×
10.01.2015
216.013.1b6d

Результат интеллектуальной деятельности: СПОСОБ УВЕЛИЧЕНИЯ ДАЛЬНОСТИ ВЫСОКОСКОРОСТНЫХ ОТКРЫТЫХ ОПТИЧЕСКИХ КАНАЛОВ СВЯЗИ С ПОДВОДНЫМИ ОБЪЕКТАМИ

Вид РИД

Изобретение

Аннотация: Настоящее изобретение относится к области оптической связи. Согласно способу используют лазерный луч, который состоит из импульсов длительностью не менее 1 нс, которые формируют из множества волн путем фазовой синхронизации и интерференции. Импульсы лазерного излучения длительностью 1 нс и менее формируются за счет синхронизации модовых составляющих и их когерентного взаимодействия на трассе распространения. Из множества непрерывных модовых составляющих формируют импульсно-периодические оптические импульсы, период следования которых определяется спектральным составом лазерного излучения. Последовательность импульсов воспринимается фотоприемником как наличие (или отсутствие) в заданные моменты времени импульса излучения за счет чирпирования частоты спектра лазерного излучения. Для передачи информации формируют двоичный код. Технический результат - увеличение дальности оптической связи за счет лучшего прохождения сигналов через ослабляющие участки трассы. 4 ил.
Основные результаты: Способ увеличения дальности высокоскоростных открытых оптических каналов связи с подводными объектами, заключающийся в том, что для организации оптической связи используют лазерный луч, отличающийся тем, что лазерный луч состоит из импульсов длительностью не менее 1 нс, которые формируют из множества волн путем фазовой синхронизации и интерференции, а также в нелинейной среде за счет дисперсии скоростей волн различных частот, при этом явления, обусловленные межмодовыми биениями, приводят к формированию импульсного излучения, причем импульсы лазерного излучения длительностью 1 нс и менее формируются за счет синхронизации модовых составляющих и их когерентного взаимодействия на трассе распространения, а из множества непрерывных модовых составляющих формируют импульсно-периодические оптические импульсы, период следования которых определяется спектральным составом лазерного излучения, причем вид оптических импульсов, формируемых частотой f=5,63762·10 Гц с межмодовым интервалом Δf=5 МГц, с частотой следования 5 МГц и полушириной Δf=20 нс, используя частотную модуляцию (чирпирование), формируют импульсы с одинарным двойным периодом следования, при этом последовательность импульсов воспринимается фотоприемником как наличие (или отсутствие) в заданные моменты времени импульса излучения за счет чирпирования частоты спектра лазерного излучения, формируют двоичный код для передачи информации.

Настоящее изобретение относится к области оптической связи, а именно к технике передачи и приема информации с помощью лазерной связи.

Несмотря на повсеместное распространение радиосвязи, на флоте постоянно используется оптическая система передачи информации с помощью лазерной связи или прожекторов [А.А. Катанович, Ю.Л. Николашин. Корабельные оптические системы связи. Судостроение, СПб., 2009, 239 с.].

Лазерные системы связи воздушного базирования могут быть установлены на всех самолетах противолодочной обороны наземного и палубного базирования, самолетах-ретрансляторах и воздушных командных пунктах. Для управления подводными лодками, действующими в условиях быстро меняющейся тактической обстановки, требуется передача в их адрес данных в реальном масштабе времени. Такая передача осуществляется с использованием узкого лазерного луча с самолета на подводную лодку.

Однако на надежность лазерной линии связи оказывает влияние облачность, туман, осадки и некоторые другие факторы.

Известна «Оптическая система открытой связи». Катанович А.А. и др. Патент РФ на ПМ №62316. Бюл. №9, 2007. Оптическая система состоит из оптического передатчика (лазера), нелинейного оптического элемента, сепаратора, дифференциального усилителя и оптического приемника (фотодиода).

Система обеспечивает возможность передачи информации как в цифровом, так и в аналоговом виде в открытых оптических линиях связи. Однако на надежность оптической связи оказывают влияние облачность, туман, морось и т.д.

Известен Способ оптической сигнализации в тумане. Авторское свидетельство СССР №527729, 1976. По данному способу, с целью увеличения дальности связи, соосно со световым лучом формируют малорасходящийся пучок инфракрасного излучения. Недостатком такого способа является недостаточная яркость светящейся зоны.

