×
10.01.2015
216.013.19d9

Результат интеллектуальной деятельности: СПОСОБ УСТАЛОСТНЫХ ИСПЫТАНИЙ ФЮЗЕЛЯЖА ЛЕТАТЕЛЬНОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области испытательной техники, в частности к установкам для ресурсных испытаний фюзеляжа циклическими нагрузками внутренним избыточным давлением сжатого воздуха. При реализации способа в ходе нагружения фюзеляжа давление сжатого воздуха, поступающего от внешнего источника питания, стабилизируют перед входным большерасходным клапаном. Открывают большерасходный клапан на заранее заданную величину, обеспечивающую программный темп увеличения давления в фюзеляже. На горизонтальном участке большерасходный клапан приоткрывают на заданную величину, обеспечивающую компенсацию части потерь газа из фюзеляжа за счет утечек. Точную компенсацию утечек получают за счет работы малорасходного регулирующего клапана управляемого по величине давления газа в фюзеляже. Технический результат заключается в повышении точности отработки программ нагружения, расширении области применения, упрощении конструкции. 2 ил.
Основные результаты: Способ усталостных испытаний фюзеляжа летательного аппарат путем нагружения его внутренним избыточным давлением сжатого воздуха, изменяющимся по циклическим трапециевидным программам, в процессе реализации которого на восходящем участке программы давление сжатого воздуха, поступающего от внешнего источника питания, стабилизируют перед входом большерасходного клапана, с выхода этого клапана сжатый воздух подают в фюзеляж, при выходе на горизонтальный участок программы большерасходный клапан закрывают, малорасходным регулирующим клапаном поддерживают постоянство давления на горизонтальном участке программы нагружения, по окончании этого участка малорасходный клапан закрывают и открывают клапан на линии сброса воздуха из фюзеляжа, отличающийся тем, что на восходящем участке программы нагружения большерасходный клапан открывают на заранее заданную постоянную величину, определяемую программным темпом увеличения давления в фюзеляже, затем при достижении в фюзеляже давления, равного не более 98% от давления на горизонтальном участке программы, большерасходный клапан прикрывают до величины проходного сечения, обеспечивающего компенсацию не менее 80% начальной утечки воздуха из фюзеляжа, установленной при пробных нагружениях фюзеляжа, невязку между реальной утечкой из фюзеляжа и расходом через приоткрытый большерасходный клапан, а также возможные отклонения от программы корректируют малорасходным регулирующим клапаном, соединенным своим входом с внешним источником питания, а выходом - с выходом большерасходного клапана, по окончании горизонтального участка программы большерасходный клапан полностью закрывают.

Изобретение относится к области испытательной техники, в частности, к установкам для прочностных испытаний летательных аппаратов.

Известен способ циклического нагружения гермофюзеляжа летательного аппарата при испытаниях на выносливость, положенный в основу устройства, патент РФ №788927 «Устройство для усталостных испытаний фюзеляжа летательного аппарата», МПК G01M 5/00.

В используемом в указанном устройстве способе для выполнения программы нагружения фюзеляжа внутренним избыточным давлением предусматривается использование двух штуцеров. Одного для наддува, другого для сброса воздуха из фюзеляжа. Применение одного штуцера для наддува, работающего по принципу "открыт-закрыт" ограничивает область реализуемых программ только программами пилообразной формы и снижает точность их отработки.

Наиболее близким к предлагаемому способу является способ, использованный в устройстве, описанном в патенте РФ №2416075 «Установка для нагружения сжатым воздухом гермофюзеляжа летательного аппарата при испытании на выносливость», МПК G01M 5/00. В этой установке при испытаниях гермофюзеляжей на выносливость по трапециевидным программам нагружения на восходящем и горизонтальном участках программы давление сжатого воздуха перед регулирующими большерасходными и малорасходным клапанами, подающими воздух в фюзеляж, стабилизируют, а программу нагружения обеспечивают блоком программного управления, управляющим всеми клапанами устройства, как подающими сжатый воздух в гермофюзеляж, так и сбрасывающим воздух из него в атмосферу. На восходящем участке программы работает большерасходный клапан, на горизонтальном - малорасходный. На нисходящем участке указанные клапаны закрывают и открывают клапан на линии сброса воздуха из фюзеляжа.

