×
10.01.2015
216.013.19b5

Результат интеллектуальной деятельности: СПОСОБ ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам гидравлического разрыва пласта, сложенного карбонатными породами. Способ включает вскрытие пласта вертикальной скважиной, спуск в скважину на колонне труб гидромониторного инструмента с четным количеством струйных насадок и размещение его в заданном интервале пласта, закачку рабочей жидкости через струйные насадки гидромониторного инструмента для образования каверн в пласте, последующий разрыв пласта из каверн за счет давления торможения в них струи. При этом используют гидромониторный инструмент с серией струйных насадок, расположенных вдоль инструмента с расстоянием между насадками в линии не более двух диаметров обсадной колонны. Гидромониторный инструмент поворачивают на заданный угол для изменения направления развития каждой последующей трещины. Трещины образуют при давлении нагнетания рабочей жидкости в обсадной колонне ниже бокового горного давления. Перед спуском колонны труб в скважину на нижний конец гидромониторного инструмента устанавливают поворотное устройство и механический пакер. С целью компенсации утечек и расклинивания трещин в пласте в процессе гидравлического разрыва пласта применяют кислоту в объеме, равном 20% от объема рабочей жидкости, производят закачку рабочей жидкости по колонне труб через гидромониторный инструмент в каверну до создания трещины разрыва, после чего в заколонное пространство скважины начинают закачивать кислоту с целью компенсации утечек и расклинивания трещины. Давление закачки кислоты в заколонное пространство скважины составляет 85% от давления, создаваемого в колонне труб в процессе развития трещины, по окончании развития трещины и расклинивания трещины в одном направлении приподнимают колонну труб на 1 м, поворачивают колонну труб на угол, соответствующий направлению формирования следующей трещины, и опускают, затем повторяют технологические операции. Технический результат заключается в повышении точности ориентации трещин, эффективности и надежности проведения ГРП в карбонатных коллекторах. 3 ил.
Основные результаты: Способ гидравлического разрыва пласта, включающий вскрытие пласта вертикальной скважиной, спуск в скважину на колонне труб гидромониторного инструмента с четным количеством струйных насадок и размещение его в заданном интервале пласта, закачку рабочей жидкости через струйные насадки гидромониторного инструмента для образования каверн в пласте, последующий разрыв пласта из каверн за счет давления торможения в них струи, при этом используют гидромониторный инструмент с серией струйных насадок, расположенных вдоль инструмента с расстоянием между насадками в линии не более двух диаметров обсадной колонны, гидромониторный инструмент поворачивают на заданный угол для изменения направления развития каждой последующей трещины, при этом трещины образуют при давлении нагнетания рабочей жидкости в обсадной колонне ниже бокового горного давления, отличающийся тем, что перед спуском колонны труб в скважину на нижний конец гидромониторного инструмента устанавливают поворотное устройство и механический пакер, спускают колонну труб в скважину до тех пор, пока гидромониторная насадка не разместится напротив заданного интервала пласта, подлежащего гидравлическому разрыву, производят посадку механического пакера, определяют объем рабочей жидкости для создания и развития трещин, производят закачку рабочей жидкости по колонне труб через струйные насадки гидромониторного инструмента для образования каверн в пласте, при этом с целью компенсации утечек и расклинивания трещин в пласте в процессе гидравлического разрыва пласта применяют кислоту в объеме, равном 20% от объема рабочей жидкости, производят закачку рабочей жидкости по колонне труб через гидромониторный инструмент в каверну до создания трещины разрыва, после чего в заколонное пространство скважины начинают закачивать кислоту с целью компенсации утечек и расклинивания трещины, при этом закачку жидкости по колонне труб продолжают, при этом давление закачки кислоты в заколонное пространство скважины составляет 85% от давления, создаваемого в колонне труб в процессе развития трещины, по окончании развития трещины и расклинивания трещины в одном направлении приподнимают колонну труб на 1 м, поворачивают колонну труб на угол, соответствующий направлению формирования следующей трещины, и опускают, затем повторяют технологические операции, начиная с закачки жидкости через струйные насадки гидромониторного инструмента для образования каверн в пласте, количество поворотов колонны труб соответствует количеству направлений трещин, создаваемых в данном интервале пласта.

