×
10.01.2015
216.013.1dea

Результат интеллектуальной деятельности: СПОСОБ АЭРОДИНАМИЧЕСКОГО ПРОФИЛИРОВАНИЯ БОРТОВ КАРЬЕРОВ И УГОЛЬНЫХ РАЗРЕЗОВ

Вид РИД

Изобретение

№ охранного документа
0002539086
Дата охранного документа
10.01.2015
Аннотация: Предлагаемый способ относится к горной промышленности, в частности к разработке месторождений открытым способом, и может быть использован в глубоких карьерах и угольных разрезах, где добыча полезных ископаемых становится невозможной без усиления естественного воздухообмена на нижних горизонтах или без средств искусственной вентиляции. Техническим результатом является повышение эффективности проветривания карьеров и угольных разрезов путем обеспечения безотрывного обтекания борта карьера и угольного разреза естественным воздушным потоком. Способ включает выбор участков в зоне действия ветровых потоков, обуривание уступов скважинами, заряжание их зарядами ВВ, взрывание их и экскавацию взорванной горной массы. При этом производят обуривание лишь верхних уступов без перебура до проектного контура профиля борта, а заряжание и взрывание скважин производят поэтапно блоками на высоту профиля. Определяют зависимость угла падения и профиля борта карьера от преобладающей скорости ветра по математической формуле. 1 табл., 3 ил.
Основные результаты: Способ аэродинамического профилирования бортов карьеров и угольных разрезов, включающий выбор участков в зоне действия ветровых потоков, обуривание уступов скважинами, заряжание их зарядами ВВ, взрывание их и экскавацию взорванной горной массы, при этом производят обуривание лишь верхних уступов без перебура до проектного контура профиля борта, а заряжание и взрывание скважин производят поэтапно блоками на высоту профиля, отличающийся тем, что определяют зависимость угла падения и профиля борта карьера от преобладающей скорости ветра по формуле: ,где β - угол атаки борта карьера воздушным потоком; x - текущее значение длины борта карьера, м; l - конечная длина борта от верхней бровки до дна, м (x≤l); ƒ - коэффициент пропорциональности, характеризующий аэродинамическое сопротивление при движении потока вдоль борта; g - ускорение силы тяжести.

Предлагаемый способ относится к горной промышленности, в частности к разработке месторождений открытым способом, и может быть использован в глубоких карьерах и угольных разрезах, где добыча полезных ископаемых становится невозможной без средств искусственной вентиляции или усиления естественного воздухообмена на нижних горизонтах.

Известные способы проветривания карьеров и угольных разрезов основаны:

- на отводе отработанного и подаче свежего воздуха в зону ведения горных работ, в том числе в нижнюю часть карьера по проведенным горным выработкам с помощью источника тяги и вытеснения загрязненного воздуха из карьера (авт.свид. СССР №901.560; патенты РФ №2.036.311, 2.066.769, 2.122.121, 2.169.369, 2.357.084; патент США №3.747.503 и другие);

- на воздухообмене между атмосферой карьера и окружающей средой путем нагнетания чистого воздуха и всасывания загрязненного воздуха через воздуховоды вентиляторных установок (авт.свид. СССР №1.361.34; патенты РФ №2.164.602, 2.215.157; Машковцев И.Л. и др. Аэрология и охрана труда на шахтах и в карьерах. - М.: изд-во Университета дружбы народов, 1986, с.184 и другие);

- на подаче чистого воздуха в пространство карьера по подземным выработкам, расположенным на разных уровнях по глубине карьера, и включение их в работу последовательно по мере углубления карьера (авт.свид. СССР №901.960; патент РФ №2.036.311; Ушаков К.З., Михайлов В.А. Аэрология карьеров. - М.: Недра, 1975, с.166 и другие);

- на воздухообмене между рабочими зонами и поверхностью карьера по одному или нескольким гибким воздуховодам (авт.свид. СССР №; 525.803, 608.947, 965.488, 1.335.711, 1.760.128, 1.767.193; патенты РФ №2.032.126, 2.066.769, 2.148.717 и другие);

- на выборе участков в зоне активного воздействия ветровых потоков, обуривании уступов, заряжании зарядами ВВ, взрывании их, экскавации взорванной горной массы (авт.свид. СССР №919.415; Битколов Н.З и др. Проветривание карьеров. - М.: Госгортехиздат, 1963, с.73-77; Бокий Б.В. Основы технологии горного дела. - М.: Недра, 1964, с.193-222 и другие).

