×
10.01.2015
216.013.1a45

Результат интеллектуальной деятельности: ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ИММУНОАНАЛИЗА ДЛЯ ОПРЕДЕЛЕНИЯ МИКРООРГАНИЗМОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к биотехнологии, в частности к определению содержания микроорганизмов в различных объектах и средах. Способ предусматривает конъюгацию бактерий с электрохимической меткой, в качестве которой используют Fe, MgFeO или FeO, осуществляемую в водной среде при заданных параметрах. Осуществляют отделение несвязавшихся наночастиц с использованием магнитного поля и помещение рабочего электрода, изготовленного из золота, платины или графитсодержащих материалов, поверхность которого предварительно модифицирована антителами, специфичными к определяемому штамму бактерий, в исследуемый раствор. Электрод выдерживают при заданных параметрах с образованием иммунокомплекса на его поверхности и промывают буферным раствором, содержащим нормальную лошадиную сыворотку и Твин-20. Электрод извлекают из раствора и помещают в электрохимическую ячейку, содержащую LiClO, растворенный в ацетонитриле, диметилформамиде или диметилсульфоксиде, определяют содержание бактерий по величине аналитического окисления наночастиц, локализованных в иммунокомплексе на поверхности рабочего электрода. Изобретение позволяет увеличить чувствительность анализа, повысить производительность и упростить анализ. 7 ил., 6 пр.
Основные результаты: Способ определения содержания грамотрицательных патогенных бактерий в анализируемой среде, характеризующийся конъюгированием бактерий с электрохимической меткой, в качестве которой используют магнитные наночастицы Fe, MgFeO или FeO,осуществляемым в водной среде в течение 30 минут при температуре 37С, отделением несвязавшихся наночастиц с использованием магнитного поля, помещением в среду рабочего электрода, изготовленного из золота, платины или графитсодержащих материалов, поверхность которого предварительно модифицируют антителами, специфичными к определяемому штамму бактерий, образованием иммунокомплекса на поверхности электрода в течение 20 мин при температуре 37С с использованием магнитного поля, промыванием электрода буферным раствором, содержащим нормальную лошадиную сыворотку и твин-20, помещением извлеченного из анализируемой среды рабочего электрода в электрохимическую ячейку, содержащую фоновый электролит LiClO растворенный в ацетонитриле, диметилформамиде или диметилсульфоксиде, и определением содержания бактерий по величине аналитического сигнала, в качестве которого используют электрохимический отклик окисления наночастиц, локализованных в иммунокомплексе на поверхности рабочего электрода.

Изобретение относится к электрохимическим методам анализа, а именно к иммуноанализу, в частности к определению содержания микроорганизмов в различных объектах и средах. Изобретение может быть использовано в микробиологии, медицине, экологии для мониторинга содержания микроорганизмов в природных объектах и дифференциальной диагностики инфекционных заболеваний.

Недостатками используемых в настоящее время методов являются:

низкая чувствительность (реакции агглютинации), высокая стоимость используемых реагентов и оборудования (иммуноферментный анализ), необходимость создания специальных условий (метод анализа, основанный на полимеразной цепной реакции) и длительность проведения анализа (бактериальный посев).

Известен способ определения патогенных микроорганизмов, где в качестве электроактивной сигналообразующей метки использовали наночастицы золота, к которым посредством меркаптоундекановой кислоты присоединяли антитела. В данном способе на поверхности электрода реализована сэндвич-система «антитело - антиген - антитело, меченное нанозолотом». Отклик от нанометки детектировали методом молекулярной абсорбции в фосфатном буфере (Gold nanoparticles as colorimetric sensor: A case study on E. Coli 0157:H7 as a model for Gram-negative bacteria/Haichao Su, Qiang Ma, Kun Shang and oth.// Sensors and Actuators B: Chemical. - 2012. - № 161. - P.298-303).

Недостатком предложенного способа является низкая чувствительность.

Известен способ определения микроорганизмов E.coli 0157:H7 с использованием магнитных шариков, покрытых антителами, посредством авидин-биотинного взаимодействия. Несвязавшиеся компоненты и конъюгаты разделяли с помощью магнитной сепарации. Способ регистрации отклика - флуоресцентный (Detection of E.Coli 0157:H7 by immunomagnetic separation coupled with fluorescence immunoassay/Penxuan Zhu, Daniel R. Shelton, Shuhong Li and oth.// Biosensors and Bioelectronics. - 2011. - № 30. - P.337-341).

