×
10.01.2015
216.013.1b22

ЭЛЕКТРОТЕРМИЧЕСКИЙ МИКРОДВИГАТЕЛЬ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к космической технике, а именно к электротермическим микродвигателям, входящим в состав двигательных установок микротяги, устанавливаемых на малые космические аппараты для решения задач орбитального маневрирования. Система подачи газифицированного топлива выполнена в виде спирального трубопровода, расположенного на корпусе микродвигателя и контактирующего с ним в зоне нагревательного элемента. Входной патрубок трубопровода снабжен узлами стыковки с системой подачи жидкого газифицируемого топлива, а выходной патрубок через систему понижения и замера давления соединен с газоводом микродвигателя. Электротермический микродвигатель позволяет повысить тепловые характеристики до 30, что соответствует увеличению его удельного импульса тяги на 25-30. 3 ил.
Основные результаты: Электротермический микродвигатель, содержащий цилиндрическую камеру, расположенные в ней газовод с соплом, электрический нагревательный элемент и систему подачи в газовод газифицированного топлива, отличающийся тем, что система подачи газифицированного топлива выполнена в виде спирального трубопровода, расположенного на цилиндрической камере микродвигателя и контактирующего с ней в зоне нагревательного элемента, входной патрубок трубопровода снабжен узлами стыковки с системой подачи жидкого газифицируемого топлива, а выходной патрубок через систему понижения и замера давления соединен с газоводом микродвигателя.
Реферат Свернуть Развернуть

Изобретение относится к космической технике, а именно к электротермическим микродвигателям, входящим в состав двигательных установок микротяги, устанавливаемых на малые космические аппараты для решения задач орбитального маневрирования.

Современный уровень развития космической техники характеризуется тенденцией к созданию малых космических аппаратов различного назначения (научных, связных, дистанционного зондирования Земли, навигационных, гидрометеорологических и др.) и увеличению количества их запусков. Для решения задач орбитального маневрирования в состав малых космических аппаратов вводятся двигательные установки микротяги, в которых реактивная тяга создается электротермическими микродвигателями. Тяга таких микродвигателей составляет 0.01-0.05 Н (1-5 гс).

В настоящее время как в России, так и за рубежом создано немало образцов двигателей микротяги, среди которых электротермические (электронагревательные) микродвигатели являются наиболее простыми и отработанными.

Создание реактивной микротяги в электротермических микродвигателях осуществляется посредством подвода электрической мощности к нагревательному элементу, размещенному в микродвигателе, прокачиванием рабочего тела (газа) вдоль «горячих» поверхностей микродвигателя, на которых происходит испарение и нагрев рабочего тела и выброс нагретого газа через реактивное сопло (сопло Лаваля).

Эффективность микродвигателя в первую очередь определяется величиной удельного импульса тяги, которая напрямую зависит от величины потребляемой электрической мощности, используемой для нагрева газообразного топлива на входе в реактивное сопло. Для малых космических аппаратов выделяемая для двигательной установки микротяги электрическая мощность весьма ограничена (например, до 100 Вт для малых космических аппаратов массой до 120-400 кг), что ставит задачу оптимального распределения мощности между энергопотребляющими системами двигательной установки для улучшения ее проектных параметров и габаритно-массовых и стоимостных характеристик малых космических аппаратов. Особенно ограничена потребляемая мощность для двигательных установок с электротермическими микродвигателями, входящих в состав наноспутников массой до 10 кг (не более 9-10 Вт).

Как правило, при использовании жидкого топлива для микродвигателя (например, жидкого аммиака), оно предварительно газифицируется путем нагрева подводом электрической мощности, затем снижается его давление и топливо подается в микродвигатель для окончательного разогрева.

Известен электротермический микродвигатель (патент РФ №2332583, МПК F02K 9/68, опубл. 27.08.2008), содержащий цилиндрический газовод с коническим соплом, размещенный внутри цилиндрического корпуса, систему подачи в газовод газифицированного топлива, электрические нагревательные элементы для нагрева топлива. Система подачи газифицированного топлива (например, жидкого аммиака) содержит автономный испаритель, входящий в состав двигательной установки.

Недостатком такого микродвигателя является то, что на предварительную газификацию топлива, которое в газообразном состоянии поступает сначала в понижающий регулятор давления, а затем в микродвигатель, тратится до 50% всей выделяемой на газификацию топлива в составе малого космического аппарата электрической мощности.

