×
10.01.2015
216.013.1d0a

Результат интеллектуальной деятельности: МЕЧЕННЫЕ ТРИТИЕМ НАНОАЛМАЗЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение может использоваться для получения биологических радиоактивных меток. Способ получения меченных тритием наноалмазов методом термической активации трития включает приготовление водной суспензии наноалмазов со средним размером частиц не более 125 нм и содержанием дисперсной фазы от 0,15 до 0,6 мг, равномерное нанесение полученной суспензии на стенки сосуда, содержащего установленную с возможностью подключения электрического тока вольфрамовую нить для активации трития, с последующей лиофилизацией и удалением воздуха. При проведении реакции с атомарным тритием температуру стенок реакционного сосуда поддерживают в интервале 291-298 К,а его дно охлаждают до 77 К.Введение газообразного трития и его активацию на вольфрамовой нити проводят 5-15 сек, после чего остаточный тритий удаляют. Стадию введения газообразного трития и его активации повторяют от одного до восьми раз. Получают меченные тритием наноалмазы, в которых тритий связан с наноалмазом по связи C-H, характеризующиеся удельной радиоактивностью не менее 1 ТБк/г. 2 н. и 3 з.п. ф-лы, 3 пр.

Область техники

Изобретение относится к изотопно-меченным веществам и может быть использовано для введения радиоактивной метки в наноалмазы детонационного синтеза с целью изучения их поведения в различных системах, включая биологические.

Уровень техники

В биохимических и физико-химических исследованиях широко применяются меченные тритием вещества в качестве индикатора их количества. Метод введения тритиевой метки в физиологически активные соединения с помощью метода термической активации трития впервые был использован в работе [Шишков А.В., Филатов Э.С., Симонов Е.Ф. и др. // Докл. АН СССР. 1976. Т.228. С.1237-1241]. В настоящее время этот метод применяется для введения тритиевой метки в различные органические вещества. Метод был использован для введения радиоактивной метки в гуминовые вещества с равномерным распределением трития по компонентам сложной смеси молекул, входящих состав этих веществ [Бадун Г.А., Позднякова В.Ю., Чернышева М.Г., Куликова Н.А., Перминова И.В., Шмит-Копплин Ф. Способ получения меченных тритием гуминовых и гуминоподобных веществ. Патент на изобретение №2295510. Заявка №2005139586. Приоритет изобретения 19.12.2005]. Типичные условия для введения трития в молекулы веществ различных классов с помощью метода термической активации трития: температура стенок реакционного сосуда 77 К (охлаждение жидким азотом), давление газа в системе 0,5-2 Па, температура атомизатора (вольфрамовой проволоки) 1500-2000 К, время экспозиции от 10 секунд до нескольких минут.

В работах [Алдобаев В.Н., Еременко Л.А., Мазанова А.А., Пронин А.С., Бикетова Д.Х., Дядищев Н.Р., Боровик Р.В., Квачева Л.Д., Червонобродов С.П., Бурчак Г.Ф., Бадун Г.А., Тясто З.А., Чернышева М.Г. // Сб. тезисов докладов научно-технических секций международного форума по нанотехнологиям. 2008. С.314-315] и [Лисичкин Г.В. // Международ. научн. конф. «Наноструктурные материалы-2010: Беларусь-Россия-Украина». Мат.-Киев. 2010. С.538] показана принципиальная возможность введения радиоактивной метки в углеродные наноматериалы с помощью метода термической активации трития на примерах углеродных нанотрубок и наноалмазов. Также была показана принципиальная возможность использования полученных таким образом веществ в физико-химических [Мясников И.Ю. // Междун. научн. конф. студентов, аспирантов и молодых ученых «Ломоносов». 18-я. - М. 2010; Yakovlev RJu., Badun G.A, Chernysheva M.G., Selezenev N.G., Leonidov N.B. // Int. Symp.«Modern problems of surface chemistry and physics». Kyiv. Ukraine. 2010. P.439-440; M.G.Chernysheva, I.Yu. Myasnikov, G.A.Badun // Mend. Comm. 2012. V.22. P.290-291] и биохимических [Алдобаев B.H., Еременко Л.А., Мазанова А.А., Бикетова Д.Х., Дядищев Н.Р., Рыбалкин С.П., Квачева Л.Д., Бадун Г.А., Червонобродов С.П., Мурадян В.Е., Масликов А.А. // Нанотехнологии и охрана здоровья. 2011. Т.3, №2. С.16-23] исследованиях.