К недостаткам предложенного способа можно отнести высокую погрешность в определении, поскольку микроорганизмы также обладают флуоресцентными свойствами, а следовательно, обеспечивают высокий фоновый сигнал; а также дороговизну применяемого оборудования.

Описан способ определения микроорганизмов, основанный на принципах электрохимической импедансной спектроскопии. В качестве рабочего использовали золотой электрод, модифицированный антителами, меченными наночастицами золота. Регистрируемый параметр -сопротивление рабочего электрода, которое зависит от количества микроорганизмов на его поверхности. В качестве редокс-медиатора использовали систему K3[Fe(CN)6]/K4[Fe(CN)6] (Self-assembled monolayers-based immunosensor for detection of Escherichia coli using electrochemical impedance spectroscopy/ Ping Geng, Xinai Zhang, Weiwei Meng and oth// Electrochimica Acts. - 2008. - № 53. - P.4663-4668).

Недостатками способа являются низкая чувствительность и высокая погрешность определения, вызванные невозможностью точно воспроизвести поверхность электрода от эксперимента к эксперименту, а также необходимость строгого соблюдения условий эксперимента.

Наиболее близким техническим решением, выбранным в качестве прототипа, служит способ определения патогенных микроорганизмов, включающий конъюгацию микроорганизма с магнитными наночастицами в анализируемой среде с последующим концентрированием конъюгатов и определением наличия и концентрации микроорганизмов с помощью электроактивной сигналообразующей метки. В качестве магнитных наночастиц и, одновременно, электроактивной сигналообразующей метки авторы использовали наночастицы переходного металла. Перед концентрированием меченых конъюгатов наночастицы, не связанные с микроорганизмами, выводили из анализируемой среды. Концентрирование меченого конъюгата осуществляли путем формирования на электроде иммунокомлекса «меченный магнитной меткой микроорганизм - антитело» с последующим изъятием иммунокомплекса из среды на электроде. Далее проводили кислотную обработку электрода, содержащего меченный иммунокомплекс. Определение наличия и концентрации микроорганизмов осуществляли по сигналу, генерируемому ионами переходного металла, получаемых путем кислотного разрушения иммунокомплекса (Патент РФ № 2397243 от 20.08.2010).

К недостаткам данного способа следует отнести многостадийность процесса анализа, низкий предел обнаружения, высокую трудоемкость процесса, большие временные затраты, а также высокие требования к квалификации операторов.

Предлагаемое техническое решение направлено на упрощение анализа, увеличение чувствительности, экспрессности, воспроизводимости, а также на расширение круга электрохимически активных меток.

Предлагаемый способ электрохимического иммуноанализа включает в себя конъюгацию микроорганизмов с магнитными наночастицами, магнитную сепарацию с последующим концентрированием конъюгатов и определением наличия и концентрации микроорганизмов с помощью сигналобразующей метки, локализованной путем образования иммунокомплекса на поверхности электрода, в качестве которой выступают магнитные наночастицы переходных металлов и их оксидов, модифицированные биосовместимыми полимерами. Концентрацию микроорганизмов определяют путем получения прямого электрохимического отклика от наночастиц переходных металлов и их оксидов, регистрируемого в результате электрохимического превращения магнитных наночастиц.

Получение электрохимического отклика от метки в результате разряда непосредственно магнитных наночастиц позволит увеличить экспрессность и чувствительность способа определения патогенных микроорганизмов.

Строение биосовместимых полимеров, выступающих в качестве модификаторов поверхности наночастиц, сходно со строением мембраны микробной клетки, поэтому данное покрытие облегчает поглощение наночастиц клетками микроорганизмов, что позволит значительно увеличить чувствительность. Кроме того, модификация поверхности магнитных наночастиц биополимером приводит к уменьшению поверхностной энергии наночастиц и позволит предотвратить их агрегацию, в результате чего размер частиц не изменяется в течение эксперимента. Таким образом, применение модификатора позволит добиться высокой воспроизводимости анализа.

Использование органических растворителей (в том числе апротонных) позволит существенно расширить рабочий диапазон потенциалов, а следовательно, и круг потенциальных электрохимически активных меток.

А также предложенный способ иммуноанализа позволит существенно снизить материало- и трудозатраты на проведение анализа, увеличить производительность и уменьшить себестоимость определения.

Таким образом, из патентной и научно-технической литературы не известен способ определения патогенных микроорганизмов заявляемой совокупности признаков.