Недостатком данного способа нагружения является последовательное включение в линиях подачи воздуха в фюзеляж стабилизатора давления «после себя» и управляемых клапанов, обеспечивающих расход воздуха при автоматической реализации программ нагружения. Последовательное включение двух контуров управления расходом воздуха, подаваемого в фюзеляж, приводит к их взаимовлиянию, что влечет за собой ухудшение точности реализации программ вплоть до возникновения колебательного режима. Кроме того, такое решение требует ненужных дополнительных аппаратных затрат, т.к. при стабилизации давления перед клапанами, подающими сжатый воздух в фюзеляж, нет необходимости в непрерывном управлении ими. При стабильном давлении перед клапанами расход воздуха через них определяется только степенью их открытия, т.е. для соблюдения заданного темпа наддува фюзеляжа, зная расходную характеристику клапана, всегда возможно найти рабочую точку и установить в соответствующее положение затворный орган клапана. Следовательно, блок программного управления может быть значительно упрощен. Кроме того, применение известной установки жестко ограничено расходной характеристикой малорасходного клапана.

Техническим результатом предлагаемого способа является повышение точности отработки трапециевидных программ нагружения фюзеляжей внутренним избыточным давлением при испытаниях на выносливость, сокращение технических средств, необходимых для создания установок такого типа и расширение области их применения.

Данный технический результат достигают тем, что в процессе реализации способа усталостных испытаний фюзеляжа летательного аппарата путем нагружения его избыточным давлением сжатого воздуха по циклическим трапециевидным программам, на восходящем участке программы давление сжатого воздуха, поступающего от внешнего источника питания, стабилизируют перед входом большерасходного клапана, с выхода этого клапана сжатый воздух подают в фюзеляж, при выходе на горизонтальный участок программы большерасходный клапан закрывают, малорасходным регулирующим клапаном поддерживают постоянство давления на горизонтальном участке программы, по окончанию этого участка малорасходный клапан закрывают и открывают клапан на линии сброса воздуха из фюзеляжа, при этом на восходящем участке программы нагружения большерасходный клапан открывают на заранее заданную постоянную величину, определяемую программным темпом увеличения давления в фюзеляже, затем при достижении в фюзеляже давления не более 98% от давления на горизонтальном участке программы, большерасходный клапан прикрывают до величины проходного сечения, обеспечивающего компенсацию не менее 80% начальной утечки воздуха из фюзеляжа, установленной при пробных нагружениях фюзеляжа, невязку между реальной утечкой из фюзеляжа и расходом через приоткрытый большерасходный клапан, а также возможные отклонения от программы корректируют малорасходным регулирующим клапаном, соединенным входом с внешним источником питания, а выходом с выходом большерасходного клапана, по окончанию горизонтального участка программы большерасходный клапан полностью закрывают.

Для пояснения предлагаемого способа на фиг.1 приведена схема устройства, его реализующего. На фиг.2 приведена программа нагружения фюзеляжа.

Устройство состоит из регулятора давления «после себя» 1, малорасходного регулирующего клапана 2, большерасходного клапана 3, программно-управляющего устройства 4, первого ключа 5, первого задатчика 6, фюзеляжа 7, датчика давления 8, клапана 9 на линии сброса воздуха, второго ключа 10, второго задатчика 11 и третьего ключа 12. От внешнего источника питания сжатый воздух подают на входы регулятора «после себя» 1 и малорасходного клапана 2. С выхода регулятора «после себя» 1 сжатый воздух при стабилизированном на заданном уровне давлении подают на вход большерасходного клапана 3. С выходов клапанов 2, 3 воздух согласно программе подают в фюзеляж 7. Управление клапанами 2, 3, 9 осуществляют по командам, которые формируют посредством программно-управляющего устройства 4. Вход программно-управляющего устройства 4 через датчик давления 8 соединен с фюзеляжем 7. Два управляющих выхода устройства 4 соответственно соединены с управляющими входами клапанов 2 и 9 и третьего ключа 12. Два других управляющих выхода устройства 4 соответственно соединены с управляющими входами первого 5 и второго 10 ключей, входы которых связаны с выходами первого 6 и второго 11 задатчиков. Выходы ключей 5 и 10 объединены и связаны с сигнальным входом третьего ключа 12, сигнальный выход ключа 12 подан на управляющий вход большерасходного клапана 3.