Из известных способов наиболее близким к предлагаемому является «Способ профилирования бортов карьеров» (авт.свид. СССР №919.415, E21C 41/00, 1980), который и выбран в качестве базового объекта.

Известный способ основан на том, что производят обуривание лишь верхних уступов без перебура до проектного контура профиля борта, а заряжание и взрывание скважин производят поэтапно на высоту профиля, при этом радиус профиля определяют по формуле

где H - высота профиля борта, м; V - средняя скорость ветра, м/с; 0,823 - расчетный коэффициент, определяющий угол раскрытия ветрового потока.

Указанная формула получена экспериментальным путем, исходя из условия обеспечения безотрывного обтекания профиля ветровым потоком, при этом полученный коэффициент 0,823 как раз и определяет увеличение угла раскрытия ветрового потока до 35-40°, что соответствует максимальному углу борта карьера при добыче полезных ископаемых открытым способом в скальных породах.

Однако радиус профиля, рассчитанный по указанной формуле, не всегда обеспечивает эффективное проветривание карьеров и угольных разрезов на всю длину борта и его высоту.

Карьерное пространство как аэродинамическая система является весьма несовершенным, поскольку ветровые потоки при подходе к нему срываются с верхней кромки борта, вызывая образование ниже своей границы рециркуляционные зоны с ослабленным воздухообменом.

Натурные наблюдения, проведенные на ряде карьеров страны, показывают, что снижение скорости ветра на поверхности до 2 м/с вызывает значительное сокращение зоны активного влияния его энергии в карьерном пространстве, т.е. увеличивает в нем количество и общий объем застойных зон.

Известно, что в непосредственной близости к борту карьера обтекающий его воздушный поток заторможен, и в нем могут возникать сильные вихри. В гидроаэродинамике этот слой называется пограничным. Экспериментальное изучение пограничного слоя показало, что на самой поверхности обтекаемого тела поток не движется и как бы «прилипает» к поверхности. Теоретическое исследование пограничного слоя при обтекании тел сложной формы затруднено. При упрощении задачи можно представить борт карьера в виде наклонной пластины, обтекаемой потоком воздуха с отрицательным углом атаки β.

В связи с изложенным возникает необходимость определения зависимости угла падения и профиля борта карьера от скорости распространения движущейся струи воздушного потока (естественной или искусственно созданной) с тем, чтобы обеспечить безотрывность потока от начальной отметки борта карьера до забойной поверхности (дна карьера).

Для решения этой задачи будем считать движущийся поток в пограничном слое ламинарным, так как предполагается полное омывание борта и дна карьера потоком воздуха (без отрыва струи и образования крупных вихрей). Такой поток образуется при малых значениях числа Рейнольдса (Re<2,0·103), определяемого по формуле:

где V - скорость потока при обтекании борта карьера, м/с; l - высота ламинарного потока в проекции на ось у, м; ν - кинематическая вязкость воздуха, м2/с (в нормальных условиях ν=1,45·10-5 м2/с).

Так как скорость естественного ветрового потока не регулируется, то решение задачи должно сводиться к определению рационального профиля борта, соответствующего конкретному значению скорости ветра, близкого к среднегодовому (согласно розе ветров).

Технической задачей изобретения является повышение эффективности проветривания карьеров и угольных разрезов путем обеспечения безотрывного обтекания борта карьера или угольного разреза воздушным потоком.

Для решения поставленной задачи предлагается способ аэродинамического профилирования бортов карьеров или угольных разрезов, включающий в себя, в соответствии с ближайшим аналогом, выбор участков в зоне действия ветровых потоков, обуривание уступов скважинами, заряжание их зарядами ВВ, взрывание их и экскавацию взорванной горной массы, при этом производят обуривание лишь верхних уступов без перебура до проектного контура профиля борта, а заряжание и взрывание скважин производят поэтапно блоками на высоту профиля, отличающийся от ближайшего аналога тем, что зависимость угла падения и профиля борта карьера от скорости распространения движущейся струи воздушного потока определяют по формуле:

где β - угол атаки борта карьера воздушным потоком; x - текущее значение длины борта карьера в плане, м; lk - конечная длина борта в плане от верхней бровки до днища, м; (x≤lk); ƒa - коэффициент пропорциональности, характеризующий аэродинамическое сопротивление при движении потока вдоль борта; g - ускорение силы тяжести.