Целью изобретения является увеличение дальности оптической связи за счет лучшего прохождения сигналов через ослабляющие участки трассы.

Поставленная цель достигается тем, что способ увеличения дальности высокоскоростных открытых оптических каналов связи, заключающийся в том, что для организации оптической связи используют лазерный луч, при этом лазерный луч состоит из импульсов длительностью не менее 1 нс, которые формируют из множества волн путем фазовой синхронизации и интерференции, а также в нелинейной среде за счет дисперсии скоростей волн различных частот, причем явления, обусловленные межмодовыми биениями, приводят к формированию импульсного излучения, при этом импульсы лазерного излучения длительностью 1 нс и менее формируются за счет синхронизации модовых составляющих и их когерентного взаимодействия на трассе распространения, а из множества непрерывных модовых составляющих формируют импульсно-периодические оптические импульсы, период следования которых определяется спектральным составом лазерного излучения, причем вид оптических импульсов, формируемых частотой fo=5,63762·1014 Гц с межмодовым интервалом Δf=5 МГц, с частотой следования 5 МГц и полушириной Δf=20 нс, используя частотную модуляцию (чирпирование), формируют импульсы с одинарным двойным периодом следования, при этом последовательность импульсов воспринимается фотоприемником как наличие (или отсутствие) в заданные моменты времени импульса излучения, за счет чирпирования частоты спектра лазерного излучения формируют двоичный код для передачи информации.

Необходимо отметить, что в предлагаемом способе формирования наносекундных и более коротких импульсов имеется принципиальное отличие, связанное с использованием межмодовых биений. Эти биения представляют собой взаимодействие (интерференционный эффект) смешанных на межмодовый интервал спектральных составляющих излучения.

Рассмотрим передачу информационного сигнала с помощью интерференционного потока. Интерференционный поток двух потоков электромагнитных волн осциллирует в направлении их распространения. В интерференционном поле, сформированном в ослабляющей среде, потери энергии оптического излучения происходят лишь в области светлых полос. Шаг интерференционной картины составляет, , а скорость перемещения интерференционных полос , к=к1к2 - величина векторная, где к1 и к2 - волновые векторы интерферирующих лучей. При этом максимумы интерференционной картины будут перемещаться с групповой скоростью.

Волновые векторы отдельных спектральных компонент параллельны. Поэтому для спектральных компонент (необходимо для формирования коротких импульсов) с межмодовым интервалом 10 МГц групповая скорость в воздухе вдали от линии поглощения совпадает с фазовой (скорость света). Для двух интерферирующих волн огибающая суммарной волны описывается синусоидой, а при увеличении числа составляющих происходит локализация энергии волн в узкой области максимума интерференционной полосы.

Биение потоков излучений на разных частотах может наблюдаться как в резонаторе лазера, так и на трассе распространения. Межмодовый интервал резонатора можно определить из соотношения Δf=с (2L)-1, где L - длина резонатора; с - скорость света. Теоретическая полуширина линии генерации лазера в одночастотном режиме (ширина линии одной модовой составляющей) Δv=2πhνp-1(Δνp)2, где p - мощность лазера; Δvp=v/Q - полуширина полосы пропускания резонатора - добротность резонатора; r1, r2 - коэффициенты отражения зеркал резонатора; λ - длина волны излучения). Углы распространения поперечных мод составляют , где m=1,2,3,… - номер модовой составляющей. Поперечные моды, распространяющиеся под углом к оптической оси лазера, пройдя некоторое расстояние по открытым трассам, уходят из пучка. Для L=1,0 м и длины волны излучения 0,8 мкм это расстояние менее 10 м, что подтверждает справедливость вывода о совпадении групповой скорости (скорости перемещения интерференционных полос) со скоростью света.

Произведем расчет. Электрическую составляющую световой волны (как и магнитную составляющую) можно представить в виде

где l - координата по направлению распространения излучения; ωi=2πfi.

При синхронизованной во времени генерации лазером одновременно N спектральных компонент (модовых составляющих) значение амплитуды в разных точках трассы может быть определено путем сложения амплитуд отдельных компонент (с учетом знаков спектральных составляющих и ширины спектра каждой моды):

Как известно, мощность электромагнитного излучения вдоль трассы распространения в ослабляющей среде уменьшается по экспоненциальному закону (закон Бугера): I=Io exp(-αz), где α - коэффициент ослабления.