Способ усталостных испытаний фюзеляжа летательного аппарата реализуется следующим образом (см. фиг.1, фиг.2). На восходящем участке трапециевидной программы сжатый воздух от внешнего источника питания (компрессора, газгольдера и т.п.) подают на вход регулятора давления «после себя» 1 и на вход малорасходного регулирующего клапана 2. После регулятора давления «после себя» 1 сжатый воздух подают на вход большерасходного клапана 3. Привод клапана 3 по сигналу, поступающему от программно-управляющего устройства 4 на ключи 5, 12 соединяют с первым задатчиком 6, определяющим положение затворного органа клапана 3, необходимое для реализации восходящего участка программы, тем самым клапан 3 сигналом от первого задатчика 6 устанавливают в такую рабочую точку расходной характеристики, при которой степень открытия клапана 3 обеспечивает заданную скорость наддува, с выхода клапана 3 сжатый воздух подают в фюзеляж. Для коррекции программной скорости наддува в случае неточно выбранной рабочей точки расходной характеристики клапана 3 или изменения давления на выходе регулятора «после себя» 1 используют малорасходный регулирующий клапан 2, с выхода которого воздух подают в фюзеляж. Клапаном 2 управляют от программно-управляющего устройства 4, по сигналу обратной связи от датчика давления 8, расположенного в фюзеляже 7. Клапан 9 на линии сброса воздуха из фюзеляжа в атмосферу закрыт.

Давление в фюзеляже будет расти и достигнет величины не более 98% от давления на горизонтальном участке программы нагружения. Датчик давления 8 передает эту информацию в программно-управляющий блок 4, который при этом размыкает ключ 5 и замыкает второй ключ 10, в результате чего на привод клапана 3 подают сигнал от второго задатчика 11. По этому сигналу клапан 3 прикрывают до величины проходного сечения, обеспечивающего компенсацию не менее 80% утечки воздуха из фюзеляжа. При поступлении воздуха в фюзеляж через приоткрытый клапан 3 и регулирующий малорасходный клапан 2 давление в фюзеляже поддерживают на уровне горизонтальной площадки программы (крейсерский режим полета самолета). Давление на этом уровне будет автоматически поддерживаться малорасходным клапаном 2, управляемым от программно-управляющего устройства 4.

На нисходящем участке программы по сигналам от программно-управляющего устройства 4 клапаны 2 и 3 закрывают, клапан 9 открывают и сбрасывают воздух из фюзеляжа 7 в атмосферу. Клапан 3 закрывают размыканием ключа 12.

Следует отметить, что совместная работа клапана 3, компенсирующего не менее 80% утечек, и малорасходного клапана 2 повышает точность стабилизации давления на горизонтальном участке программы, т.к. регулирующему малорасходному клапану 2 остается только компенсация малых возмущений.

Кроме того, совместная работа приоткрытого большерасходного клапана 4 и регулирующего малорасходного клапана 2 позволяет (при разной степени приоткрытия большого клапана) одинаково точно стабилизировать давление на горизонтальном участке программы при разных величинах утечек воздуха из фюзеляжа, что расширяет область применения устройств, построенных по предлагаемому способу.

Способ усталостных испытаний фюзеляжа летательного аппарат путем нагружения его внутренним избыточным давлением сжатого воздуха, изменяющимся по циклическим трапециевидным программам, в процессе реализации которого на восходящем участке программы давление сжатого воздуха, поступающего от внешнего источника питания, стабилизируют перед входом большерасходного клапана, с выхода этого клапана сжатый воздух подают в фюзеляж, при выходе на горизонтальный участок программы большерасходный клапан закрывают, малорасходным регулирующим клапаном поддерживают постоянство давления на горизонтальном участке программы нагружения, по окончании этого участка малорасходный клапан закрывают и открывают клапан на линии сброса воздуха из фюзеляжа, отличающийся тем, что на восходящем участке программы нагружения большерасходный клапан открывают на заранее заданную постоянную величину, определяемую программным темпом увеличения давления в фюзеляже, затем при достижении в фюзеляже давления, равного не более 98% от давления на горизонтальном участке программы, большерасходный клапан прикрывают до величины проходного сечения, обеспечивающего компенсацию не менее 80% начальной утечки воздуха из фюзеляжа, установленной при пробных нагружениях фюзеляжа, невязку между реальной утечкой из фюзеляжа и расходом через приоткрытый большерасходный клапан, а также возможные отклонения от программы корректируют малорасходным регулирующим клапаном, соединенным своим входом с внешним источником питания, а выходом - с выходом большерасходного клапана, по окончании горизонтального участка программы большерасходный клапан полностью закрывают.
СПОСОБ УСТАЛОСТНЫХ ИСПЫТАНИЙ ФЮЗЕЛЯЖА ЛЕТАТЕЛЬНОГО АППАРАТА
СПОСОБ УСТАЛОСТНЫХ ИСПЫТАНИЙ ФЮЗЕЛЯЖА ЛЕТАТЕЛЬНОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 221-230 из 255.
01.12.2019
№219.017.e990