Схема движения потока воздуха по борту карьера представлена на фиг.1. Фрагмент борта карьера изображен на фиг.2. Зависимость величины требуемого угла падения борта карьера от начальной скорости потока воздуха показана на фиг.3.

Предлагаемый способ аэродинамического профилирования бортов карьеров и угольных разрезов реализуют следующим образом.

Рассмотрим поток воздуха, набегающий на поверхность борта карьера со скоростью V0 (фиг.1). Выделим на расстоянии x бесконечно малый участок пограничного слоя длиной dx. Пусть его толщина равна δ. При этом будем считать внешнее давление возрастающим по мере роста координаты x. Такое допущение возможно в связи с постоянным падением скорости движения потока (V<V0, где V - текущее значение скорости).

Рассмотрим баланс сил для полосы потока с некоторой постоянной шириной вдоль борта карьера, например h=1 м. Импульс действующих на нее сил должен равняться изменению количества движения, а самими действующими силами будут разность давлений на гранях АВ и СД и сила трения на грани АД (фиг.1).

Примем распределение движения внутри определенного поперечного сечения потока как равномерное, меняющее свое абсолютное значение только лишь с координатой x.

Пусть в сечении АВ давление воздушного потока равно Р, тогда в сечении СД это давление станет равным . Разность давлений составит:

где минус в правой части выражения (1) означает, что сила, соответствующая разности давлений, действует против направления движения воздушного потока.

На поверхности борта карьера по линии АД будет действовать сила трения потока воздуха в полосе шириной h=1 м. Скорость течения воздуха по наклонной поверхности, какой является борт карьера, обусловлена только лишь действием гравитационной силы, исчезающей на дне карьера. Поэтому к элементарной силе трения на участке борта длиной dx добавится и гравитационная составляющая (фиг.2):

где Fтр - сила трения при гравитационном течении пограничного слоя по борту карьера; µ - массовый расход воздушного потока, кг/с; - градиент скорости по нормали к поверхности борта карьера.

Величину dFтр можно определить как равнодействующую между весом dQ полосы потока на участке борта длиной dx и нормальным давлением этого потока на поверхность борта

где β - угол атаки воздушным потоком борта карьера; ƒa - коэффициент пропорциональности, характеризующий аэродинамическое сопротивление при движении потока вдоль борта.

В свою очередь,

где ρ - плотность воздуха, кг/м3; g - ускорение силы тяжести; δ - толщина пограничного слоя воздушного потока на участке длиной dx.

Таким образом, силы, действующие на участок длиной dx с учетом (1)-(3) при движении потока в полосе шириной 1 м, составят в сумме:

Суммарная сила согласно выражению (4) должна быть уравновешена импульсом силы тяжести потока, входящего в объем АВСД на полосе высотой dy:

где du - изменение расхода воздуха между сечениями СД и АВ; V - скорость потока внутри пограничного слоя толщиной δ; V0 - скорость потока выше линии ВС, равная скорости потока воздуха перед бортом карьера на поверхности.

В свою очередь,

Тогда, с учетом выражений (4)-(6), можно после сокращения на dx записать:

Выражение (7) можно упростить, приняв давление воздуха внутри и вне пограничного слоя равным атмосферному, т.е. постоянным, и тогда на толщине пограничного слоя, равного δ, будем иметь .

Далее, после определения функций U(V0) и δ(V, V0), получены выражения для определения угла атаки β борта карьера воздушным потоком и начальной скорости V0 этого потока для обеспечения безотрывного обтекания профиля борта пограничным слоем воздушного (естественного или искусственного):

или

где x - текущее значение длины борта карьера в плане; lk - конечная длина борта по горизонтали от верхней бровки до днища {x≤lk).

При предельном значении Sin β=-1 (отрицательный угол атаки борта), получим зависимость для определения предельно допустимой скорости потока, обеспечивающей безотрывное обтекание борта, как синтез выражений (8)-(10):

Таким образом, выполнение условий (8)-(11) обеспечит безотрывное обтекание потоком воздуха борта и дна карьера в режиме поддержания ламинарного пограничного слоя.