Наиболее близким техническим решением к заявляемому является электротермический микродвигатель по патенту РФ №2442011 (МПК F02K 9/68, опубл. 27.08.2008), взятый за прототип.

Данный микродвигатель содержит цилиндрический газовод с профилированным соплом, размещенный внутри цилиндрического корпуса, систему подачи в газовод газифицированного топлива, электрические нагревательные элементы для нагрева топлива. Система подачи газифицированного топлива (например, жидкого аммиака) также содержит автономный испаритель, входящий в состав двигательной установки.

Задача увеличения удельного импульса тяги данного микродвигателя лишь частично решена установкой профилированного сопла. Удельный импульс тяги микродвигателя снижается за счет того, что на предварительную газификацию топлива требуется значительное энергопотребление.

Другим путем увеличения удельного импульса тяги микродвигателя, газификация топлива в котором осуществляется в испарителе и самом микродвигателе, является совершенствование системы подачи газифицированного топлива в части повышения эффективности самого процесса предварительной газификации в испарителе, например, выполнением его двухзаходным (см., например, Блинов В.Н., Зубарев С.И., Шалай В.В. Математическая модель теплового режима работы испарителя электротермического микродвигателя коррекции космического аппарата // Омский научный вестник. - 2011. - Вып.1. - С.84-87).

Однако и в данном случае на предварительную газификацию топлива в двухзаходном испарителе тратится 30 Вт, а на окончательную газификацию в самом микродвигателе - 60 Вт, что также является недостатком, снижающим удельный импульс тяги микродвигателя или увеличивающим общее энергопотребление системы «испаритель + микродвигатель». Испытания образцов двигательных установок показали, что при таком распределении мощности температура предварительной газификации топлива в испарителе составляет 100°C, а температура окончательной газификации топлива, определяющая удельный импульс тяги микродвигателя, - до 700-750°C.

Совершенствование процесса предварительной газификации топлива в испарителе при сохранении энергопотребления является неэффективным способом увеличения удельного импульса тяги микродвигателя.

В этой связи техническим результатом изобретения является увеличение удельного импульса тяги микродвигателя путем увеличения потребляемой мощности при окончательной газификации топлива в микродвигателе за счет снижения потребляемой мощности предварительной газификации топлива.

Указанный технический результат достигается тем, что в электротермическом микродвигателе, содержащем цилиндрическую камеру, расположенные в ней газовод с соплом, электрический нагревательный элемент и систему подачи в газовод газифицированного топлива, согласно заявляемому изобретению система подачи газифицированного топлива выполнена в виде спирального трубопровода, расположенного на цилиндрической камере микродвигателя и контактирующего с ней в зоне нагревательного элемента, входной патрубок трубопровода снабжен узлами стыковки с системой подачи жидкого газифицируемого топлива, а выходной патрубок через систему понижения и замера давления соединен с газоводом микродвигателя.

Заявляемый микродвигатель поясняется чертежом, на котором показано:

- на фиг. 1 - общий вид микродвигателя в сборе с разрезом;

- на фиг. 2 - общий вид микродвигателя в сборе (вид А на фиг. 1);

- на фиг. 3 - объемный общий вид микродвигателя в сборе.

Микродвигатель содержит цилиндрическую камеру 1 и контактирующую с ней цилиндрическую гильзу 2, на наружной поверхности которой выполнены двухзаходные винтовые каналы для прохода газообразного топлива и сопло 3, установленное с торца цилиндрической камеры 1. Торцы камеры 1, гильзы 2 соединены между собой и с соплом 3 так, что внутренние поверхности сопла и гильзы образуют газовод микродвигателя.

Внутрь гильзы 2 вставлен цилиндрический нагревательный элемент 4 через пружину 5, витки которой контактируют с поверхностью нагревательного элемента 4 и внутренней поверхностью гильзы 2, образуя винтовые каналы для прохода газообразного топлива. При этом одна часть нагревательного элемента 4 расположена внутри гильзы 2, а другая часть, представляющая собой токовыводы, расположена за пределами гильзы 2.

Микродвигатель закреплен на силовом элементе 6 при помощи фланца 7; герметично соединенного с цилиндрической камерой 1. Нагревательный элемент 4 содержит фланец 8, при помощи которого он герметично закреплен на фланце 7 микродвигателя.

Камера 1, фланец 7 и выступающая часть нагревательного элемента 4 образуют наружный корпус микродвигателя.