Описанные в прототипе [Yakovlev R.Ju., Badun G.A, Chernysheva M.G., Selezenev N.G., Leonidov N.B. // Int. Symp. «Modern problems of surface chemistry and physics». Kyiv. Ukraine. 2010. P.439-440; M.G.Chernysheva, I.Yu.Myasnikov, G.A.Badun // Mend. Comm. 2012. V.22. P.290-291] меченные тритием наноалмазы были получены при обработке атомами трития порошка алмазов. Радиоактивная метка была введена в СН-связи на поверхности наноалмаза с помощью метода термической активации трития. Удельная радиоактивность продукта составила 34 ГБк/г.

Настоящее изобретение предлагает способ получения меченных тритием наноалмазов с удельной радиоактивностью продукта не менее 1 ТБк/г с целью их визуализации в различных системах.

Раскрытие изобретения

Задачей, решаемой авторами настоящего изобретения, является разработка способа получения меченных тритием наноалмазов с высокой удельной радиоактивностью.

Технический результат настоящего изобретения заключается в повышении удельной радиоактивности меченных тритием наноалмазов с 34 ГБк/г до по крайней мере 1 ТБк/г, в частности до 2,6 ТБк/г. Предлагаемый метод позволяет получить меченный тритием наноалмаз с прочносвязанной меткой за счет того, что связывание трития происходит по связи C-H.

Указанный технический результат достигается благодаря тому, что для введения трития используют не порошок наноалмаза, а водную суспензию наноалмаза с концентрацией от 0,15 до 0,61 мг/мл и средним размером частиц не более 125 нм по данным динамического светорассеяния. Кроме того, при проведении реакции мечения часть сосуда, не содержащую наноалмазы, охлаждают до температуры 77 К, при этом стенки сосуда с нанесенными наноалмазами поддерживают при температуре 290-298 К, а атомизацию трития осуществляют короткими (до 5-15 секунд) импульсами, что обеспечивает увеличение удельной радиоактивности меченого продукта в 30-76 раз.

Поставленная задача решается тем, что способ получения меченных тритием наноалмазов методом термической активации трития включает: приготовление водной суспензии наноалмазов со средним размером частиц не более 125 нм и содержанием дисперсной фазы от 0,15 до 0,6 мг, равномерное нанесение полученной суспензии на стенки сосуда с последующей лиофилизацией и удалением воздуха, причем упомянутый сосуд содержит установленную с возможностью подключения электрического тока вольфрамовую нить для активации трития, охлаждение дна сосуда, не содержащего наноалмазы, до температуры 77 К, при этом стенки сосуда с нанесенными наноалмазами поддерживают при температуре 290-298 К, введение газообразного трития и его активацию на вольфрамовой нити в течение 5-15 сек, удаление остаточного трития.

Также поставленная задача решается тем, что стадию введения газообразного трития и его активации повторяют от одного до восьми раз.

Частным вариантом настоящего изобретения является упомянутый выше способ, характеризующийся тем, что активацию трития на вольфрамовой нити проводят в течение 10 сек.

Также поставленная задача решается предоставлением меченных тритием наноалмазов, в которых тритий связан с наноалмазом по связи C-H, характеризующихся удельной радиоактивностью не менее 1 ТБк/г.

Частным вариантом настоящего изобретения являются упомянутые выше меченные тритием наноалмазы, характеризующиеся удельной радиоактивностью, равной 2,6 ТБк/г.

Для введения трития в наноалмазы их суспензию вносят в реакционный сосуд цилиндрической формы, равномерно распределяют по стенкам, быстро замораживают и воду удаляют лиофилизацией под вакуумом. Дальнейшие процедуры заключаются в удалении воздуха из реакционного сосуда на специальной вакуумной установке для работы с газообразным тритием. Газообразный тритий напускают в реакционный сосуд через палладиевый фильтр, очищающий тритий от гелия и других газов. Атомизацию трития проводят нагреванием вольфрамовой проволоки электрическим током до 2000 К при давлении газа 1-1,5 Па. Для увеличения радиоактивности наноалмазов реакцию прекращают через 5-15 секунд, удаляют остаточный газ, напускают новую порцию трития и повторяют процедуру метки. Обработанные тритием наноалмазы извлекают из реакционного сосуда с использованием воды при воздействии на стенки ультразвука. Полученную суспензию переносят в стеклянную колбу и через сутки растворитель удаляют с помощью роторного испарителя. Процедуру повторяют 2-3 раза, затем наноалмазы суспендируют в этаноле, переносят в пробирки, центрифугируют, отбирают супернатант и добавляют новую порцию этанола и процедуру центрифугирования повторяют еще раз. Указанные стадии очистки позволяют удалить полностью лабильную метку и радиоактивные примеси. В результате можно получить меченные тритием наноалмазы с удельной радиоактивностью от 1,0 до 2,6 ТБк/г.

