытых наночастицами серебра. После этого кремниевая пластина с кремниевыми нанонитями промывается в деионизированной воде, сушится и погружается в 50 мл азотной кислоты (65%) на 15 мин для удаления наночастиц серебра и стабилизации поверхности кремниевых нанонитей. После этого пластина кремния еще раз промывается в деионизированной воде и высушивается.

Все действия проводятся при комнатной температуре. В результате получаются пористые кремниевые нанонити с длиной 2.2 мкм, размером поперечного сечения от 30 до 300 нм, обладающие люминесценцией в диапазоне от 650 до 850 нм, интенсивность которой зависит от присутствия молекул кислорода.

Способ изготовления кремниевого чувствительного элемента для люминесцентного сенсора кислорода, заключающийся в том, что на подложке монокристаллического кремния p-типа проводимости с кристаллографической ориентацией поверхности (100) с удельным сопротивлением от 1 до 10 мОм∗см выращивается слой пористых кремниевых нанонитей методом последовательного выдерживания в следующих растворах: вначале в водном растворе нитрата серебра с концентрацией от 0.02 до 0.04 моль/л и плавиковой кислоты с концентрацией 5 моль/л в соотношении 1:1 в течение времени от 30 до 60 с для нанесения наночастиц серебра на поверхность кремниевой пластины; затем в смеси плавиковой кислоты с концентрацией 5 моль/л и 30% перекиси водорода в соотношении 10:1 в течение времени от 20 до 60 мин для образования кремниевых нанонитей в результате химического травления кремниевой пластины в местах, покрытых наночастицами серебра; и в завершении - в 65%-ном растворе азотной кислоты в течение времени от 10 до 20 мин для удаления наночастиц серебра и стабилизации поверхности кремниевых нанонитей, в результате чего получаются пористые кремниевые нанонити с длиной от 2 до 5 мкм, размером поперечного сечения от 30 до 300 нм, обладающие люминесценцией в диапазоне от 650 до 850 нм, интенсивность которой зависит от присутствия молекул кислорода.
СПОСОБ ИЗГОТОВЛЕНИЯ КРЕМНИЕВОГО ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА ДЛЯ ЛЮМИНЕСЦЕНТНОГО НАНОСЕНСОРА КИСЛОРОДА
СПОСОБ ИЗГОТОВЛЕНИЯ КРЕМНИЕВОГО ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА ДЛЯ ЛЮМИНЕСЦЕНТНОГО НАНОСЕНСОРА КИСЛОРОДА
СПОСОБ ИЗГОТОВЛЕНИЯ КРЕМНИЕВОГО ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА ДЛЯ ЛЮМИНЕСЦЕНТНОГО НАНОСЕНСОРА КИСЛОРОДА
СПОСОБ ИЗГОТОВЛЕНИЯ КРЕМНИЕВОГО ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА ДЛЯ ЛЮМИНЕСЦЕНТНОГО НАНОСЕНСОРА КИСЛОРОДА
Источник поступления информации: Роспатент

Показаны записи 61-70 из 90.
27.01.2015
№216.013.207e

Штамм arthrospira platensis (nordst.) geitl. rsemsu t/05-117 - продуцент липидосодержащей биомассы

Изобретение относится к биотехнологии. Штамм Arthrospira platensis (Nordst.) Geitl. rsemsu Т/05-117обладаетповышенным содержанием нейтральных липидов.Штамм хранится в коллекции НИЛ ВИЭ географического факультета МГУ имени М.В. Ломоносова. Изобретение позволяет повысить выход нейтральных...
Тип: Изобретение
Номер охранного документа: 0002539766
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.21ff

Волнодвижитель парус-решётка

Изобретение относится к судовым устройствам, в частности к плавучим якорям. Волнодвижитель парус-решетка представляет собой набор коротких по длине подводных парусов. Подводные паруса закреплены на кронштейне в районе носовой оконечности судна, при качке которого и взаимодействии набегающего...
Тип: Изобретение
Номер охранного документа: 0002540156
Дата охранного документа: 10.02.2015
27.02.2015
№216.013.2db6

Способ получения наногибридного функционального сепарационного материала на основе модифицированного носителя и модифицированных наночастиц металла