Система подачи газифицированного топлива выполнена в виде спирального трубопровода 9, расположенного на корпусе микродвигателя и контактирующего с ним в зоне нагревательных элементов. В приведенном варианте конструктивного исполнения микродвигателя спиральный трубопровод 9, в котором осуществляется газификация топлива (аммиака), размещен на выступающей части нагревательного элемента 4.

Спиральный трубопровод 9 содержит входной патрубок 10, который снабжен узлами стыковки с системой подачи жидкого газифицируемого топлива (не показан). Выходной трубопровод 11 спирального трубопровода 9 соединен с системой понижения и замера давления газообразного топлива 12 (например, дроссель и датчик давления), из которой выходит трубопровод 13, соединенный с фланцем 7, внутри которого выполнена проточка, подводящая газообразное топливо в винтообразную полость между камерой 1 и гильзой 2.

Часть корпуса микродвигателя со стороны сопла 3 на длине расположения нагревательного элемента 4 закрыта теплозащитным кожухом 14, в котором расположена теплоизоляция 15. Спиральный трубопровод 9 закрыт защитным кожухом 16.

Работа электротермического микродвигателя осуществляется следующим образом.

На нагревательный элемент 4 подается напряжение, и осуществляется предварительный разогрев конструкции. При этом разогревается и часть нагревательного элемента, на котором расположен спиральный трубопровод 9. Время разогрева конструкции определяется из условия прогрева спирального трубопровода 9 до температуры, необходимой для газификации топлива. Затем в спиральный трубопровод 9 через входной патрубок 10 подается газифицируемое топливо в жидком состоянии из топливного бака двигательной установки (например, аммиак), которое под действием температуры газифицируется. Проходя через систему понижения и замера давления 12, обеспечиваются заданные параметры газообразного топлива по давлению. Далее топливо через трубопровод 13, фланец 7 подается в полость между камерой 1 и гильзой 2, совершает путь от фланца 7 к соплу 3 и обратно по выполненным двухзаходным винтовым каналам, поступает в полость газовода, образованного внутренними поверхностями гильзы 2 и сопла 3, и выбрасывается через сопло, обеспечивая тягу и удельный импульс тяги микродвигателя.

Сравнительные испытания опытного образца заявляемого электротермического микродвигателя в вакууме, предназначенного для использования в составе наноспутника, и микродвигателя по прототипу показали:

- при потребляемой мощности 9 Вт и использовании в качестве рабочего тела азота температура нагревательного элемента заявляемого микродвигателя составила 360°C;

- для электротермического микродвигателя по прототипу, когда нагрев микродвигателя осуществлялся мощностью 6 Вт, а 3 Вт тратились на нагрев газа в испарителе, температура нагревательного элемента микродвигателя составила 275°C.

Таким образом, заявляемый электротермический микродвигатель по сравнению с микродвигателем по прототипу, за счет совмещения конструкции испарителя и конструкции микродвигателя и использования суммарной мощности испарителя и микродвигателя на нагрев электротермического микродвигателя (окончательную газификацию топлива), позволяет повысить тепловые характеристики микродвигателя до 30%, что соответствует увеличению его удельного импульса тяги на 25-30%.

Электротермический микродвигатель, содержащий цилиндрическую камеру, расположенные в ней газовод с соплом, электрический нагревательный элемент и систему подачи в газовод газифицированного топлива, отличающийся тем, что система подачи газифицированного топлива выполнена в виде спирального трубопровода, расположенного на цилиндрической камере микродвигателя и контактирующего с ней в зоне нагревательного элемента, входной патрубок трубопровода снабжен узлами стыковки с системой подачи жидкого газифицируемого топлива, а выходной патрубок через систему понижения и замера давления соединен с газоводом микродвигателя.
ЭЛЕКТРОТЕРМИЧЕСКИЙ МИКРОДВИГАТЕЛЬ
ЭЛЕКТРОТЕРМИЧЕСКИЙ МИКРОДВИГАТЕЛЬ
ЭЛЕКТРОТЕРМИЧЕСКИЙ МИКРОДВИГАТЕЛЬ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 154.
10.05.2013
№216.012.3e43

