×
10.01.2015
216.013.1b22

Результат интеллектуальной деятельности: ЭЛЕКТРОТЕРМИЧЕСКИЙ МИКРОДВИГАТЕЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к космической технике, а именно к электротермическим микродвигателям, входящим в состав двигательных установок микротяги, устанавливаемых на малые космические аппараты для решения задач орбитального маневрирования. Система подачи газифицированного топлива выполнена в виде спирального трубопровода, расположенного на корпусе микродвигателя и контактирующего с ним в зоне нагревательного элемента. Входной патрубок трубопровода снабжен узлами стыковки с системой подачи жидкого газифицируемого топлива, а выходной патрубок через систему понижения и замера давления соединен с газоводом микродвигателя. Электротермический микродвигатель позволяет повысить тепловые характеристики до 30, что соответствует увеличению его удельного импульса тяги на 25-30. 3 ил.
Основные результаты: Электротермический микродвигатель, содержащий цилиндрическую камеру, расположенные в ней газовод с соплом, электрический нагревательный элемент и систему подачи в газовод газифицированного топлива, отличающийся тем, что система подачи газифицированного топлива выполнена в виде спирального трубопровода, расположенного на цилиндрической камере микродвигателя и контактирующего с ней в зоне нагревательного элемента, входной патрубок трубопровода снабжен узлами стыковки с системой подачи жидкого газифицируемого топлива, а выходной патрубок через систему понижения и замера давления соединен с газоводом микродвигателя.

Изобретение относится к космической технике, а именно к электротермическим микродвигателям, входящим в состав двигательных установок микротяги, устанавливаемых на малые космические аппараты для решения задач орбитального маневрирования.

Современный уровень развития космической техники характеризуется тенденцией к созданию малых космических аппаратов различного назначения (научных, связных, дистанционного зондирования Земли, навигационных, гидрометеорологических и др.) и увеличению количества их запусков. Для решения задач орбитального маневрирования в состав малых космических аппаратов вводятся двигательные установки микротяги, в которых реактивная тяга создается электротермическими микродвигателями. Тяга таких микродвигателей составляет 0.01-0.05 Н (1-5 гс).

В настоящее время как в России, так и за рубежом создано немало образцов двигателей микротяги, среди которых электротермические (электронагревательные) микродвигатели являются наиболее простыми и отработанными.

Создание реактивной микротяги в электротермических микродвигателях осуществляется посредством подвода электрической мощности к нагревательному элементу, размещенному в микродвигателе, прокачиванием рабочего тела (газа) вдоль «горячих» поверхностей микродвигателя, на которых происходит испарение и нагрев рабочего тела и выброс нагретого газа через реактивное сопло (сопло Лаваля).

Эффективность микродвигателя в первую очередь определяется величиной удельного импульса тяги, которая напрямую зависит от величины потребляемой электрической мощности, используемой для нагрева газообразного топлива на входе в реактивное сопло. Для малых космических аппаратов выделяемая для двигательной установки микротяги электрическая мощность весьма ограничена (например, до 100 Вт для малых космических аппаратов массой до 120-400 кг), что ставит задачу оптимального распределения мощности между энергопотребляющими системами двигательной установки для улучшения ее проектных параметров и габаритно-массовых и стоимостных характеристик малых космических аппаратов. Особенно ограничена потребляемая мощность для двигательных установок с электротермическими микродвигателями, входящих в состав наноспутников массой до 10 кг (не более 9-10 Вт).

Как правило, при использовании жидкого топлива для микродвигателя (например, жидкого аммиака), оно предварительно газифицируется путем нагрева подводом электрической мощности, затем снижается его давление и топливо подается в микродвигатель для окончательного разогрева.

Известен электротермический микродвигатель (патент РФ №2332583, МПК F02K 9/68, опубл. 27.08.2008), содержащий цилиндрический газовод с коническим соплом, размещенный внутри цилиндрического корпуса, систему подачи в газовод газифицированного топлива, электрические нагревательные элементы для нагрева топлива. Система подачи газифицированного топлива (например, жидкого аммиака) содержит автономный испаритель, входящий в состав двигательной установки.