Изобретение относится к нефтегазодобывающей промышленности, а именно к способам гидравлического разрыва пласта, сложенного карбонатными породами, и способствует повышению продуктивности скважин.

Известен способ гидравлического разрыва пласта (ГРП) (Справочное руководство по проектированию разработки и эксплуатации нефтяных месторождений. Под ред. Ш.К. Гиматудинова. - М.: Недра, 1983. - С.333-343), заключающийся в первичном вскрытии пласта скважиной, вторичном вскрытии его перфорацией, нагнетании технологической жидкости при давлении, превышающем прочность пород призабойной зоны скважины и образовании трещины, ее заполнении высокопроницаемым и механически прочным материалом-наполнителем, который уплотняется при снижении давления и сжатии трещины, при этом в скважине с глубин выше 1500 м образуется вертикальная трещина, распространяющаяся в противоположных направлениях от ствола вглубь пласта и по вертикали, ее заполнение осуществляется текучей смесью технологической жидкости и наполнителя (песок, проппант). Давление начала разрыва пласта значительно превышает предельно допустимое давление в колонне скважины, поэтому продуктивный интервал изолируется пакером, разобщающим кольцевое пространство с низким давлением и сообщающиеся НКТ и забой с высоким давлением, поэтому создаваемая трещина проходит через продуктивные прослои и служит основным дренирующим пласт каналом.

Недостатками данного способа являются:

- во-первых, возможность создания не более одной трещины;

- во-вторых, невозможность управления направлением развития трещины;

- в-третьих, сложность достижения равномерного заполнения трещины, неизбежность ее сужения при снижении давления и сжатии.

Также известен способ гидравлического разрыва пласта (патент США №5765642, МПК E21B 43/114, 1996), вскрытого стволом скважины, который не требует применения механизмов изоляции пласта, при этом способ включает размещение гидрореактивного инструмента, имеющего, по меньшей мере, одно создающее струю сопло, в стволе скважины рядом с пластом, в котором необходимо создать трещины, затем введение жидкости разрыва через это сопло против пласта под давлением, достаточным для создания в нем полости и разрыва пласта за счет давления торможения струи в этой полости, при этом вводимая струя жидкости может содержать расклинивающий агент, который оседает в трещине, когда давление создания струи жидкости медленно понижается и трещина смыкается. Кроме того, жидкость разрыва может содержать одну или несколько кислот для растворения пластовых материалов и увеличения созданной трещины.

Недостатками данного способа являются:

- во-первых, возможность образования только одной трещины, ориентированной в направлении максимального напряжения в пласте с анизотропией поля напряжения и случайно в пластах с изотропными полями напряжений;

- во-вторых, высокие утечки в пласт технологической жидкости;

- в-третьих, формирование на стенках трещины корки, впоследствие оказывающей негативное влияние на проницаемость пристеночного слоя.

Наиболее близким по технической сущности и достигаемому результату является способ гидравлического разрыва пласта (патент RU №2311528, МПК E21B 43/26, опубл. 27.11.2007, бюл. №33), включающий вскрытие пласта вертикальной или наклонной скважиной, размещение в ней в заданном интервале пласта гидромониторного инструмента с серией струйных насадок, закачку рабочей жидкости через струйные насадки гидромониторного инструмента для образования каверн в пласте, последующий разрыв пласта из каверн за счет давления торможения в них струи, при этом используют гидромониторный инструмент с серией струйных насадок, расположенных вдоль инструмента в две линии с фазировкой 180° и расстоянием между насадками в линии не более двух диаметров обсадной колонны, гидромониторный инструмент поворачивают на заданный угол для изменения направления развития каждой последующей трещины, при этом трещины образуют при давлении в обсадной колонне ниже бокового горного давления, а в качестве рабочей жидкости используют жидкость, родственную пластовой жидкости.