Используя формулу (8), можно, задаваясь значениями x (при определенном постоянном значении lk), определить необходимый профиль борта карьера для обтекания его с какой-либо скоростью V0 (целесообразно принимать V0 среднегодовую по оси карьера).

Рассмотрим конкретный пример. Рассчитаем изменение формы профиля борта карьера для lk=100 м при обтекании его потоком воздуха со скоростями V0=4, 6, 7, 8 м/с. Зададимся следующими значениями x=5, 10, 20, 40, 60, 90 м. Результаты расчета представлены в таблице 1.

Таблица 1
Скорость потока, м/с Значения углов падения борта, градус, на расстоянии x, м, от границы борта
20 30 40 50 60 70 80 90 95 100
4 10° 13 15°15' 16°30' 16° 13°30' 8°30' 4°40' 0
6 15°40' 23°20' 30°20' 26°20' 39°41' 38°30' 31°50' 19°20' 10°35' 0
7 21°30' 32°50' 43°45' 54°10' 60°30' 58°20' 46°10' 26°50' 14°30' 0
8 28035' 44°45' 64°30' Зона возможного отрыва потока от поверхности 70° 36 19° 0

Как видно из фиг.3, скоростью потока, близкой к предельной, является скорость, равная V0=7 м/с; при скорости V=8 м/с на расстоянии от края борта, несколько большем 40 м (угол наклона 64°), поток отрывается от поверхности с образованием зоны турбулентности. Во избежание этого профиль борта, начиная с x=40 м, следует выположить или снизить скорость потока (в нашем случае до v0=7 м/с).

Следовательно, интенсифицировать проветривание карьеров и угольных разрезов возможно регулированием скорости на определенных расстояниях или приданием борту соответствующего профиля, пользуясь расчетами по приведенной выше методике при постоянной скорости ветра v0.

Таким образом, исследование движения потока воздуха по борту карьера позволило получить аналитическую зависимость для расчета и проектирования профиля борта карьера и тем самым предопределило теоретические предпосылки для обеспечения на практике непрерывного ламинарного обтекания борта карьера как на всю его длину, так и на отдельных участках, например, для борьбы с местной турбулизацией потока.

При этом для начального (на входе в карьер) получения плавного безотрывного обтекания борта карьера потоком воздуха верхним двум-трем уступам карьера следует придавать соответствующий аэродинамический профиль.

Затем развитие борта карьера следует проектировать с помощью формулы (8), что в конечном результате позволит вести разработку полезных ископаемых на больших глубинах с достаточным естественным проветриванием с постоянной скоростью ветра V0 (по розе ветров).

Таким образом, предлагаемый способ по сравнению с базовым объектом и другими техническими решениями аналогичного назначения позволяет повышать эффективность проветривания карьеров и угольных разрезов. Это достигается обеспечением безотрывного обтекания борта карьера и угольного разреза воздушным потоком, которое определяется зависимостью угла падения и профиля борта карьера и угольного разреза от скорости распространения движущейся струи воздушного потока.

Способ аэродинамического профилирования бортов карьеров и угольных разрезов, включающий выбор участков в зоне действия ветровых потоков, обуривание уступов скважинами, заряжание их зарядами ВВ, взрывание их и экскавацию взорванной горной массы, при этом производят обуривание лишь верхних уступов без перебура до проектного контура профиля борта, а заряжание и взрывание скважин производят поэтапно блоками на высоту профиля, отличающийся тем, что определяют зависимость угла падения и профиля борта карьера от преобладающей скорости ветра по формуле: ,где β - угол атаки борта карьера воздушным потоком; x - текущее значение длины борта карьера, м; l - конечная длина борта от верхней бровки до дна, м (x≤l); ƒ - коэффициент пропорциональности, характеризующий аэродинамическое сопротивление при движении потока вдоль борта; g - ускорение силы тяжести.
СПОСОБ АЭРОДИНАМИЧЕСКОГО ПРОФИЛИРОВАНИЯ БОРТОВ КАРЬЕРОВ И УГОЛЬНЫХ РАЗРЕЗОВ
СПОСОБ АЭРОДИНАМИЧЕСКОГО ПРОФИЛИРОВАНИЯ БОРТОВ КАРЬЕРОВ И УГОЛЬНЫХ РАЗРЕЗОВ
СПОСОБ АЭРОДИНАМИЧЕСКОГО ПРОФИЛИРОВАНИЯ БОРТОВ КАРЬЕРОВ И УГОЛЬНЫХ РАЗРЕЗОВ
СПОСОБ АЭРОДИНАМИЧЕСКОГО ПРОФИЛИРОВАНИЯ БОРТОВ КАРЬЕРОВ И УГОЛЬНЫХ РАЗРЕЗОВ
Источник поступления информации: Роспатент