Недостатком такого микродвигателя является то, что на предварительную газификацию топлива, которое в газообразном состоянии поступает сначала в понижающий регулятор давления, а затем в микродвигатель, тратится до 50% всей выделяемой на газификацию топлива в составе малого космического аппарата электрической мощности.

Наиболее близким техническим решением к заявляемому является электротермический микродвигатель по патенту РФ №2442011 (МПК F02K 9/68, опубл. 27.08.2008), взятый за прототип.

Данный микродвигатель содержит цилиндрический газовод с профилированным соплом, размещенный внутри цилиндрического корпуса, систему подачи в газовод газифицированного топлива, электрические нагревательные элементы для нагрева топлива. Система подачи газифицированного топлива (например, жидкого аммиака) также содержит автономный испаритель, входящий в состав двигательной установки.

Задача увеличения удельного импульса тяги данного микродвигателя лишь частично решена установкой профилированного сопла. Удельный импульс тяги микродвигателя снижается за счет того, что на предварительную газификацию топлива требуется значительное энергопотребление.

Другим путем увеличения удельного импульса тяги микродвигателя, газификация топлива в котором осуществляется в испарителе и самом микродвигателе, является совершенствование системы подачи газифицированного топлива в части повышения эффективности самого процесса предварительной газификации в испарителе, например, выполнением его двухзаходным (см., например, Блинов В.Н., Зубарев С.И., Шалай В.В. Математическая модель теплового режима работы испарителя электротермического микродвигателя коррекции космического аппарата // Омский научный вестник. - 2011. - Вып.1. - С.84-87).

Однако и в данном случае на предварительную газификацию топлива в двухзаходном испарителе тратится 30 Вт, а на окончательную газификацию в самом микродвигателе - 60 Вт, что также является недостатком, снижающим удельный импульс тяги микродвигателя или увеличивающим общее энергопотребление системы «испаритель + микродвигатель». Испытания образцов двигательных установок показали, что при таком распределении мощности температура предварительной газификации топлива в испарителе составляет 100°C, а температура окончательной газификации топлива, определяющая удельный импульс тяги микродвигателя, - до 700-750°C.

Совершенствование процесса предварительной газификации топлива в испарителе при сохранении энергопотребления является неэффективным способом увеличения удельного импульса тяги микродвигателя.

В этой связи техническим результатом изобретения является увеличение удельного импульса тяги микродвигателя путем увеличения потребляемой мощности при окончательной газификации топлива в микродвигателе за счет снижения потребляемой мощности предварительной газификации топлива.

Указанный технический результат достигается тем, что в электротермическом микродвигателе, содержащем цилиндрическую камеру, расположенные в ней газовод с соплом, электрический нагревательный элемент и систему подачи в газовод газифицированного топлива, согласно заявляемому изобретению система подачи газифицированного топлива выполнена в виде спирального трубопровода, расположенного на цилиндрической камере микродвигателя и контактирующего с ней в зоне нагревательного элемента, входной патрубок трубопровода снабжен узлами стыковки с системой подачи жидкого газифицируемого топлива, а выходной патрубок через систему понижения и замера давления соединен с газоводом микродвигателя.

Заявляемый микродвигатель поясняется чертежом, на котором показано:

- на фиг. 1 - общий вид микродвигателя в сборе с разрезом;

- на фиг. 2 - общий вид микродвигателя в сборе (вид А на фиг. 1);

- на фиг. 3 - объемный общий вид микродвигателя в сборе.

Микродвигатель содержит цилиндрическую камеру 1 и контактирующую с ней цилиндрическую гильзу 2, на наружной поверхности которой выполнены двухзаходные винтовые каналы для прохода газообразного топлива и сопло 3, установленное с торца цилиндрической камеры 1. Торцы камеры 1, гильзы 2 соединены между собой и с соплом 3 так, что внутренние поверхности сопла и гильзы образуют газовод микродвигателя.

Внутрь гильзы 2 вставлен цилиндрический нагревательный элемент 4 через пружину 5, витки которой контактируют с поверхностью нагревательного элемента 4 и внутренней поверхностью гильзы 2, образуя винтовые каналы для прохода газообразного топлива. При этом одна часть нагревательного элемента 4 расположена внутри гильзы 2, а другая часть, представляющая собой токовыводы, расположена за пределами гильзы 2.