Недостатками способа являются:

- во-первых, низкая точность изменения направления трещины, это связано с тем, что гидромониторный инструмент со струйными насадками, спущенный в скважину на колонне труб, поворачивают на заданный угол, например на 90°, для изменения направления развития каждой последующей трещины путем поворота колонны труб с устья скважины, при этом происходит скручивание колонны труб, особенно в искривленных скважинах и в скважинах с глубиной выше 1000 м. В результате образуются трещины с отклонением от заданного направления;

- во-вторых, малая эффективность гидравлического разрыва пласта (ГРП) в карбонатных коллекторах с высокой проницаемостью, а также если карбонатный коллектор содержит неоднородный пласт с прослоями пористых и проницаемых интервалов, которые обладают высокой проводимостью, вызывающей высокие утечки в процессе проведения ГРП вследствии высокой фильтрации рабочей жидкости в пласт, что приводит к быстрому «схлопыванию» (закрытию) трещины;

- в-третьих, низкая надежность ГРП, связанная с тем, что в процессе его проведения происходит неравномерное развитие двух трещин, это обусловлено наличием струйных насадок, расположенных вдоль инструмента в две линии с фазировкой 180°, это приводит к тому, что трещина преимущественно будет развиваться только в одном из направлений по пути наименьшего сопротивления, а также в процессе проведения ГРП происходит растяжение колонны труб в вертикальной скважине, обусловленное отсутствием пакера в скважине.

Техническими задачами предложения являются повышение точности ориентации трещин при повороте колонны труб с гидромониторным инструментом с устья скважины, а также повышение эффективности проведения гидравлического разрыва карбонатного пласта за счет компенсации утечек рабочей жидкости в пласт с одновременным развитием и расклиниванием трещины и повышение его надежности за счет последовательного выполнения трещин в заданном направлении относительно оси скважины с исключением растяжения колонны труб в процессе ГРП.

Поставленные технические задачи решаются способом гидравлического разрыва пласта, включающим вскрытие пласта вертикальной скважиной, спуск в скважину на колонне труб гидромониторного инструмента с четным количеством струйных насадок и размещение его в заданном интервале пласта, закачку рабочей жидкости через струйные насадки гидромониторного инструмента для образования каверн в пласте, последующий разрыв пласта из каверн за счет давления торможения в них струи, при этом используют гидромониторный инструмент с серией струйных насадок, расположенных вдоль инструмента с расстоянием между насадками в линии не более двух диаметров обсадной колонны, гидромониторный инструмент поворачивают на заданный угол для изменения направления развития каждой последующей трещины, при этом трещины образуют при давлении нагнетания рабочей жидкости в обсадной колонне ниже бокового горного давления.

Новым является то, что перед спуском колонны труб в скважину на нижний конец гидромониторного инструмента устанавливают поворотное устройство и механический пакер, спускают колонну труб в скважину до тех пор, пока гидромониторная насадка не разместится напротив заданного интервала пласта, подлежащего гидравлическому разрыву, производят посадку механического пакера, определяют объем рабочей жидкости для создания и развития трещин, производят закачку рабочей жидкости по колонне труб через струйные насадки гидромониторного инструмента для образования каверн в пласте, при этом с целью компенсации утечек и расклинивания трещин в пласте в процессе гидравлического разрыва пласта применяют кислоту в объеме, равном 20% от объема рабочей жидкости, производят закачку рабочей жидкости по колонне труб через гидромониторный инструмент в каверну до создания трещины разрыва, после чего в заколонное пространство скважины начинают закачивать кислоту с целью компенсации утечек и расклинивания трещины, при этом закачку жидкости по колонне труб продолжают, при этом давление закачки кислоты в заколонное пространство скважины составляет 85% от давления, создаваемого в колонне труб в процессе развития трещины, по окончании развития трещины и расклинивания трещины в одном направлении приподнимают колонну труб на 1 м, поворачивают колонну труб на угол, соответствующий направлению формирования следующей трещины, и опускают, затем повторяют технологические операции, начиная с закачки жидкости через струйные насадки гидромониторного инструмента для образования каверн в пласте, количество поворотов колонны труб соответствует количеству направлений трещин, создаваемых в данном интервале пласта.

Предлагаемый способ гидравлического разрыва пласта реализуют в карбонатных коллекторах при следующих условиях:

- интервал проведения ГРП содержит неоднородный пласт с прослоями пористых и проницаемых интервалов, которые обладают большей проводимостью, позволяющей производить дифференциальное травление стенок трещины;

- высокая проницаемость пласта и/или кольматация приствольной зоны.

На фиг.1 изображен предлагаемый способ ГРП.

На фиг.2 изображена развертка поворотного устройства.

На фиг.3 изображено сечение скважины в интервале проведения ГРП.

Предлагаемый способ реализуют следующим образом.