На фиг. 1 изображен общий вид рабочего электрода, где 1 -подложка из стеклотекстолита, 2 - дорожка из токопроводящего материала (графит, золото, платина), 3 - слой изолятора или цементита.

На фиг. 2 представлены анодные вольтамперограммы, зарегистрированные в модельных растворах, содержащих (а, 4-5) микроорганизмы E.Coli и не содержащих (б, 4-5) микроорганизмы E.Coli.

4 - вольтамперограмма фонового электролита, 5 - вольтамперограмма пробы.

На фиг. 3 представлены циклические вольтамперограммы, зарегистрированные в пробах, содержащих (а, 6-7) и не содержащих (б, 6-7) микроорганизмы E.Coli.

6 - вольтамперограмма фонового электролита, 7 - вольтамперограмма пробы.

На фиг. 4 представлены анодные вольтамперограммы, зарегистрированные в пробах, содержащих (а, 8-9) и не содержащих (б, 8-9) микроорганизмы Salmonella typhimnriiim.

8 - вольтамперограмма фонового электролита, 9 - вольтамперограмма пробы.

На фиг. 5 представлены циклические вольтамперограммы, зарегистрированные в пробах, содержащих (а, 10-11) и не содержащих (б, 10-11) микроорганизмы Salmonella typhimurium.

10 - вольтамперограмма фонового электролита, 11 - вольтамперограмма пробы.

На фиг. 6 представлены циклические вольтамперограммы, зарегистрированные в пробах, содержащих (а, 12-13) и не содержащих (б, 12-13) микроорганизмы E.Coli.

12 - вольтамперограмма фонового электролита, 13 -вольтамперограмма пробы.

На фиг. 7 представлены циклические вольтамперограммы, зарегистрированные в пробах, содержащих (а, 14-15) и не содержащих (б, 14-15) микроорганизмы E.Coli.

14 - вольтамперограмма фонового электролита, 15 -вольтамперограмма пробы.

Способ иллюстрируется следующими примерами.

Пример 1

Вытяжку анализируемой среды (модельного раствора) инкубируют в течение 30 минут с магнитными наночастицами Fe3O4 при температуре 37°C. После инкубации несвязавшиеся наночастицы отделяют с использованием магнитного поля. В подготовленную таким образом вытяжку помещают платиновый электрод (фиг.1), модифицированный антителами против E.Coli (штамм O-12), и выдерживают в течение 20 минут при температуре 37°C. Для ускорения доставки меченых микроорганизмов к поверхности сенсора используют магнитное поле. Затем электрод промывают буферным раствором, содержащим нормальную лошадиную сыворотку (НЛС) и твин-20. Извлеченный из анализируемого раствора электрод помещают в электрохимическую ячейку. В качестве фонового электролита используют раствор LiClO4 в ацетонитриле. В качестве аналитического сигнала используют электрохимический отклик окисления предварительно восстановленного магнетита, локализованного в иммунокомплексе на поверхности платинового электрода. Для проведения холостого опыта используют раствор, не содержащий микроорганизмы E.Coli (штамм O-12) (фиг.2). В модельном растворе обнаружили 103 клеток/мл микроорганизма E.Coli (штамм O-12).

Пример 2

Вытяжку анализируемой среды инкубируют в течение 30 минут с магнитными наночастицами Fe3O4 при температуре 37°C. После инкубации несвязавшиеся наночастицы отделяют с использованием магнитного поля. В подготовленную таким образом вытяжку помещают платиновый электрод (фиг.1), модифицированный антителами против E.Coli (штамм O-12), и выдерживают в течение 20 минут при температуре 37°C. Для ускорения доставки меченых микроорганизмов к поверхности сенсора используют магнитное поле. Затем электрод промывают буферным раствором, содержащим нормальную лошадиную сыворотку (НЛС) и твин-20.

Извлеченный из анализируемого раствора электрод помещают в электрохимическую ячейку. В качестве фонового электролита используют раствор LiClO4 в ацетонитриле. В качестве аналитического сигнала используют электрохимический отклик окисления предварительно восстановленного магнетита, локализованного в иммунокомплексе на поверхности платинового электрода. Для проведения холостого опыта используют раствор, не содержащий микроорганизмы E.Coli (штамм O-12) (фиг.3). В пробе, взятой у пациента, обнаружили 2,05×102 клеток/мл микроорганизма E.Coli (штамм O-12).