Микродвигатель закреплен на силовом элементе 6 при помощи фланца 7; герметично соединенного с цилиндрической камерой 1. Нагревательный элемент 4 содержит фланец 8, при помощи которого он герметично закреплен на фланце 7 микродвигателя.

Камера 1, фланец 7 и выступающая часть нагревательного элемента 4 образуют наружный корпус микродвигателя.

Система подачи газифицированного топлива выполнена в виде спирального трубопровода 9, расположенного на корпусе микродвигателя и контактирующего с ним в зоне нагревательных элементов. В приведенном варианте конструктивного исполнения микродвигателя спиральный трубопровод 9, в котором осуществляется газификация топлива (аммиака), размещен на выступающей части нагревательного элемента 4.

Спиральный трубопровод 9 содержит входной патрубок 10, который снабжен узлами стыковки с системой подачи жидкого газифицируемого топлива (не показан). Выходной трубопровод 11 спирального трубопровода 9 соединен с системой понижения и замера давления газообразного топлива 12 (например, дроссель и датчик давления), из которой выходит трубопровод 13, соединенный с фланцем 7, внутри которого выполнена проточка, подводящая газообразное топливо в винтообразную полость между камерой 1 и гильзой 2.

Часть корпуса микродвигателя со стороны сопла 3 на длине расположения нагревательного элемента 4 закрыта теплозащитным кожухом 14, в котором расположена теплоизоляция 15. Спиральный трубопровод 9 закрыт защитным кожухом 16.

Работа электротермического микродвигателя осуществляется следующим образом.

На нагревательный элемент 4 подается напряжение, и осуществляется предварительный разогрев конструкции. При этом разогревается и часть нагревательного элемента, на котором расположен спиральный трубопровод 9. Время разогрева конструкции определяется из условия прогрева спирального трубопровода 9 до температуры, необходимой для газификации топлива. Затем в спиральный трубопровод 9 через входной патрубок 10 подается газифицируемое топливо в жидком состоянии из топливного бака двигательной установки (например, аммиак), которое под действием температуры газифицируется. Проходя через систему понижения и замера давления 12, обеспечиваются заданные параметры газообразного топлива по давлению. Далее топливо через трубопровод 13, фланец 7 подается в полость между камерой 1 и гильзой 2, совершает путь от фланца 7 к соплу 3 и обратно по выполненным двухзаходным винтовым каналам, поступает в полость газовода, образованного внутренними поверхностями гильзы 2 и сопла 3, и выбрасывается через сопло, обеспечивая тягу и удельный импульс тяги микродвигателя.

Сравнительные испытания опытного образца заявляемого электротермического микродвигателя в вакууме, предназначенного для использования в составе наноспутника, и микродвигателя по прототипу показали:

- при потребляемой мощности 9 Вт и использовании в качестве рабочего тела азота температура нагревательного элемента заявляемого микродвигателя составила 360°C;

- для электротермического микродвигателя по прототипу, когда нагрев микродвигателя осуществлялся мощностью 6 Вт, а 3 Вт тратились на нагрев газа в испарителе, температура нагревательного элемента микродвигателя составила 275°C.

Таким образом, заявляемый электротермический микродвигатель по сравнению с микродвигателем по прототипу, за счет совмещения конструкции испарителя и конструкции микродвигателя и использования суммарной мощности испарителя и микродвигателя на нагрев электротермического микродвигателя (окончательную газификацию топлива), позволяет повысить тепловые характеристики микродвигателя до 30%, что соответствует увеличению его удельного импульса тяги на 25-30%.

Электротермический микродвигатель, содержащий цилиндрическую камеру, расположенные в ней газовод с соплом, электрический нагревательный элемент и систему подачи в газовод газифицированного топлива, отличающийся тем, что система подачи газифицированного топлива выполнена в виде спирального трубопровода, расположенного на цилиндрической камере микродвигателя и контактирующего с ней в зоне нагревательного элемента, входной патрубок трубопровода снабжен узлами стыковки с системой подачи жидкого газифицируемого топлива, а выходной патрубок через систему понижения и замера давления соединен с газоводом микродвигателя.
ЭЛЕКТРОТЕРМИЧЕСКИЙ МИКРОДВИГАТЕЛЬ
ЭЛЕКТРОТЕРМИЧЕСКИЙ МИКРОДВИГАТЕЛЬ
ЭЛЕКТРОТЕРМИЧЕСКИЙ МИКРОДВИГАТЕЛЬ
Источник поступления информации: Роспатент