Вскрывают пласт вертикальной скважиной 1 (см. фиг.1). На устье вертикальной скважины 1 колонну труб 2 снизу-вверх оснащают механическим пакером 3, поворотным устройством 4, оснащенным несколькими вертикальными осевыми проточками 5′, 5n (см. фиг.1 и 2), соединенными между собой одной горизонтальной проточкой 6, а выше - заглушенным снизу гидромониторным инструментом 7 с четным количеством струйных насадок 8′, 8n, расположенных вдоль гидромониторного инструмента 7 в одну линию.

Количество осевых проточек 5′, 5n (см. фиг.2) и расстояние между ними зависит от количества направлений 9′, 9n (см. фиг.1 и 3), в которых необходимо образовать, развить и расклинить трещины 10′, 10n (см. фиг.1) и угла их развития относительно оси скважины 1.

Например, необходимо создать четыре трещины 10′, 10′′, 10′′′, 10′′′′ в соответствующих направлениях 9′, 9′′, 9′′′, 9′′′′ с углами между трещинами, равными 90°, поэтому поворотное устройство 4 оснащают четырьмя вертикальными осевыми проточками 5′, 5′′, 5′′′, 5′′′′ (см. фиг.2), при этом штифт 11 устанавливают в любой из вертикальных осевых проточек, например, 5′. Длины вертикальных осевых проточек 5′, 5′′, 5′′′, 5′′′′ равны между собой и составляют, например, h=0,9 м.

Спускают колонну труб 2 (см. фиг.1) в вертикальную скважину 1 с вскрытым перфорацией продуктивным пластом и устанавливают напротив интервала, подлежащего ГРП.

Количество струйных насадок 8′, 8n определяют исходя из расчетов гидравлических потерь жидкости при движении в колонне труб 2 при оптимальных расходах проведения ГРП. Например, в гидромониторном инструменте 7 выполняют четыре насадки диаметром 4,5 мм.

По колонне труб 2 через струйные насадки 8′, 8n гидромониторного инструмента 7 подают рабочую жидкость, например смесь дегазированной нефти с песком, причем концентрация песка в жидкости-носителе соответствует 50-100 г на один литр рабочей жидкости, и производят гидромониторную резку обсадной колонны скважины 1 с образованием каверн длиной 15-30 см (на фиг.1,2, 3 не показаны).

Определяют объем рабочей жидкости для создания и развития трещин 10′, 10′′, 10′′′, 10′′′′ (см. фиг.1 и 3) из соответствующих каверн. В качестве рабочей жидкости применяют жидкости разрыва, например известные составы, разработанные ЗАО «Химекоганг», имеющие торговые наименования «Химеко-Н» (ТУ2481-053-17197708), «Химеко-Т» (ТУ2481-077-17197708-03), «Химеко-В» (ТУ 2499-038-17197708-98).

В качестве кислоты, выполняющей роль расклинивающего агента трещин 10′, 10′′, 10′′′, 10′′′′, образуемых в результате ГРП жидкостью разрыва, используют любую известную кислоту: соляную, плавикововую или другие, применяемые при ГРП с целью расклинивания трещины.

Например, в качестве кислоты применяют 15%-ную кислоту соляную ингибированную по ТУ 2122-205-00203312-2000 (производитель ОАО «Каустик», г. Стерлитамак, Республика Башкортостан, Россия).

Определяют общие объемы рабочей жидкости и кислоты.

Определяют общий объем рабочей жидкости по формуле:

Vг=k·Hп,

где Vг - общий объем рабочей жидкости, м3;

k=11-12 - коэффициент перевода, м3/м;

Hп - расстояние между верхним и нижним струйными насадками 8′, 8n гидромониторного инструмента 7, м.

Например, расстояние Hп=5 м. Тогда, подставляя значения в формулу, получаем объем закачиваемой жидкости разрыва:

Vг=k·Hп.

Vг=(11-12)×5=55-60 м3.

Примем общий объем рабочей жидкости, закачиваемой в четыре трещины: 10′, 10′′, 10′′′, 10′′′′, равным 56 м3.

Общий объем кислоты для компенсации утечек и расклинивания трещин в пласте принимают равным 20% от общего объема рабочей жидкости, т.е. Vк=(20%·Vг)/100%=(20%·56 м3)/100%=11,2 м3. Таким образом, суммарный объем кислоты, закачиваемой в четыре трещины: 10′, 10′′, 10′′′, 10′′′′, составляет 11,2 м3.