Электропневматический амортизатор

Изобретение относится к виброзащитной технике. Электропневматический амортизатор содержит обойму (1) и пуансон (2), соединенные между собой эластичным упругим элементом (3). Коаксиально им и соосно между собой установлены соленоиды (4, 5). Сердечник (6) выполнен составным и жестко соединен с...
Тип: Изобретение
Номер охранного документа: 0002481506
Дата охранного документа: 10.05.2013
20.05.2013
№216.012.4050

Способ увода отделяющейся части ракеты-носителя с орбиты полезной нагрузки и устройство для его реализации

Изобретение относится к ракетно-космической технике, в частности к ракетам космического назначения (РКН) с жидкостными ракетными двигателями (ЖРД). Газовый ракетный двигатель (ГРД) предназначен для увода отделяющейса части (ОЧ) РКН с орбиты полезной нагрузки. ГРД обеспечивает вращение вокруг...
Тип: Изобретение
Номер охранного документа: 0002482034
Дата охранного документа: 20.05.2013
20.06.2013
№216.012.4da4

Пирометр спектрального отношения

Изобретение относится к области контрольно-измерительной техники, а именно к устройствам бесконтактного измерения температуры поверхности нагретых тел методом спектрального отношения, и может быть использовано в любых отраслях промышленности для измерения температуры различных материалов и...
Тип: Изобретение
Номер охранного документа: 0002485458
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4e73

Синхронно-синфазный электропривод

Изобретение относится к электротехнике и может быть использовано в системах передачи и воспроизведения информации, например в приводе устройств видеозаписи. Технический результат заключается в повышении быстродействия электропривода при переходе в синхронно-синфазный режим работы. Для этого...
Тип: Изобретение
Номер охранного документа: 0002485665
Дата охранного документа: 20.06.2013
20.08.2013
№216.012.5fe7

Стыковочное устройство космических аппаратов

Изобретение относится к ракетно-космической технике. Стыковочное устройство космических аппаратов содержит активный агрегат, в центре которого установлен стыковочный механизм, и пассивный агрегат с ответным приемным конусом, который заканчивается гнездом. Приемным конусом служит сопло маршевого...
Тип: Изобретение
Номер охранного документа: 0002490183
Дата охранного документа: 20.08.2013
10.09.2013
№216.012.68a2

Фотометрическое устройство

Изобретение относится к области фотометрии и может быть использовано в оптико-электронных приборах с фотодиодными преобразователями излучений. Фотометрическое устройство содержит фотодиод, три переключателя, повторитель напряжения, устройство выборки и хранения, устройство управления,...
Тип: Изобретение
Номер охранного документа: 0002492433
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6c73

Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в условиях пониженного давления и устройство для его реализации

Изобретение относится к ракетно-космической технике. Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отделяющихся частей ступени ракет-носителей, основанном на введении в экспериментальную установку теплоносителя, обеспечении условий...
Тип: Изобретение
Номер охранного документа: 0002493414
Дата охранного документа: 20.09.2013
27.11.2013
№216.012.861c

Устройство для управления пространственным положением обрабатываемой детали на станке

Изобретение относится к управлению пространственным положением обрабатываемой детали. Технический результат заключается в повышении точности обработки за счет компенсации погрешностей установки детали и путем обеспечения ее раздельного поворота вокруг осей, параллельных осям координат станка,...
Тип: Изобретение
Номер охранного документа: 0002500010
Дата охранного документа: 27.11.2013
27.12.2013
№216.012.9185

Снаряд с газовым подвесом

Изобретение относится к боеприпасам, в частности к снарядам с газовым подвесом. Снаряд с газовым подвесом содержит гладкую цилиндрическую часть. В цилиндрической части выполнена полость питания. Полость питания соединена с наружной цилиндрической поверхностью через питающие устройства. Полость...
Тип: Изобретение
Номер охранного документа: 0002502946
Дата охранного документа: 27.12.2013
10.02.2014
№216.012.9e32

Способ спуска отделяющейся части ступени ракеты космического назначения и устройство для его осуществления

Изобретение относится к ракетно-космической технике и может быть использовано для спуска отделяющихся частей (ОЧ) ракет космического назначения (РКН) с орбит полезных нагрузок. ОЧ РКН содержит топливный отсек, силовой отсек с днищами. На верхнем днище установлены поворотные камеры газового...
Тип: Изобретение
Номер охранного документа: 0002506206
Дата охранного документа: 10.02.2014
Показаны записи 1-10 из 162.
10.05.2013
№216.012.3e43