Интенсивность излучения I пропорциональна квадрату амплитуды электрической составляющей электромагнитной волны.

При изучении возможности передачи сигнала через ослабляющие участки оптических каналов связи с использованием интерференционного потока были проведены расчеты коэффициентов пропускания для различных относительных положений ослабляющего участка и фазы коротких (10-9 с) периодически импульсов излучения (5 МГц). Для формирования периодических лазерных импульсов путем когерентного суммирования нескольких составляющих синхронизовать фазы отдельных спектральных компонент. Для простоты расчетов начальные фазы волн в формуле (2) принимались равными нулю.

Расчеты показали, что при интерференции 150 модовых составляющих амплитуда сигнала, прошедшего через участок длиной 66 м с коэффициентом ослабления 0,17 м-1, составляет 98% от начальной величины. Интенсивность рассчитывали для моментов времени, отстоящих друг от друга на 10-13 с. Ослабляющий участок располагался в области преимущественно туннельной передачи энергии излучения симметрично относительно импульсов.

Проводимые расчеты заключаются в следующем. В начальной точке (с нулевой координатой) находили сумму амплитудных значений всех гармонических составляющих. Для остальных расчетных точек трассы оптического пучка интенсивность сигнала определялась путем сложения гармонических сигналов с учетом их знаков (значение косинуса) - векторное сложение. Для определения интенсивности излучения сумма возводилась в квадрат и умножалось на коэффициент с/8π, так как интенсивность света связана с комплексной амплитудой волны

Расчет ослабления проводился двумя путями. В первом случае (скалярное некогерентное сложение волн) для определения суммарной начальной интенсивности все спектральные составляющие складывались по интенсивности (квадраты амплитуд). Полученную величину умножали на коэффициент с/8π. По закону Бугера определялась интенсивность суммарной волны после ослабляющего слоя. Без ослабляющего участка интенсивность излучения некогерентного пучка оставалась постоянной по всей длине трассы его распространения.

Для пучка из когерентных составляющих в каждой точке трассы производилось векторное суммирование волн на разных длинах волн. Для ослабляющего участка по закону Бугера определялось изменение эффективного значения интенсивности каждой гармонической составляющей между двумя расчетными точками с учетом отношения величин суммарной интенсивности в текущей точке к интенсивности некогерентного пучка. На следующем расчетном участке значения амплитуд напряженностей электрического поля отдельных волн были заменены их уменьшенными значениями на конце предыдущего участка, определяемого из выражения

где α - коэффициент ослабления; Δl - длина расчетного участка; δIo - коэффициент, определяющий величину изменения интенсивности когерентного излучения относительно некогерентного на расчетном участке за счет интерференционного потока.

Как видно из фиг.1, между двумя максимумами наблюдаются незначительные спадающие всплески интенсивности. Область минимальных значений дополнительных импульсов находится посредине между двумя импульсами. Поскольку рассчитывался коэффициент прохождения через ослабляющий участок трассы, расположенный симметрично относительно середины между импульсами, что обеспечивает наилучшие условия прохождения потока оптического излучения (минимальное ослабление).

Зависимость коэффициента пропускания ослабляющего участка от спектрального состава для различных значений оптической плотности показана на фиг.2. Видно, что при увеличении числа спектральных составляющих, независимо от оптической плотности ослабляющего участка, наблюдается увеличение коэффициента пропускания потока лазерного излучения. При сдвиге составляющих 5 МГц период биения между различными спектральными составляющими излучения с центральной частотой fo=5,637362·1014 Гц равен 60,81 м. Коэффициент прохождения лазерного излучения через ослабляющий слой рассчитан для участка длиной 53,38 м, расположенного симметрично между интерференционными максимумами.

Для сравнения с полученными результатами был рассчитан коэффициент прохождения потока некогерентного излучения, имеющего тот же спектральный состав, что и когерентный пучок. Зависимость коэффициента прохождения лазерного и некогерентного излучений через ослабляющий участок от его длины показана на фиг.3. При этом коэффициент пропускания для участка с коэффициентом ослабления 0,05 м-1 составляет 0,056; для участка с 0,15 м-1 - 1,78·10-4; для ослабляющего слоя с 0,3 м-1 и более - практически равен нулю (менее 10-7). Таким образом, когерентный пучок (сплошные линии на фигурах) проходит через ослабляющий слой с гораздо меньшими потерями, чем некогерентный (пунктирные линии).