Реализация предложенного изобретения описана в Примерах.

Осуществление изобретения

Пример 1. 0,4 мл водной суспензии наноалмазов с концентрацией 1,5 мг/мл (0,6 мг) со средним диаметром частиц 125 нм равномерно распределяли на стенках реакционного сосуда, замораживали и воду удаляли лиофилизацией. Реакционный сосуд присоединяли к специальной вакуумной системе для работы с газообразным тритием. Воздух из реакционного сосуда удаляли до остаточного давления 0,001 Па. Дно реакционного сосуда, не содержащее наноалмазы, охлаждали жидким азотом (77 К). Реакционный сосуд наполняли смесью водорода и трития (содержание трития 27,5%) до давления 1,3 Па. Нагревали вольфрамовую проволоку до 2000 К электрическим током в течение 10 сек. Остаточный газ откачивали из системы до давления 0,01 Па, наполняли реакционный сосуд новой порцией трития и повторяли процедуру мечения.

Обработанный атомарным тритием порошок наноалмазов суспендировали в воде под действием ультразвука и переносили в стеклянную колбу. Через 1 сутки воду отгоняли под вакуумом с помощью роторного испарителя. Добавляли новую порцию воды, через 1 сутки воду отгоняли. Всего эту процедуру повторили 3 раза. Затем наноалмазы суспендировали в этаноле с помощью обработки ультразвуком, перенесли в пробирку типа эппендорф. Через 1 сутки суспензию центрифугировали в течение 3 часов, отбирали растворитель над осадком и к остатку добавили этанол. Через 1 сутки повторили процедуру центрифугирования. На всех стадиях очистки препарата отбирали пробы суспензии и надосадочной жидкости для измерения их радиоактивности. После проведения очистки получали наноалмазы, меченные тритием, который связан по C-H связи.

Полученная величина удельной радиоактивности составила 1,0 ТБк/г (в пересчете на 100% тритий), что в 30 раз превышает величину, приведенную в прототипе.

Пример 2. Подготовку мишени наноалмазов проводили так же, как в примере 1. Процедуру мечения повторяли 8 раз. Отмывку меченного тритием препарата проводили так же, как в примере 1.

Полученная величина удельной радиоактивности составила 1,8 ТБк/г (в пересчете на 100% тритий), что в 53 раза превышает величину, приведенную в прототипе.

Пример 3. 1 мл водной суспензии наноалмазов с концентрацией 0,15 мг/мл равномерно распределяли на стенках реакционного сосуда, замораживали и лиофилизовали. Процедуру мечения и отмывки меченого препарата проводили так же, как в примере 2.

Удельная радиоактивность меченных тритием наноалмазов составила 2,6 ТБк/г (в пересчете на 100% содержания трития в используемой реакционной смеси), что в 76 раз превышает удельную радиоактивность прототипа.

Источник поступления информации: Роспатент

Показаны записи 81-90 из 138.
20.02.2015
№216.013.2aca

Конъюгат наноалмаза с пирофосфатазой и способ его получения

Изобретение относится к области фармации и медицины и касается конъюгата наноалмаза с пирофосфатазой для доставки пирофосфатазы в организм и способа его получения. Конъюгат представляет собой частицы наноалмаза размером 2-10 нм с иммобилизованной на них посредством линкера, содержащего амино-...
Тип: Изобретение
Номер охранного документа: 0002542411
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2db6

Способ получения наногибридного функционального сепарационного материала на основе модифицированного носителя и модифицированных наночастиц металла