Показаны записи 131-136 из 136.
09.05.2019
№219.017.5138

Устройство для очистки поверхности изделий дуговым разрядом

Устройство относится к технике строительства и ремонта магистральных трубопроводов и может быть использовано в нефтегазодобывающей отрасли. В изобретении обеспечивается повышение производительности, качества и расширение ассортимента очищаемых изделий. Устройство содержит разъемные...
Тип: Изобретение
Номер охранного документа: 0002152271
Дата охранного документа: 10.07.2000
05.03.2020
№220.018.0966

Система мониторинга состояния льда и окружающей среды

Изобретение относится к области автоматизированного мониторинга состояния льда и окружающей среды с одновременным определением координат собственного местонахождения комплекса и передачей полученной информации по радиоканалу. Измерительно-навигационный комплекс содержит корпус 1, приемник 3...
Тип: Изобретение
Номер охранного документа: 0002715845
Дата охранного документа: 03.03.2020
17.06.2020
№220.018.2706

Спутниковая система для определения местоположения судов и самолетов, потерпевших аварию

Изобретение относится к спутниковым системам для определения местоположения аварийных радиобуев (АРБ), предающих радиосигналы бедствия. Техническим результатом является повышение помехоустойчивости и достоверности принимаемых сложных сигналов с фазовой манипуляцией путем подавления ложных...
Тип: Изобретение
Номер охранного документа: 0002723443
Дата охранного документа: 11.06.2020
21.06.2020
№220.018.287b

Способ обнаружения и идентификации взрывчатых и наркотических веществ и устройство для его осуществления

Предлагаемые способ и устройство относятся к технике обнаружения взрывчатых и наркотических веществ, в частности к способам и устройствам для обнаружения взрывчатых и наркотических веществ в различных закрытых объемах и на теле человека, находящегося в местах массового скопления людей....
Тип: Изобретение
Номер охранного документа: 0002723987
Дата охранного документа: 18.06.2020
01.07.2020
№220.018.2d21

Экологический дирижабль

Дирижабль предназначен для ведения дистанционного экологического мониторинга линейно-протяженных техногенных транспортно-коммуникационных сооружений. Дирижабль содержит приемную антенну 1(19) приемник 2(20) GPS-сигналов, приборы 3(21) дистанционного зондирования земной поверхности и атмосферы,...
Тип: Изобретение
Номер охранного документа: 0002725100
Дата охранного документа: 29.06.2020
01.07.2020
№220.018.2d67

Система контроля соблюдения правил дорожного движения

Изобретение относится к области обеспечения безопасности дорожного движения. Система контроля соблюдения правил дорожного движения содержит сигнальные устройства и исполнительные устройства. Каждое сигнальное устройство содержит блок ввода дискретных сигналов, синхронизатор, передающее...
Тип: Изобретение
Номер охранного документа: 0002725101
Дата охранного документа: 29.06.2020
Показаны записи 151-160 из 183.
12.08.2019
№219.017.bf15

Система дистанционного контроля состояния резьбовых соединений строительных элементов и конструкций

Предлагаемая система относится к контрольно-измерительной технике и может быть использована при стопорении резьбовых соединений (болтов, шпилек), а также для дистанционного измерения усилий и температуры в различных резьбовых соединениях строительных элементов и конструкций, от состояния...
Тип: Изобретение
Номер охранного документа: 0002696668
Дата охранного документа: 05.08.2019
07.09.2019
№219.017.c85b

Система дистанционного контроля за транспортировкой высокотехнологичных строительных модулей