На фиг.4 приведены графики зависимостей коэффициента прохождения через ослабляющий слой лазерного (сплошные линии) и некогерентного (пунктирные линии) излучений от спектрального состава. Расчеты показывают, что когерентный пучок распространяется по ослабляющим трассам с гораздо меньшими потерями, чем некогерентный. Изменения спектрального состава (частоты сдвига соседних компонент Δf) при этом сказываются незначительно. Данные рассчитывались для ослабляющего слоя, расположенного симметрично и занимающего 96% расстояния между максимумами интерференции, при изменении величины спектрального сдвига между компонентами.

Данные, приведенные на фиг.3 и 4, рассчитаны для N=120 составляющих. Интенсивность некогерентного пучка уменьшается в ослабляющем слое по экспоненциальному закону (Δf=5 МГц). При малых значениях отношения длины ослабляющего участка к расстоянию между максимумами интерференции (Δl=55 м) влияние ослабляющего слоя незначительно. При совмещении области максимума интерференции с ослабляющим слоем потери излучения возрастают.

Уменьшение коэффициента пропускания слоя при уменьшении величины сдвига спектральных компонент происходит из-за увеличения расстояния между максимумами интенсивности. При этом синхронно увеличивается длина ослабляющего слоя, учитываемого при расчетах. Графики на фиг.4 позволяют оценить соотношение коэффициентов когерентного и некогерентного пучков различного спектрального состава с предельной для когерентного пучка длиной ослабляющего слоя.

Таким образом, приведенные расчеты свидетельствуют о существовании принципиальной возможности передачи потока когерентного оптического излучения через ослабляющие участки (дождь, туман, облачность и т.п.) открытых атмосферных трасс с использованием интерференционного потока. При этом становится возможной передача оптического излучения на большие расстояния по открытым атмосферным каналам связи.

Способ увеличения дальности высокоскоростных открытых оптических каналов связи с подводными объектами, заключающийся в том, что для организации оптической связи используют лазерный луч, отличающийся тем, что лазерный луч состоит из импульсов длительностью не менее 1 нс, которые формируют из множества волн путем фазовой синхронизации и интерференции, а также в нелинейной среде за счет дисперсии скоростей волн различных частот, при этом явления, обусловленные межмодовыми биениями, приводят к формированию импульсного излучения, причем импульсы лазерного излучения длительностью 1 нс и менее формируются за счет синхронизации модовых составляющих и их когерентного взаимодействия на трассе распространения, а из множества непрерывных модовых составляющих формируют импульсно-периодические оптические импульсы, период следования которых определяется спектральным составом лазерного излучения, причем вид оптических импульсов, формируемых частотой f=5,63762·10 Гц с межмодовым интервалом Δf=5 МГц, с частотой следования 5 МГц и полушириной Δf=20 нс, используя частотную модуляцию (чирпирование), формируют импульсы с одинарным двойным периодом следования, при этом последовательность импульсов воспринимается фотоприемником как наличие (или отсутствие) в заданные моменты времени импульса излучения за счет чирпирования частоты спектра лазерного излучения, формируют двоичный код для передачи информации.
СПОСОБ УВЕЛИЧЕНИЯ ДАЛЬНОСТИ ВЫСОКОСКОРОСТНЫХ ОТКРЫТЫХ ОПТИЧЕСКИХ КАНАЛОВ СВЯЗИ С ПОДВОДНЫМИ ОБЪЕКТАМИ
СПОСОБ УВЕЛИЧЕНИЯ ДАЛЬНОСТИ ВЫСОКОСКОРОСТНЫХ ОТКРЫТЫХ ОПТИЧЕСКИХ КАНАЛОВ СВЯЗИ С ПОДВОДНЫМИ ОБЪЕКТАМИ
СПОСОБ УВЕЛИЧЕНИЯ ДАЛЬНОСТИ ВЫСОКОСКОРОСТНЫХ ОТКРЫТЫХ ОПТИЧЕСКИХ КАНАЛОВ СВЯЗИ С ПОДВОДНЫМИ ОБЪЕКТАМИ
СПОСОБ УВЕЛИЧЕНИЯ ДАЛЬНОСТИ ВЫСОКОСКОРОСТНЫХ ОТКРЫТЫХ ОПТИЧЕСКИХ КАНАЛОВ СВЯЗИ С ПОДВОДНЫМИ ОБЪЕКТАМИ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 58.
10.04.2014
№216.012.b30d