Способ генерации звука для испытаний конструкций и устройство для его реализации

Изобретение относится к области испытательной техники, в частности, к технической акустике. Способ генерации звука основан на модулировании потока сжатого воздуха, дросселируемого через клапанный узел с изменяемой собственной частотой колебаний, состоящий из коаксиально расположенных...
Тип: Изобретение
Номер охранного документа: 0002707587
Дата охранного документа: 28.11.2019
20.02.2020
№220.018.0411

Воздухозаборник самолета

Изобретение относится к воздухозаборникам двигателей летательных аппаратов. Воздухозаборник самолета содержит криволинейный воздушный канал (1). По ширине канала (1) вдоль его центральной линии, как минимум в месте изгиба канала (1) установлена пластина (5). Пластина (5) установлена по длине...
Тип: Изобретение
Номер охранного документа: 0002714555
Дата охранного документа: 18.02.2020
20.02.2020
№220.018.0413

Устройство для определения аэродинамических характеристик планирующего парашюта в аэродинамической трубе

Изобретение относится к авиационной технике и предназначено для измерения аэродинамических нагрузок, действующих на планирующий парашют (ПП) в воздушном потоке аэродинамической трубы (АДТ) при различных углах атаки и скольжения. Устройство содержит основание, установленную на нем платформу,...
Тип: Изобретение
Номер охранного документа: 0002714529
Дата охранного документа: 18.02.2020
29.02.2020
№220.018.07a2

Способ определения парциальных частот управляемой поверхности летательного аппарата и устройство для его осуществления

Изобретение относится к области авиационной или ракетной техники, а именно к измерению необходимых при исследовании флаттера частотных характеристик (парциальных частот) управляемой поверхности (УП) летательного аппарата (ЛА). Предлагается способ, в котором закрепляют в пространстве летательный...
Тип: Изобретение
Номер охранного документа: 0002715369
Дата охранного документа: 26.02.2020
06.03.2020
№220.018.09cc

Способ охлаждения воздуха в теплообменном аппарате и теплообменный аппарат

Изобретение относится к холодильной технике, а именно к контактным газожидкостным теплообменным аппаратам. В способе охлаждения воздуха в теплообменном аппарате, в котором осуществляют подачу воздуха тангенциально в нижнюю часть теплообменного аппарата с образованием восходящего вихревого...
Тип: Изобретение
Номер охранного документа: 0002715944
Дата охранного документа: 04.03.2020
15.03.2020
№220.018.0c39

Импульсный резонаторный эжектор

Изобретение относится к струйной технике, а конкретно к газовым эжекторам. Эжектор содержит подводной канал, камеру смешения, полость разрежения со щелью, соединяющей ее с областью отбора газа, выходной диффузор и установленные между подводным каналом и камерой смешения полость и резонаторную...
Тип: Изобретение
Номер охранного документа: 0002716650
Дата охранного документа: 13.03.2020
21.03.2020
№220.018.0e13

Многослойная авиационная панель

Изобретение относится к области авиационной техники и касается силовых авиационных конструкций из полимерных однонаправленных композиционных материалов, в частности силовых конструкций гермопанелей с малой кривизной фюзеляжа гражданского самолета. Предлагаемая многослойная панель содержит...
Тип: Изобретение
Номер охранного документа: 0002717267
Дата охранного документа: 19.03.2020
25.03.2020
№220.018.0f39

Крыло летательного аппарата

Изобретение относится к авиационной технике и может быть использовано при проектировании крыльев дозвуковых самолетов различного назначения. Крыло летательного аппарата состоит из центроплана и консоли, выполнено с удлинением λ=7÷12, стреловидностью χ=10÷35° и содержит сверхкритические профили....
Тип: Изобретение
Номер охранного документа: 0002717416
Дата охранного документа: 23.03.2020
25.03.2020
№220.018.0fc2