Объемы жидкости разрыва (Vг) и кислоты (Vк) делят на равные части в зависимости от количества трещин, создаваемых в данном интервале пласта. Например, как указано выше, образуют четыре трещины 10′, 10′′, 10′′′, 10′′′′, которые соответствуют положению штифта 11 (см. фиг.1, 2 и 3) в соответствующих вертикальных осевых проточках 5′, 5′′, 5′′′, 5′′′′ поворотного устройства 4 с углом 90° между ними.

Тогда объем рабочей жидкости, закачиваемой в каждую трещину, составляет:

Vгi=56 м3/4=14 м3, а объем кислоты, закачиваемой в каждую трещину составляет:

Vкi=11,2 м3/4=2,8 м3.

Закачку рабочей жидкости по колонне труб 2 через струйные насадки 8′, 8n гидромониторного инструмента 7 в каверны в направлении 9′ производят до создания давления трещинообразования (Ртр), например, равное 22 МПа.

В этих условиях образуется трещина 10′, объединяющая все созданные при гидроперфорации каверны и ориентированная в направлении 9′ их расположения.

После падения давления в колонне труб 2, например на 20% от давления трещинообразования (Ртр=22 МПа), т.е. до 17,6 МПа, в заколонное пространство 12 скважины 1 начинают подавать кислоту с целью компенсации утечек и расклинивания трещины 6′, при этом закачку жидкости разрыва по колонне труб 2 продолжают.

Давление закачки кислоты (Р3) в заколонное пространство скважины составляет 85% от давления, создаваемого в колонне труб (Рт=17,6 МПа), в процессе развития трещины 10′, т.е. давление, создаваемое в заколонном пространстве 12 скважины 1, должно быть:

Р3=(85%·17,6 МПа)/100%=15 МПа.

В трещину 10′ закачивают кислоту под давлением 15 МПа в объеме 2,8 м3. Расклинивание с применением кислот позволяет увеличить ширину трещины в карбонатных коллекторах, содержащих неоднородный пласт с прослоями пористых и проницаемых интервалов, которые обладают высокой проводимостью, позволяющей производить дифференциальное травление стенок трещины, вследствие чего повышается эффективность ГРП.

Кислота из заколонного пространства 12 (см. фиг.1) вследствие образования области разряжения (низкого давления рн) в заколонном пространстве 12 напротив струйных насадок 8′, 8n гидромониторного инструмента 7 увлекается в каверны вместе с жидкостью разрыва и далее попадает в трещину 10′ (см. фиг.1 и 2), где расклинивает ее в процессе трещинообразования.

Таким образом, кислота, закачиваемая в заколонное пространство 12 скважины 1, компенсирует утечки рабочей жидкости в пласт и расклинивает трещину, что предотвращает «схлопывание» (закрытие трещины).

По окончании закачки кислоты в трещину 10′ с устья скважины 1 производят натяжение колонны 2 вверх и создают дополнительную нагрузку выше веса колонны труб 2, например 10·103 H, достаточную для разрушения срезного штифта 11.

Приподнимают колонну труб 2 (см. фиг.2) на 1 м, т.е. на расстояние большее, чем длина вертикальных осевых проточек 5′, 5′′, 5′′′, 5′′′′, равных между собой и составляющих 0,9 м с учетом растяжения колонны труб 2. Поворачивают колонну труб 2 на угол 90°, соответствующий направлению формирования следующей трещины 10′′, и опускают колонну труб 2, при этом штифт 11 перемещается из вертикальной осевой проточки 5′ через горизонтальную проточку 6 в вертикальную осевую проточку 5′′, напротив которой, как описано выше, образуют, развивают и расклинивают соответствующую трещину 10′′ (на фиг.1 и 2 не показана).

Поочередное выполнение трещин 10′, 10′′, 10′′′, 10′′′′ в заданных направлениях 9′, 9′′, 9′′′, 9′′′′ (см. фиг.3) относительно оси скважины 1 исключает образование «двукрылой» трещины разной длины, а наличие механического пакера в составе колонны труб позволяет исключить растяжение колонны труб.

Аналогичным образом формируют каверны и проводят ГРП в данном интервале пласта в двух оставшихся направлениях с образованием, развитием и расклиниванием трещин.