Изобретение относится к области материаловедения и аналитической химии. Наногибридный функциональный сепарационный материал содержит ковалентно закрепленные на носителе наночастицы золота и ковалентно закрепленные серосодержащие органические лиганды на поверхности наночастиц золота. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002543170
Дата охранного документа: 27.02.2015
20.03.2015
№216.013.31fd

Способ изготовления материала газового сенсора для детектирования монооксида углерода со без нагревания

Использование: для детектирования монооксида углерода (угарный газ) в воздухе. Сущность изобретения заключается в том, что способ изготовления включает получение нанокристаллических широкозонных полупроводниковых оксидов MeO (SnO, ZnO, InO), получение золей квантовых точек узкозонных...
Тип: Изобретение
Номер охранного документа: 0002544272
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.31fe

Электроаналитическая система на основе биосенсора концентрирующей колонки для определения низких концентраций лактата

Изобретение относится к электроаналитическим системам. Система состоит из двух перистальтических насосов, содержащего петлю инжектора, проточной амперометрической ячейки с включенным биосенсором, потенциостата. В качестве биосенсора электроаналитическая система содержит лактатный биосенсор....
Тип: Изобретение
Номер охранного документа: 0002544273
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3200

Свч-усилитель на основе высокотемпературного сквида с четырьмя джозефсоновскими контактами

Изобретение направлено на повышение линейности усиления в гигагерцовом диапазоне частот без использования цепей обратной связи. СВЧ-усилитель на основе высокотемпературного СКВИДа включает идентичные и параллельно соединенные первый и второй джозефсоновские контакты, образованные в слое...
Тип: Изобретение
Номер охранного документа: 0002544275
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.3ab6

Способ анализа мембраносвязанного гемоглобина в эритроцитах с помощью спектроскопии гигантского комбинационного рассеивания на наноструктурированных покрытиях

Изобретение относится к области медицинской диагностики и биоаналитических исследований и может быть использовано для анализа мембраносвязанного гемоглобина в эритроцитах с помощью спектроскопии гигантского комбинационного рассеивания (ГКР). Для этого используют наноструктурированные покрытия в...
Тип: Изобретение
Номер охранного документа: 0002546518
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3b50

Способ получения флуоресцирующих производных катехоламинов и их метаболитов методом дериватизации

Изобретение относится к новому способу получения флуоресцирующих катехоламинов, выбранных из допамина и адреналина, и их метаболитов, выбранных из гомованилиновой и ванилилминдальной кислот, методом дериватизации. Соединения могут быть использованы в качестве высокочувствительных и селективных...
Тип: Изобретение
Номер охранного документа: 0002546672
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3e17

Способ нанесения эмиссионного слоя

Изобретение относится к способам получения эмиссионных слоев, в частности для органических светоизлучающих диодов. Способ нанесения эмиссионного слоя органического светоизлучающего диода на подложку из стекла или полимера, покрытую слоем анода, включает получение раствора, содержащего...
Тип: Изобретение
Номер охранного документа: 0002547383
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3ee0

Гидролаза пептидогликана, экспрессионная плазмида, содержащая фрагмент днк, кодирующий гидролазу пептидогликана, бактерия-продуцент и способ микробиологического синтеза гидролазы пептидогликана

Группа изобретений относится к биотехнологии, в частности к биосинтезу гидролазы пептидогликана, и представляет собой белок с активностью гидролазы пептидогликана, плазмиду, содержащую фрагмент, кодирующий гидролазу пептидогликана, бактерию-продуцент, способ микробиологического синтеза...
Тип: Изобретение
Номер охранного документа: 0002547584
Дата охранного документа: 10.04.2015
Показаны записи 61-70 из 90.
27.01.2015
№216.013.207e

Штамм arthrospira platensis (nordst.) geitl. rsemsu t/05-117 - продуцент липидосодержащей биомассы

Изобретение относится к биотехнологии. Штамм Arthrospira platensis (Nordst.) Geitl. rsemsu Т/05-117обладаетповышенным содержанием нейтральных липидов.Штамм хранится в коллекции НИЛ ВИЭ географического факультета МГУ имени М.В. Ломоносова. Изобретение позволяет повысить выход нейтральных...
Тип: Изобретение
Номер охранного документа: 0002539766
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.21ff