Пример 3

Вытяжку из пробы анализируемого объекта инкубируют в течение 30 минут с магнитными наночастицами Fe3O4 при температуре 37°C. Несвязавшиеся наночастицы отделяют с использованием магнитного поля. В подготовленную таким образом вытяжку помещают толстопленочный графитовый электрод (фиг.1), модифицированный антителами против Salmonella typhimurium (штамм SL 7207), и выдерживают в течение 20 минут при температуре 37°C. Для ускорения доставки меченых микроорганизмов к поверхности электрода используют магнитное поле. Затем электрод промывают буферным раствором, содержащим нормальную лошадиную сыворотку (НЛС) и твин-20. Извлеченный из анализируемого раствора электрод помещают в электрохимическую ячейку. В качестве фонового электролита используют раствор LiClO4 в диметилсульфоксиде (ДМСО). В качестве аналитического сигнала, используют электрохимический отклик окисления предварительно восстановленного магнетита, локализованного в иммунокомплексе на поверхности рабочего электрода. Для проведения холостого опыта используют раствор, не содержащий микроорганизмы Salmonella typhimurium (штамм SL 7207) (фиг.4). В пробе, взятой у пациента, обнаружили 4×102 клеток/мл микроорганизма Salmonella typhimurium штамм SL 7207.

Пример 4

Вытяжку пробы инкубируют в течение 30 минут с магнитными наночастицами MgFe2O4 при температуре 37°C. Несвязавшиеся наночастицы отделяют с использованием магнитного поля. В подготовленную таким образом вытяжку помещают золотой электрод (фиг.1), модифицированный антителами против Salmonella typhimurium (штамм SL 7207) и выдерживают в течение 20 минут при температуре 37°C. Для ускорения доставки меченых микроорганизмов к поверхности сенсора используют магнитное поле. Затем электрод промывают буферным раствором, содержащим нормальную лошадиную сыворотку (НЛС) и твин-20. Извлеченный из анализируемого раствора электрод помещают в электрохимическую ячейку. В качестве фонового электролита используют раствор соляной кислоты. В качестве аналитического сигнала, используют электрохимический отклик окисления наночастиц, локализованных в иммунокомплексе на поверхности рабочего электрода. Для проведения холостого опыта используют раствор, не содержащий микроорганизмы Salmonella typhimurium (штамм SL 7207) (фиг.5). В пробе, взятой у пациента, обнаружили 1,75×102 клеток/мл микроорганизма Salmonella typhimurium (штамм SL 7207).

Пример 5

Вытяжку пробы инкубируют в течение 30 минут с магнитными наночастицами Fe0 при T=37°C. Несвязавшиеся наночастицы отделяют с использованием магнитного поля. В подготовленную таким образом вытяжку помещают платиновый электрод (фиг.1), модифицированный антителами против E.coli (штамм O-12), и выдерживают в течение 20 минут при температуре 37°C. Для ускорения доставки меченых микроорганизмов к поверхности электрода используют магнитное поле. Затем электрод промывают буферным раствором, содержащим нормальную лошадиную сыворотку (НЛС) и твин-20. Извлеченный из анализируемого раствора электрод помещают в электрохимическую ячейку. В качестве фонового электролита используют раствор LiClO4 в диметилформамиде (ДМФА). В качестве аналитического сигнала, используют электрохимический отклик окисления наночастиц, локализованных в иммунокомплексе на поверхности рабочего электрода. Для проведения холостого опыта используют раствор, не содержащий микроорганизмы E.coli (штамм O-12) (фиг.6). В пробе, взятой у пациента, обнаружено 3,75×10 клеток/мл микроорганизма E.coli (штамм O-12).

Пример 6

Пробу воды инкубируют в течение 30 минут с магнитными наночастицами Fe3O4 при Т=37°C. Несвязавшиеся наночастицы отделяют с использованием магнитного поля. В подготовленную таким образом вытяжку помещают платиновый электрод (фиг.1), модифицированный антителами против E.coli (штамм O-12), и выдерживают в течение 20 минут при температуре 37°C. Для ускорения доставки меченых микроорганизмов к поверхности электрода используют магнитное поле. Затем электрод промывают буферным раствором, содержащим нормальную лошадиную сыворотку (НЛС) и твин-20. Извлеченный из анализируемого раствора электрод помещают в электрохимическую ячейку. В качестве фонового электролита используют раствор LiClO4 в ацетонитриле. В качестве аналитического сигнала используют электрохимический отклик окисления предварительно восстановленных наночастиц, локализованных в иммунокомплексе на поверхности рабочего электрода. Для проведения холостого опыта используют раствор, не содержащий микроорганизмы E.coli (штамм O-12) (фиг.7). В пробе, взятой у пациента, обнаружено 3,75×107 клеток/мл микроорганизма E.coli (штамм O-12).