Показаны записи 131-140 из 154.
13.01.2017
№217.015.865e

Полупроводниковый газовый датчик микропримесей кислорода

Изобретение относится к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей кислорода и может быть использовано для экологического мониторинга. Датчик согласно изобретению содержит полупроводниковое основание и подложку. Полупроводниковое основание...
Тип: Изобретение
Номер охранного документа: 0002603337
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.86db

Поршневой компрессор с рубашечным охлаждением

Изобретение относится к области компрессоростроения и может быть использовано в поршневых компрессорах с автономным охлаждением цилиндропоршневой группы. Компрессор содержит цилиндр 1 с дифференциальным поршнем 2 и двумя рабочими объемами 4 и 5. Полости всасывания 6 и 7 соединены с источником...
Тип: Изобретение
Номер охранного документа: 0002603498
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8719

Способ изготовления изделий из композиционных материалов на основе политетрафторэтилена

Изобретение относится к области материаловедения, в частности к способам изготовления полимерных композиционных материалов (ПКМ) на основе политетрафторэтилена, и может быть использовано при изготовлении заготовок и деталей металлополимерных узлов трения. Описан способ изготовления изделий из...
Тип: Изобретение
Номер охранного документа: 0002603673
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8dbb

Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отделяющейся части ступени ракеты-носителя и устройство для его реализации

Изобретение относится к ракетно-космической технике, в частности к моделированию процесса газификации неизрасходованных остатков жидких компонентов ракетного топлива в баках отработанной ступени ракеты-носителя (РН). Общий процесс моделирования разбивают на два этапа. На первом этапе определяют...
Тип: Изобретение
Номер охранного документа: 0002605073
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8eae

Способ демпфирования колебаний системы и устройство для его осуществления

Изобретение относится к области машиностроения. Колебания демпфируют путем увеличения вязкости магнитной жидкости и путем возбуждения импульсов магнитного поля в демпфирующей магнитной жидкости. Магнитная жидкость пространственно предваряет передний фронт перемещения подвижной части системы....
Тип: Изобретение
Номер охранного документа: 0002605229
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8ef8

Поршневая гибридная машина

Изобретение относится к области энергетики и может быть использовано при создании поршневых высокоэффективных машин для сжатия и перемещения газов и жидкостей. Машина содержит цилиндр 1 и размещенный в нем с радиальным зазором 2 поршень 3 с компрессорной 5 и насосной 6 полостями. На...
Тип: Изобретение
Номер охранного документа: 0002605492
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f58

Подшипниковый узел

Изобретение относится к энергетическим машинам, выполненным в несмазываемом исполнении, содержащим полости низкого и высокого давления (компрессорные машины, авиационные двигатели, насосы и т.п.). Подшипниковый узел содержит вал (2), установленный в подшипнике (2), камеру (3), находящуюся в...
Тип: Изобретение
Номер охранного документа: 0002605227
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.9038

Магнитоэлектрическая машина

Изобретение относится к области электротехники, а именно к электрическим машинам, в частности электрогенераторам переменного тока. Технический результат - повышение рабочего магнитного потока магнитоэлектрической машины. Магнитоэлектрическая машина содержит ротор с постоянными магнитами и...
Тип: Изобретение
Номер охранного документа: 0002604051
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9ae2

Способ тренировки старта спортсменов и устройство для его осуществления

Заявленное изобретение относится к устройству для старта спортсменом. Устройство состоит из колодки под толчковую ногу и устройства подачи звукового или светового сигнала, имеющего рабочий орган и систему его управления, подключенные к источнику электрического тока, при этом параллельно к...
Тип: Изобретение
Номер охранного документа: 0002610110
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.9e58

Комбинированная пуля

Изобретение относится к области боеприпасов к гладкоствольному оружию и может быть использовано при бескровной охоте на крупных птиц и мелких зверей, при выполнении полицейских операций, а также в травматическом оружии ближнего, среднего и дальнего, до 100 метров и более действия. Пуля состоит...
Тип: Изобретение
Номер охранного документа: 0002606007
Дата охранного документа: 10.01.2017
Показаны записи 131-140 из 162.
13.01.2017
№217.015.85f2