Изобретение относится к средствам контроля и регистрации перемещения специальной техники. Система содержит части оборудования пункта контроля и контролируемого объекта. Часть на контролируемом объекте включает датчики давления, положения кузова, расхода топлива, пройденного пути, элемент И,...
Тип: Изобретение
Номер охранного документа: 0002699451
Дата охранного документа: 05.09.2019
17.10.2019
№219.017.d60c

Система контроля расхода и утечек бытового газа в многоквартирных домах

Изобретение относится к системам и устройствам формирования измерительной и управляющей информации по первичным параметрам, определяющим расход природного газа и контроля его утечек в многоквартирных домах. Технический результат - повышение помехоустойчивости когерентного приема ФМн-сигналов и...
Тип: Изобретение
Номер охранного документа: 0002703173
Дата охранного документа: 15.10.2019
18.10.2019
№219.017.d73b

Способ мониторинга лесных пожаров и комплексная система раннего обнаружения лесных пожаров

Изобретение относится к области пожарной безопасности и может быть использовано для постоянного наземного мониторинга лесных массивов и населенных пунктов в местах, где развернута система сотовой связи. Технический результат заключается в повышении избирательности, помехоустойчивости и...
Тип: Изобретение
Номер охранного документа: 0002703362
Дата охранного документа: 16.10.2019
18.10.2019
№219.017.d77b

Способ контроля подлинности и перемещения агропромышленной продукции и система для его реализации

Изобретение относится к средствам информационного обеспечения в сетях удаленного доступа и направленным на идентификацию агропромышленной продукции. Техническим результатом является повышение помехоустойчивости и чувствительности приема сложных сигналов с фазовой манипуляцией путем подавления...
Тип: Изобретение
Номер охранного документа: 0002703226
Дата охранного документа: 15.10.2019
18.10.2019
№219.017.d7c7

Способ раннего обнаружения пожара и устройство для его реализации

Изобретение относится к области пожарной безопасности и предназначено для обнаружения пожара на ранних стадиях тления и возгорания горючих материалов. Технический результат - повышение избирательности и помехоустойчивости приема и достоверности синхронного детектирования фазоманипулированных...
Тип: Изобретение
Номер охранного документа: 0002703366
Дата охранного документа: 16.10.2019
13.11.2019
№219.017.e10b

Способ компьютерного контроля состояния сельскохозяйственной продукции и компьютерная система для его осуществления

Группа изобретений относится к упаковке и хранению сельскохозяйственной продукции с ограничением по условиям и сроку хранения, а именно к способу компьютерного контроля их состояния при хранении. Для этого на упаковку или тару сельскохозяйственной продукции наносят средства контроля (датчики)...
Тип: Изобретение
Номер охранного документа: 0002705596
Дата охранного документа: 11.11.2019
25.12.2019
№219.017.f207

Способ обнаружения и высокоточного определения параметров морских ледовых полей и радиолокационная система для его реализации

Изобретение относится к информационно-измерительной системе и может быть использовано в радиолокационной технике для высокоточной оценки ледовой обстановки в районах морской добычи и транспортировки нефтегазовых ресурсов. Достигаемый технический результат - обеспечение однозначности отсчета...
Тип: Изобретение
Номер охранного документа: 0002710030
Дата охранного документа: 24.12.2019
27.12.2019
№219.017.f2de

Устройство позиционирования мобильных агрегатов при возделывании агрокультур

Изобретение относится к сельскохозяйственному машиностроению. Устройство позиционирования наземного мобильного средства (10) при возделывании агрокультур (14) содержит первый блок искусственного зрения, размещенный на наземном мобильном средстве (10), блок обработки видеосигнала, беспилотный...
Тип: Изобретение
Номер охранного документа: 0002710163
Дата охранного документа: 24.12.2019
22.01.2020
№220.017.f8c6

Способ мониторинга состояния подземных сооружений метрополитена и система для его реализации

Предлагаемые способ и система относятся к автоматике и вычислительной технике и могут быть использованы при построении систем автоматизированного контроля состояния подземных сооружений метрополитена. Технической задачей изобретения является повышение помехоустойчивости приема ФМн-сигнала и...
Тип: Изобретение
Номер охранного документа: 0002711632
Дата охранного документа: 17.01.2020
+ добавить свой РИД