Устройство для повышения пропускной способности асинхронных цифровых систем коммутации

Изобретение относится к области электрорадиотехники и может быть использовано в способах объединения и коммутации дискретных сигналов телеграфного типа. Техническим результатом является увеличение пропускной способности асинхронных цифровых систем коммутации. Устройство для повышения пропускной...
Тип: Изобретение
Номер охранного документа: 0002511553
Дата охранного документа: 10.04.2014
27.06.2014
№216.012.d541

Корабельный унифицированный комплекс связи

Изобретение относится к области радиосвязи, а именно к технике управления корабельным радиокомплексом, и может быть использовано для организации внешней и внутренней связи на кораблях, подводных лодках, судах и других подвижных объектах. Техническим результатом является расширение...
Тип: Изобретение
Номер охранного документа: 0002520371
Дата охранного документа: 27.06.2014
20.08.2014
№216.012.ec3b

Способ определения вероятности ошибки на бит по флуктуациям фазы информационных сигналов

Изобретение относится к области радиотехники, а именно к технике радиосвязи, и может быть использовано в системах передачи данных. Техническим результатом является обеспечение непрерывной передачи полезной информации во всей выделенной частотной полосе, получение оценки вероятности ошибки на...
Тип: Изобретение
Номер охранного документа: 0002526283
Дата охранного документа: 20.08.2014
20.11.2014
№216.013.068c

Способ передачи информации с внутрисимвольной псевдослучайной перестройкой рабочей частоты

Изобретение относится к технике связи и может быть использовано в системах передачи данных с повышенными требованиями к разведзащищенности и защите от организованных и непреднамеренных помех. Техническим результатом способа является повышение скорости передачи информации по сравнению с...
Тип: Изобретение
Номер охранного документа: 0002533077
Дата охранного документа: 20.11.2014
27.12.2014
№216.013.161c

Способ определения затухания переменного электромагнитного поля в космическом пространстве

Изобретение относится к измерительной технике и может быть использовано для определения электрических параметров космического пространства. Способ заключается в том, что размещают в космическом пространстве зонд, представляющий собой плоский открытый конденсатор, затененный от солнечной...
Тип: Изобретение
Номер охранного документа: 0002537084
Дата охранного документа: 27.12.2014
27.02.2015
№216.013.2c93

Ключевой усилитель мощности

Изобретение относится к области электрорадиотехники, а именно к ключевым усилителям высокой частоты, и может быть использовано в радиопередатчиках. Технический результат изобретения заключается в улучшении линейности усиления ключевых усилителей мощности за счет существенного снижения уровня...
Тип: Изобретение
Номер охранного документа: 0002542879
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2ca8

Способ установления синхронизации псевдослучайных последовательностей

Изобретение относится к технике связи и может быть использовано в системах передачи данных. Технический результат - быстрое установление синхронизации псевдослучайных последовательностей при малой вероятности ложной синхронизации при наличии ошибок в принятой последовательности. Для этого из...
Тип: Изобретение
Номер охранного документа: 0002542900
Дата охранного документа: 27.02.2015
10.04.2015
№216.013.4097

Интегрированный комплекс связи надводного корабля

Изобретение относится к технике связи и может использоваться для обеспечения корабельного руководства оперативно-тактической связью и связью взаимодействия. Технический результат состоит в повышении качества каналов передачи и приема информации, надежности и живучести комплекса. Для этого...
Тип: Изобретение
Номер охранного документа: 0002548023
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.40a0

Способ оценивания отношения сигнал/шум при использовании сигналов с фазовой модуляцией

Изобретение относится к технике радиосвязи и может быть использовано в системах передачи данных для оценки качества канала связи. Способ оценивания отношения сигнал/шум (ОСШ) при использовании при передаче данных сигналов с фазовой модуляцией основывается на восстановлении плотности...
Тип: Изобретение
Номер охранного документа: 0002548032
Дата охранного документа: 10.04.2015
10.05.2015
№216.013.4a6e