Устройство активации репаративного остеогенеза

Изобретение относится к медицине. Устройство для активации репаративного остеогенеза содержит стержень-шуруп канюлированный, включающий самонарезающую и резьбоформирующую часть с одной стороны, с другой стороны - резьбовую часть и безрезьбовой участок между ними, а также сквозное отверстие и...
Тип: Изобретение
Номер охранного документа: 0002603325
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.865e

Полупроводниковый газовый датчик микропримесей кислорода

Изобретение относится к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей кислорода и может быть использовано для экологического мониторинга. Датчик согласно изобретению содержит полупроводниковое основание и подложку. Полупроводниковое основание...
Тип: Изобретение
Номер охранного документа: 0002603337
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.86db

Поршневой компрессор с рубашечным охлаждением

Изобретение относится к области компрессоростроения и может быть использовано в поршневых компрессорах с автономным охлаждением цилиндропоршневой группы. Компрессор содержит цилиндр 1 с дифференциальным поршнем 2 и двумя рабочими объемами 4 и 5. Полости всасывания 6 и 7 соединены с источником...
Тип: Изобретение
Номер охранного документа: 0002603498
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8719

Способ изготовления изделий из композиционных материалов на основе политетрафторэтилена

Изобретение относится к области материаловедения, в частности к способам изготовления полимерных композиционных материалов (ПКМ) на основе политетрафторэтилена, и может быть использовано при изготовлении заготовок и деталей металлополимерных узлов трения. Описан способ изготовления изделий из...
Тип: Изобретение
Номер охранного документа: 0002603673
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8dbb

Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отделяющейся части ступени ракеты-носителя и устройство для его реализации

Изобретение относится к ракетно-космической технике, в частности к моделированию процесса газификации неизрасходованных остатков жидких компонентов ракетного топлива в баках отработанной ступени ракеты-носителя (РН). Общий процесс моделирования разбивают на два этапа. На первом этапе определяют...
Тип: Изобретение
Номер охранного документа: 0002605073
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8eae

Способ демпфирования колебаний системы и устройство для его осуществления

Изобретение относится к области машиностроения. Колебания демпфируют путем увеличения вязкости магнитной жидкости и путем возбуждения импульсов магнитного поля в демпфирующей магнитной жидкости. Магнитная жидкость пространственно предваряет передний фронт перемещения подвижной части системы....
Тип: Изобретение
Номер охранного документа: 0002605229
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8ef8

Поршневая гибридная машина

Изобретение относится к области энергетики и может быть использовано при создании поршневых высокоэффективных машин для сжатия и перемещения газов и жидкостей. Машина содержит цилиндр 1 и размещенный в нем с радиальным зазором 2 поршень 3 с компрессорной 5 и насосной 6 полостями. На...
Тип: Изобретение
Номер охранного документа: 0002605492
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f58

Подшипниковый узел

Изобретение относится к энергетическим машинам, выполненным в несмазываемом исполнении, содержащим полости низкого и высокого давления (компрессорные машины, авиационные двигатели, насосы и т.п.). Подшипниковый узел содержит вал (2), установленный в подшипнике (2), камеру (3), находящуюся в...
Тип: Изобретение
Номер охранного документа: 0002605227
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.9038

Магнитоэлектрическая машина

Изобретение относится к области электротехники, а именно к электрическим машинам, в частности электрогенераторам переменного тока. Технический результат - повышение рабочего магнитного потока магнитоэлектрической машины. Магнитоэлектрическая машина содержит ротор с постоянными магнитами и...
Тип: Изобретение
Номер охранного документа: 0002604051
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9ae2

Способ тренировки старта спортсменов и устройство для его осуществления

Заявленное изобретение относится к устройству для старта спортсменом. Устройство состоит из колодки под толчковую ногу и устройства подачи звукового или светового сигнала, имеющего рабочий орган и систему его управления, подключенные к источнику электрического тока, при этом параллельно к...
Тип: Изобретение
Номер охранного документа: 0002610110
Дата охранного документа: 07.02.2017
+ добавить свой РИД