Крыло летательного аппарата

Изобретение относится к авиационной технике. Крыло летательного аппарата состоит из центроплана и консоли, выполнено с удлинением λ=9÷12, стреловидностью χ=10÷35°. Крыло летательного аппарата при виде сверху в области от 0 до 33% размаха крыла выполнено с наплывом, в области от 27 до 35%...
Тип: Изобретение
Номер охранного документа: 0002717412
Дата охранного документа: 23.03.2020
25.03.2020
№220.018.0fdb

Крыло летательного аппарата

Изобретение относится к авиационной технике. Крыло летательного аппарата состоит из центроплана, консоли и выполнено со стреловидностью χ=28-35°. Относительная толщина профилей имеет величину 14-16% в бортовом сечении и величину 11-12% в сечениях 30-40% размаха крыла. Имеется положительная...
Тип: Изобретение
Номер охранного документа: 0002717405
Дата охранного документа: 23.03.2020
Показаны записи 141-147 из 147.
29.05.2019
№219.017.69c6

Способ коррекции результатов измерения тензометрическим мостовым датчиком с инструментальным усилителем

Изобретение относится к области измерительной техники и может быть использовано для измерения неэлектрических величин при помощи тензометрических мостовых датчиков с инструментальными усилителями, запитанных постоянным током. Техническим результатом изобретения является исключение...
Тип: Изобретение
Номер охранного документа: 0002469340
Дата охранного документа: 10.12.2012
10.08.2019
№219.017.bdea

Электропневматический генератор звука

Изобретение относится к технической акустике и может быть использовано для испытаний конструкций на акустическую усталостную прочность. Электропневматический генератор звука содержит корпус, форкамеру, постоянные магниты, обмотки возбуждения, упругие элементы, неподвижную и подвижную...
Тип: Изобретение
Номер охранного документа: 0002696946
Дата охранного документа: 07.08.2019
01.12.2019
№219.017.e990

Способ генерации звука для испытаний конструкций и устройство для его реализации

Изобретение относится к области испытательной техники, в частности, к технической акустике. Способ генерации звука основан на модулировании потока сжатого воздуха, дросселируемого через клапанный узел с изменяемой собственной частотой колебаний, состоящий из коаксиально расположенных...
Тип: Изобретение
Номер охранного документа: 0002707587
Дата охранного документа: 28.11.2019
27.03.2020
№220.018.10e0

Способ прочностных испытаний натурных конструкций

Изобретение относится к технике прочностных испытаний натурных конструкций, в частности к способам двух известных видов испытаний, один из которых испытания на статическую прочность, а другой испытания на усталость, которые проводят на двух идентичных полноразмерных конструкциях. В процессе...
Тип: Изобретение
Номер охранного документа: 0002717750
Дата охранного документа: 25.03.2020
16.05.2023
№223.018.6413

Способ определения коэффициента интенсивности напряжений для трещины в конструкции

Изобретение относится к области экспериментальной механики и предназначено для определения коэффициента интенсивности напряжений (КИН) для усталостных трещин, возникающих в полноразмерных тонкостенных авиационных конструкциях в процессе их циклического нагружения в эксплуатации. Способ...
Тип: Изобретение
Номер охранного документа: 0002773260
Дата охранного документа: 01.06.2022
20.05.2023
№223.018.652e

Модулятор потока газа

Изобретение относится к акустике, в частности к пневматическим излучателям звуковых сигналов. Модулятор потока газа содержит клапанный узел, состоящий из двух коаксиально расположенных полых цилиндров с одинаковой системой щелей. Один цилиндр подвижный, другой неподвижный. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002742283
Дата охранного документа: 04.02.2021
20.05.2023
№223.018.6657

Предохранительное устройство

Изобретение относится к испытаниям летательных аппаратов на прочность. Предохранительное устройство содержит мембранный узел, который выполняется в виде гибкого торообразного сильфона (5), одно основание которого герметично соединено с затвором (4) рабочего клапана, а другое с крышкой (2)....
Тип: Изобретение
Номер охранного документа: 0002767086
Дата охранного документа: 16.03.2022
+ добавить свой РИД