Способ определения содержания грамотрицательных патогенных бактерий в анализируемой среде, характеризующийся конъюгированием бактерий с электрохимической меткой, в качестве которой используют магнитные наночастицы Fe, MgFeO или FeO,осуществляемым в водной среде в течение 30 минут при температуре 37С, отделением несвязавшихся наночастиц с использованием магнитного поля, помещением в среду рабочего электрода, изготовленного из золота, платины или графитсодержащих материалов, поверхность которого предварительно модифицируют антителами, специфичными к определяемому штамму бактерий, образованием иммунокомплекса на поверхности электрода в течение 20 мин при температуре 37С с использованием магнитного поля, промыванием электрода буферным раствором, содержащим нормальную лошадиную сыворотку и твин-20, помещением извлеченного из анализируемой среды рабочего электрода в электрохимическую ячейку, содержащую фоновый электролит LiClO растворенный в ацетонитриле, диметилформамиде или диметилсульфоксиде, и определением содержания бактерий по величине аналитического сигнала, в качестве которого используют электрохимический отклик окисления наночастиц, локализованных в иммунокомплексе на поверхности рабочего электрода.
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ИММУНОАНАЛИЗА ДЛЯ ОПРЕДЕЛЕНИЯ МИКРООРГАНИЗМОВ
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ИММУНОАНАЛИЗА ДЛЯ ОПРЕДЕЛЕНИЯ МИКРООРГАНИЗМОВ
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ИММУНОАНАЛИЗА ДЛЯ ОПРЕДЕЛЕНИЯ МИКРООРГАНИЗМОВ
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ИММУНОАНАЛИЗА ДЛЯ ОПРЕДЕЛЕНИЯ МИКРООРГАНИЗМОВ
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ИММУНОАНАЛИЗА ДЛЯ ОПРЕДЕЛЕНИЯ МИКРООРГАНИЗМОВ
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ИММУНОАНАЛИЗА ДЛЯ ОПРЕДЕЛЕНИЯ МИКРООРГАНИЗМОВ
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ИММУНОАНАЛИЗА ДЛЯ ОПРЕДЕЛЕНИЯ МИКРООРГАНИЗМОВ
Источник поступления информации: Роспатент

Показаны записи 111-114 из 114.
09.06.2019
№219.017.7fb4

Роторный ветрогидродвигатель

Изобретение относится к роторным энергоустановкам, использующим кинетическую энергию ветра или потока воды для преобразования ее в механическую энергию. Роторный ветрогидродвигатель содержит вал, соединенный с дисками, между которыми установлены на периферии на своих осях лопасти с возможностью...
Тип: Изобретение
Номер охранного документа: 0002464443
Дата охранного документа: 20.10.2012
19.06.2019
№219.017.8bda

Способ получения парацетамола

Предложен новый способ получения парацетамола, заключающийся в восстановлении п-нитрозофенола, проводимом в этилацетате в присутствии Pd/C-содержащего катализатора при давлении водорода 2,0-4,0 атм и температуре 20-50°С, последующем ацилировании образующегося п-аминофенола и выделении целевого...
Тип: Изобретение
Номер охранного документа: 0002461543
Дата охранного документа: 20.09.2012
10.07.2019
№219.017.b13b

Способ определения производительности плавильного агрегата

Изобретение относится к измерительной технике для контроля технологического процесса производства теплоизоляционных изделий из минеральной ваты в промышленности строительных материалов, в частности к способу для определения производительности плавильного агрегата. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002469962
Дата охранного документа: 20.12.2012
31.07.2019
№219.017.ba79

Способ определения параметров движения объектов локации в радиолокационных датчиках с частотной манипуляцией непрерывного излучения радиоволн и устройство для его реализации

Изобретение относится к области радиолокации с частотной манипуляцией непрерывного излучения (ЧМНИ) радиоволн и может быть использовано для обнаружения движущихся целей, измерения расстояния до объекта локации, скорости и направления движения. Достигаемый технический результат - расширение...
Тип: Изобретение
Номер охранного документа: 0002695799
Дата охранного документа: 29.07.2019
Показаны записи 121-130 из 168.
10.12.2015
№216.013.9657