Изобретение относится к области материаловедения и аналитической химии. Наногибридный функциональный сепарационный материал содержит ковалентно закрепленные на носителе наночастицы золота и ковалентно закрепленные серосодержащие органические лиганды на поверхности наночастиц золота. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002543170
Дата охранного документа: 27.02.2015
20.03.2015
№216.013.31fd

Способ изготовления материала газового сенсора для детектирования монооксида углерода со без нагревания

Использование: для детектирования монооксида углерода (угарный газ) в воздухе. Сущность изобретения заключается в том, что способ изготовления включает получение нанокристаллических широкозонных полупроводниковых оксидов MeO (SnO, ZnO, InO), получение золей квантовых точек узкозонных...
Тип: Изобретение
Номер охранного документа: 0002544272
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.31fe

Электроаналитическая система на основе биосенсора концентрирующей колонки для определения низких концентраций лактата

Изобретение относится к электроаналитическим системам. Система состоит из двух перистальтических насосов, содержащего петлю инжектора, проточной амперометрической ячейки с включенным биосенсором, потенциостата. В качестве биосенсора электроаналитическая система содержит лактатный биосенсор....
Тип: Изобретение
Номер охранного документа: 0002544273
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3200

Свч-усилитель на основе высокотемпературного сквида с четырьмя джозефсоновскими контактами

Изобретение направлено на повышение линейности усиления в гигагерцовом диапазоне частот без использования цепей обратной связи. СВЧ-усилитель на основе высокотемпературного СКВИДа включает идентичные и параллельно соединенные первый и второй джозефсоновские контакты, образованные в слое...
Тип: Изобретение
Номер охранного документа: 0002544275
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.3ab6

Способ анализа мембраносвязанного гемоглобина в эритроцитах с помощью спектроскопии гигантского комбинационного рассеивания на наноструктурированных покрытиях

Изобретение относится к области медицинской диагностики и биоаналитических исследований и может быть использовано для анализа мембраносвязанного гемоглобина в эритроцитах с помощью спектроскопии гигантского комбинационного рассеивания (ГКР). Для этого используют наноструктурированные покрытия в...
Тип: Изобретение
Номер охранного документа: 0002546518
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3b50

Способ получения флуоресцирующих производных катехоламинов и их метаболитов методом дериватизации

Изобретение относится к новому способу получения флуоресцирующих катехоламинов, выбранных из допамина и адреналина, и их метаболитов, выбранных из гомованилиновой и ванилилминдальной кислот, методом дериватизации. Соединения могут быть использованы в качестве высокочувствительных и селективных...
Тип: Изобретение
Номер охранного документа: 0002546672
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3e17

Способ нанесения эмиссионного слоя

Изобретение относится к способам получения эмиссионных слоев, в частности для органических светоизлучающих диодов. Способ нанесения эмиссионного слоя органического светоизлучающего диода на подложку из стекла или полимера, покрытую слоем анода, включает получение раствора, содержащего...
Тип: Изобретение
Номер охранного документа: 0002547383
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3ee0

Гидролаза пептидогликана, экспрессионная плазмида, содержащая фрагмент днк, кодирующий гидролазу пептидогликана, бактерия-продуцент и способ микробиологического синтеза гидролазы пептидогликана

Группа изобретений относится к биотехнологии, в частности к биосинтезу гидролазы пептидогликана, и представляет собой белок с активностью гидролазы пептидогликана, плазмиду, содержащую фрагмент, кодирующий гидролазу пептидогликана, бактерию-продуцент, способ микробиологического синтеза...
Тип: Изобретение
Номер охранного документа: 0002547584
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.40ae

Способ магнитооптической модуляции света с использованием поверхностных плазмонов

Изобретение относится к области физики, в частности к методикам модуляции интенсивности электромагнитного излучения видимого и ближнего ИК диапазонов посредством приложения магнитного поля. Способ модуляции света включает в себя создание магнитоплазмонного кристалла на основе периодически...
Тип: Изобретение
Номер охранного документа: 0002548046
Дата охранного документа: 10.04.2015
Показаны записи 81-90 из 143.
10.02.2015
№216.013.22d0

Способ определения локализации непальпируемых рентгеносонографически негативных внутрипротоковых опухолей молочных желез

Изобретение относится к медицине, онкологии, лучевой диагностике непальпируемых внутрипротоковых доброкачественных опухолей и внутрипротокового рака молочной железы, проявляющихся выделениями из соска и не отображающихся при маммографии и ультразвуковом исследовании. Проводят стереотаксическую...
Тип: Изобретение
Номер охранного документа: 0002540365
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2aca