Волнодвижитель парус-решётка

Изобретение относится к судовым устройствам, в частности к плавучим якорям. Волнодвижитель парус-решетка представляет собой набор коротких по длине подводных парусов. Подводные паруса закреплены на кронштейне в районе носовой оконечности судна, при качке которого и взаимодействии набегающего...
Тип: Изобретение
Номер охранного документа: 0002540156
Дата охранного документа: 10.02.2015
27.02.2015
№216.013.2db6

Способ получения наногибридного функционального сепарационного материала на основе модифицированного носителя и модифицированных наночастиц металла

Изобретение относится к области материаловедения и аналитической химии. Наногибридный функциональный сепарационный материал содержит ковалентно закрепленные на носителе наночастицы золота и ковалентно закрепленные серосодержащие органические лиганды на поверхности наночастиц золота. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002543170
Дата охранного документа: 27.02.2015
20.03.2015
№216.013.31fd

Способ изготовления материала газового сенсора для детектирования монооксида углерода со без нагревания

Использование: для детектирования монооксида углерода (угарный газ) в воздухе. Сущность изобретения заключается в том, что способ изготовления включает получение нанокристаллических широкозонных полупроводниковых оксидов MeO (SnO, ZnO, InO), получение золей квантовых точек узкозонных...
Тип: Изобретение
Номер охранного документа: 0002544272
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.31fe

Электроаналитическая система на основе биосенсора концентрирующей колонки для определения низких концентраций лактата

Изобретение относится к электроаналитическим системам. Система состоит из двух перистальтических насосов, содержащего петлю инжектора, проточной амперометрической ячейки с включенным биосенсором, потенциостата. В качестве биосенсора электроаналитическая система содержит лактатный биосенсор....
Тип: Изобретение
Номер охранного документа: 0002544273
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3200

Свч-усилитель на основе высокотемпературного сквида с четырьмя джозефсоновскими контактами

Изобретение направлено на повышение линейности усиления в гигагерцовом диапазоне частот без использования цепей обратной связи. СВЧ-усилитель на основе высокотемпературного СКВИДа включает идентичные и параллельно соединенные первый и второй джозефсоновские контакты, образованные в слое...
Тип: Изобретение
Номер охранного документа: 0002544275
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.3ab6

Способ анализа мембраносвязанного гемоглобина в эритроцитах с помощью спектроскопии гигантского комбинационного рассеивания на наноструктурированных покрытиях

Изобретение относится к области медицинской диагностики и биоаналитических исследований и может быть использовано для анализа мембраносвязанного гемоглобина в эритроцитах с помощью спектроскопии гигантского комбинационного рассеивания (ГКР). Для этого используют наноструктурированные покрытия в...
Тип: Изобретение
Номер охранного документа: 0002546518
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3b50

Способ получения флуоресцирующих производных катехоламинов и их метаболитов методом дериватизации

Изобретение относится к новому способу получения флуоресцирующих катехоламинов, выбранных из допамина и адреналина, и их метаболитов, выбранных из гомованилиновой и ванилилминдальной кислот, методом дериватизации. Соединения могут быть использованы в качестве высокочувствительных и селективных...
Тип: Изобретение
Номер охранного документа: 0002546672
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3e17

Способ нанесения эмиссионного слоя

Изобретение относится к способам получения эмиссионных слоев, в частности для органических светоизлучающих диодов. Способ нанесения эмиссионного слоя органического светоизлучающего диода на подложку из стекла или полимера, покрытую слоем анода, включает получение раствора, содержащего...
Тип: Изобретение
Номер охранного документа: 0002547383
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3ee0

Гидролаза пептидогликана, экспрессионная плазмида, содержащая фрагмент днк, кодирующий гидролазу пептидогликана, бактерия-продуцент и способ микробиологического синтеза гидролазы пептидогликана

Группа изобретений относится к биотехнологии, в частности к биосинтезу гидролазы пептидогликана, и представляет собой белок с активностью гидролазы пептидогликана, плазмиду, содержащую фрагмент, кодирующий гидролазу пептидогликана, бактерию-продуцент, способ микробиологического синтеза...
Тип: Изобретение
Номер охранного документа: 0002547584
Дата охранного документа: 10.04.2015
+ добавить свой РИД