Электропневматический амортизатор

Изобретение относится к виброзащитной технике. Электропневматический амортизатор содержит обойму (1) и пуансон (2), соединенные между собой эластичным упругим элементом (3). Коаксиально им и соосно между собой установлены соленоиды (4, 5). Сердечник (6) выполнен составным и жестко соединен с...
Тип: Изобретение
Номер охранного документа: 0002481506
Дата охранного документа: 10.05.2013
20.05.2013
№216.012.4050

Способ увода отделяющейся части ракеты-носителя с орбиты полезной нагрузки и устройство для его реализации

Изобретение относится к ракетно-космической технике, в частности к ракетам космического назначения (РКН) с жидкостными ракетными двигателями (ЖРД). Газовый ракетный двигатель (ГРД) предназначен для увода отделяющейса части (ОЧ) РКН с орбиты полезной нагрузки. ГРД обеспечивает вращение вокруг...
Тип: Изобретение
Номер охранного документа: 0002482034
Дата охранного документа: 20.05.2013
20.06.2013
№216.012.4da4

Пирометр спектрального отношения

Изобретение относится к области контрольно-измерительной техники, а именно к устройствам бесконтактного измерения температуры поверхности нагретых тел методом спектрального отношения, и может быть использовано в любых отраслях промышленности для измерения температуры различных материалов и...
Тип: Изобретение
Номер охранного документа: 0002485458
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4e73

Синхронно-синфазный электропривод

Изобретение относится к электротехнике и может быть использовано в системах передачи и воспроизведения информации, например в приводе устройств видеозаписи. Технический результат заключается в повышении быстродействия электропривода при переходе в синхронно-синфазный режим работы. Для этого...
Тип: Изобретение
Номер охранного документа: 0002485665
Дата охранного документа: 20.06.2013
20.08.2013
№216.012.5fe7

Стыковочное устройство космических аппаратов

Изобретение относится к ракетно-космической технике. Стыковочное устройство космических аппаратов содержит активный агрегат, в центре которого установлен стыковочный механизм, и пассивный агрегат с ответным приемным конусом, который заканчивается гнездом. Приемным конусом служит сопло маршевого...
Тип: Изобретение
Номер охранного документа: 0002490183
Дата охранного документа: 20.08.2013
10.09.2013
№216.012.68a2

Фотометрическое устройство

Изобретение относится к области фотометрии и может быть использовано в оптико-электронных приборах с фотодиодными преобразователями излучений. Фотометрическое устройство содержит фотодиод, три переключателя, повторитель напряжения, устройство выборки и хранения, устройство управления,...
Тип: Изобретение
Номер охранного документа: 0002492433
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6c73

Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в условиях пониженного давления и устройство для его реализации

Изобретение относится к ракетно-космической технике. Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отделяющихся частей ступени ракет-носителей, основанном на введении в экспериментальную установку теплоносителя, обеспечении условий...
Тип: Изобретение
Номер охранного документа: 0002493414
Дата охранного документа: 20.09.2013
27.11.2013
№216.012.861c

Устройство для управления пространственным положением обрабатываемой детали на станке

Изобретение относится к управлению пространственным положением обрабатываемой детали. Технический результат заключается в повышении точности обработки за счет компенсации погрешностей установки детали и путем обеспечения ее раздельного поворота вокруг осей, параллельных осям координат станка,...
Тип: Изобретение
Номер охранного документа: 0002500010
Дата охранного документа: 27.11.2013
27.12.2013
№216.012.9185

Снаряд с газовым подвесом

Изобретение относится к боеприпасам, в частности к снарядам с газовым подвесом. Снаряд с газовым подвесом содержит гладкую цилиндрическую часть. В цилиндрической части выполнена полость питания. Полость питания соединена с наружной цилиндрической поверхностью через питающие устройства. Полость...
Тип: Изобретение
Номер охранного документа: 0002502946
Дата охранного документа: 27.12.2013
10.02.2014
№216.012.9e32

Способ спуска отделяющейся части ступени ракеты космического назначения и устройство для его осуществления

Изобретение относится к ракетно-космической технике и может быть использовано для спуска отделяющихся частей (ОЧ) ракет космического назначения (РКН) с орбит полезных нагрузок. ОЧ РКН содержит топливный отсек, силовой отсек с днищами. На верхнем днище установлены поворотные камеры газового...
Тип: Изобретение
Номер охранного документа: 0002506206
Дата охранного документа: 10.02.2014
+ добавить свой РИД