Способ измерения высоких и сверхвысоких доз, накопленных в термолюминесцентных детекторах ионизирующих излучений на основе оскида алюминия, в том числе при облучении в условиях повышенных температур окружающей среды

Изобретение относится к способу измерения накопленных высоких и сверхвысоких доз и мощностей доз ионизирующих излучений термолюминесцентными (ТЛ) детекторами на основе оксида алюминия. Способ измерения высоких и сверхвысоких доз, накопленных в термолюминесцентных детекторах ионизирующих...
Тип: Изобретение
Номер охранного документа: 0002570107
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9661

Установка для испытаний на высокотемпературную эрозию

Изобретение относится к испытательной технике и может быть использовано для испытания сплавов, покрытий и других материалов, работающих в условиях высокотемпературной эрозии, характерных для труб топочных экранов бойлеров тепловых электростанций. Установка содержит стойку, закрепленную в...
Тип: Изобретение
Номер охранного документа: 0002570117
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.96d9

Способ определения вязкости металлических материалов

Изобретение относится к материаловедению, а именно к способам исследования образцов металлических материалов путем приложения к ним динамической (ударной) кратковременной нагрузки, и может быть использовано для определения вязкости металлических материалов. Сущность: осуществляют испытания на...
Тип: Изобретение
Номер охранного документа: 0002570237
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.96da

Способ и устройство изучения плотности и/или поверхностного натяжения образца металлического сплава

Изобретение относится к технической физике, а именно к определению физико-химических параметров металлических сплавов методом геометрии «большой капли», т. е. путем измерения параметров неподвижно лежащей на подложке эллипсовидной капли образца сплава посредством фотометрической объемометрии....
Тип: Изобретение
Номер охранного документа: 0002570238
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9ac0

Ферритная коррозионностойкая сталь

Изобретение относится к области металлургии, а именно к составам ферритных коррозионно-стойких сталей, применяемых в машиностроении для изделий, к которым предъявляются требования обеспечения высокой твердости и коррозионной стойкости при достаточной пластичности. Сталь содержит углерод, хром,...
Тип: Изобретение
Номер охранного документа: 0002571241
Дата охранного документа: 20.12.2015
27.12.2015
№216.013.9dc6

Магнитотерапевтическое изделие

Группа изобретений относится к медицине, а именно к средствам профилактики и лечения заболеваний половой сферы мужчины и женщины, дисфункций. Кроме того, изобретения могут быть использованы в конструкции других магнитотерапевтических изделий (МТИ), представляющих части одежды....
Тип: Изобретение
Номер охранного документа: 0002572020
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9f58

Способ получения безобжигового зольного гравия

Изобретение относится к технологиям производства пористых заполнителей конструкционного назначения на основе техногенного сырья и рекомендуется для крупномасштабной переработки отходов теплоэнергетики в виде кислых и ультракислых зол. Способ получения безобжигового зольного гравия на основе...
Тип: Изобретение
Номер охранного документа: 0002572429
Дата охранного документа: 10.01.2016
20.01.2016
№216.013.9fac

Способ переработки отработанных нефтепродуктов

Изобретение относится к способу переработки отработанных нефтепродуктов. Способ включает процесс предварительного обезвоживания и отбензинивания сырья, термический крекинг исходного сырья в крекинг-реакторе с отделением парообразных продуктов от тяжелой фракции, конденсацию парообразных...
Тип: Изобретение
Номер охранного документа: 0002572518
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a04f

Способ получения литой цилиндрической заготовки

Предлагаемое изобретение относится к литейному производству и может быть использовано для получения заготовок типа дисков или колец из композиционных материалов. Способ включает получение расплавленного металлического материала матрицы, погружение в расплав трубки из кварцевого стекла, в...
Тип: Изобретение
Номер охранного документа: 0002572681
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a050

Способ получения многослойной полой заготовки

Изобретение относится к области металлургии и может быть использовано при получении многослойных полых заготовок. Первую полую заготовку исходных размеров подвергают прокатке на кольцепрокатном стане с получением заготовки первого перехода. Внутренний диаметр указанной заготовки увеличен до...
Тип: Изобретение
Номер охранного документа: 0002572682
Дата охранного документа: 20.01.2016
+ добавить свой РИД