Широкополосный усилитель мощности коротковолнового диапазона

Изобретение относится к радиоэлектронике и может быть использовано в широкополосных радиопередатчиках. Технический результат заключается в преобразовании энергии высших гармоник в энергию постоянного тока и возвращении этой энергии источнику питания. В усилителе используют мостовую схему...
Тип: Изобретение
Номер охранного документа: 0002550561
Дата охранного документа: 10.05.2015
Показаны записи 11-20 из 105.
27.12.2014
№216.013.161c

Способ определения затухания переменного электромагнитного поля в космическом пространстве

Изобретение относится к измерительной технике и может быть использовано для определения электрических параметров космического пространства. Способ заключается в том, что размещают в космическом пространстве зонд, представляющий собой плоский открытый конденсатор, затененный от солнечной...
Тип: Изобретение
Номер охранного документа: 0002537084
Дата охранного документа: 27.12.2014
27.02.2015
№216.013.2c93

Ключевой усилитель мощности

Изобретение относится к области электрорадиотехники, а именно к ключевым усилителям высокой частоты, и может быть использовано в радиопередатчиках. Технический результат изобретения заключается в улучшении линейности усиления ключевых усилителей мощности за счет существенного снижения уровня...
Тип: Изобретение
Номер охранного документа: 0002542879
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2ca8

Способ установления синхронизации псевдослучайных последовательностей

Изобретение относится к технике связи и может быть использовано в системах передачи данных. Технический результат - быстрое установление синхронизации псевдослучайных последовательностей при малой вероятности ложной синхронизации при наличии ошибок в принятой последовательности. Для этого из...
Тип: Изобретение
Номер охранного документа: 0002542900
Дата охранного документа: 27.02.2015
10.04.2015
№216.013.4097

Интегрированный комплекс связи надводного корабля

Изобретение относится к технике связи и может использоваться для обеспечения корабельного руководства оперативно-тактической связью и связью взаимодействия. Технический результат состоит в повышении качества каналов передачи и приема информации, надежности и живучести комплекса. Для этого...
Тип: Изобретение
Номер охранного документа: 0002548023
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.40a0

Способ оценивания отношения сигнал/шум при использовании сигналов с фазовой модуляцией

Изобретение относится к технике радиосвязи и может быть использовано в системах передачи данных для оценки качества канала связи. Способ оценивания отношения сигнал/шум (ОСШ) при использовании при передаче данных сигналов с фазовой модуляцией основывается на восстановлении плотности...
Тип: Изобретение
Номер охранного документа: 0002548032
Дата охранного документа: 10.04.2015
10.05.2015
№216.013.4a6e

Широкополосный усилитель мощности коротковолнового диапазона

Изобретение относится к радиоэлектронике и может быть использовано в широкополосных радиопередатчиках. Технический результат заключается в преобразовании энергии высших гармоник в энергию постоянного тока и возвращении этой энергии источнику питания. В усилителе используют мостовую схему...
Тип: Изобретение
Номер охранного документа: 0002550561
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4c93

Система открытой оптической связи

Изобретение относится к технике открытой оптической связи и может быть использовано для связи между абонентами находящихся в отсеках кораблей, судов, а также между кораблями и берегом. Технический результат состоит в повышении помехоустойчивости, надежности и увеличения дальности связи. Для...
Тип: Изобретение
Номер охранного документа: 0002551117
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d83

Способ передачи информации в сдв диапазоне

Изобретение относится к технике связи и может использоваться для передачи информации в СДВ диапазоне. Технический результат состоит в обеспечении связи с подводными объектами. Для этого передают информацию в СДВ диапазоне путем амплитудной модуляции несущей частоты коротковолнового передатчика...
Тип: Изобретение
Номер охранного документа: 0002551357
Дата охранного документа: 20.05.2015
20.07.2015
№216.013.6552

Дипольная антенна

Изобретение относится к области радиотехники и может быть использовано в качестве антенны для излучения высокочастотного электромагнитного поля коротковолнового диапазона. Технический результат состоит в снижении потери энергии в ближней зоне излучения антенны на формирование поля в этой среде....
Тип: Изобретение
Номер охранного документа: 0002557485
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.68c6

Устройство управления передачей данных по радиоканалу

Изобретение относится к вычислительной технике и может быть использовано в узлах коммутации сообщений сети передачи данных автоматизированной системы управления при управлении передачей данных по широковещательному многоточечному радиоканалу. Технический результат - повышение качества...
Тип: Изобретение
Номер охранного документа: 0002558375
Дата охранного документа: 10.08.2015
+ добавить свой РИД