Конъюгат наноалмаза с пирофосфатазой и способ его получения

Изобретение относится к области фармации и медицины и касается конъюгата наноалмаза с пирофосфатазой для доставки пирофосфатазы в организм и способа его получения. Конъюгат представляет собой частицы наноалмаза размером 2-10 нм с иммобилизованной на них посредством линкера, содержащего амино-...
Тип: Изобретение
Номер охранного документа: 0002542411
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2db6

Способ получения наногибридного функционального сепарационного материала на основе модифицированного носителя и модифицированных наночастиц металла

Изобретение относится к области материаловедения и аналитической химии. Наногибридный функциональный сепарационный материал содержит ковалентно закрепленные на носителе наночастицы золота и ковалентно закрепленные серосодержащие органические лиганды на поверхности наночастиц золота. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002543170
Дата охранного документа: 27.02.2015
20.03.2015
№216.013.31fd

Способ изготовления материала газового сенсора для детектирования монооксида углерода со без нагревания

Использование: для детектирования монооксида углерода (угарный газ) в воздухе. Сущность изобретения заключается в том, что способ изготовления включает получение нанокристаллических широкозонных полупроводниковых оксидов MeO (SnO, ZnO, InO), получение золей квантовых точек узкозонных...
Тип: Изобретение
Номер охранного документа: 0002544272
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.31fe

Электроаналитическая система на основе биосенсора концентрирующей колонки для определения низких концентраций лактата

Изобретение относится к электроаналитическим системам. Система состоит из двух перистальтических насосов, содержащего петлю инжектора, проточной амперометрической ячейки с включенным биосенсором, потенциостата. В качестве биосенсора электроаналитическая система содержит лактатный биосенсор....
Тип: Изобретение
Номер охранного документа: 0002544273
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3200

Свч-усилитель на основе высокотемпературного сквида с четырьмя джозефсоновскими контактами

Изобретение направлено на повышение линейности усиления в гигагерцовом диапазоне частот без использования цепей обратной связи. СВЧ-усилитель на основе высокотемпературного СКВИДа включает идентичные и параллельно соединенные первый и второй джозефсоновские контакты, образованные в слое...
Тип: Изобретение
Номер охранного документа: 0002544275
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.3ab6

Способ анализа мембраносвязанного гемоглобина в эритроцитах с помощью спектроскопии гигантского комбинационного рассеивания на наноструктурированных покрытиях

Изобретение относится к области медицинской диагностики и биоаналитических исследований и может быть использовано для анализа мембраносвязанного гемоглобина в эритроцитах с помощью спектроскопии гигантского комбинационного рассеивания (ГКР). Для этого используют наноструктурированные покрытия в...
Тип: Изобретение
Номер охранного документа: 0002546518
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3b50

Способ получения флуоресцирующих производных катехоламинов и их метаболитов методом дериватизации

Изобретение относится к новому способу получения флуоресцирующих катехоламинов, выбранных из допамина и адреналина, и их метаболитов, выбранных из гомованилиновой и ванилилминдальной кислот, методом дериватизации. Соединения могут быть использованы в качестве высокочувствительных и селективных...
Тип: Изобретение
Номер охранного документа: 0002546672
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3e17

Способ нанесения эмиссионного слоя

Изобретение относится к способам получения эмиссионных слоев, в частности для органических светоизлучающих диодов. Способ нанесения эмиссионного слоя органического светоизлучающего диода на подложку из стекла или полимера, покрытую слоем анода, включает получение раствора, содержащего...
Тип: Изобретение
Номер охранного документа: 0002547383
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3ee0

Гидролаза пептидогликана, экспрессионная плазмида, содержащая фрагмент днк, кодирующий гидролазу пептидогликана, бактерия-продуцент и способ микробиологического синтеза гидролазы пептидогликана

Группа изобретений относится к биотехнологии, в частности к биосинтезу гидролазы пептидогликана, и представляет собой белок с активностью гидролазы пептидогликана, плазмиду, содержащую фрагмент, кодирующий гидролазу пептидогликана, бактерию-продуцент, способ микробиологического синтеза...
Тип: Изобретение
Номер охранного документа: 0002547584
Дата охранного документа: 10.04.2015
+ добавить свой РИД