Наличие поворотного устройства 4 позволяет повысить точность ориентации трещин 10′, 10′′, 10′′′, 10′′′′ в соответствующих направлениях 9′, 9′′, 9′′′, 9′′′′ при повороте колонны труб 2 с гидромониторным инструментом 7 с устья скважины.

Предлагаемый способ позволяет повысить точность ориентации трещин при повороте колонны труб с гидромониторным инструментом с устья скважины, а также эффективность и надежность проведения ГРП в карбонатных коллекторах.

Способ гидравлического разрыва пласта, включающий вскрытие пласта вертикальной скважиной, спуск в скважину на колонне труб гидромониторного инструмента с четным количеством струйных насадок и размещение его в заданном интервале пласта, закачку рабочей жидкости через струйные насадки гидромониторного инструмента для образования каверн в пласте, последующий разрыв пласта из каверн за счет давления торможения в них струи, при этом используют гидромониторный инструмент с серией струйных насадок, расположенных вдоль инструмента с расстоянием между насадками в линии не более двух диаметров обсадной колонны, гидромониторный инструмент поворачивают на заданный угол для изменения направления развития каждой последующей трещины, при этом трещины образуют при давлении нагнетания рабочей жидкости в обсадной колонне ниже бокового горного давления, отличающийся тем, что перед спуском колонны труб в скважину на нижний конец гидромониторного инструмента устанавливают поворотное устройство и механический пакер, спускают колонну труб в скважину до тех пор, пока гидромониторная насадка не разместится напротив заданного интервала пласта, подлежащего гидравлическому разрыву, производят посадку механического пакера, определяют объем рабочей жидкости для создания и развития трещин, производят закачку рабочей жидкости по колонне труб через струйные насадки гидромониторного инструмента для образования каверн в пласте, при этом с целью компенсации утечек и расклинивания трещин в пласте в процессе гидравлического разрыва пласта применяют кислоту в объеме, равном 20% от объема рабочей жидкости, производят закачку рабочей жидкости по колонне труб через гидромониторный инструмент в каверну до создания трещины разрыва, после чего в заколонное пространство скважины начинают закачивать кислоту с целью компенсации утечек и расклинивания трещины, при этом закачку жидкости по колонне труб продолжают, при этом давление закачки кислоты в заколонное пространство скважины составляет 85% от давления, создаваемого в колонне труб в процессе развития трещины, по окончании развития трещины и расклинивания трещины в одном направлении приподнимают колонну труб на 1 м, поворачивают колонну труб на угол, соответствующий направлению формирования следующей трещины, и опускают, затем повторяют технологические операции, начиная с закачки жидкости через струйные насадки гидромониторного инструмента для образования каверн в пласте, количество поворотов колонны труб соответствует количеству направлений трещин, создаваемых в данном интервале пласта.
СПОСОБ ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА
СПОСОБ ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА
СПОСОБ ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА
Источник поступления информации: Роспатент

Показаны записи 511-520 из 556.
29.04.2019
№219.017.456e

Установка для одновременно-раздельной закачки воды в пласты

Изобретение относится к нефтегазодобывающей промышленности, в частности к системе поддержания пластового давления. Техническим результатом изобретения является повышение эффективности измерения и регулирования объемов закачки воды в пласты как совместно, так и раздельно. Установка включает...
Тип: Изобретение
Номер охранного документа: 0002436934
Дата охранного документа: 20.12.2011
29.04.2019
№219.017.45a6

Способ разработки залежи нефти в карбонатных коллекторах, осложненной эрозионным врезом

Предложение относится к нефтедобывающей промышленности, а именно к области разработки залежи нефти, представленной слабопроницаемыми карбонатными коллекторами, осложненной эрозионным врезом. Обеспечивает повышение эффективности разработки за счет оптимального размещения и эксплуатации...
Тип: Изобретение
Номер охранного документа: 0002434124
Дата охранного документа: 20.11.2011
09.05.2019
№219.017.4f35

Скважинная штанговая насосная установка

Изобретение относится к нефтедобывающей промышленности, в частности к скважинным насосным установкам, и может быть использовано для эксплуатации обводненных нефтяных скважин с раздельным подъемом на поверхность воды и нефти. Установка включает колонну лифтовых труб, колонну полых штанг,...
Тип: Изобретение
Номер охранного документа: 0002459116
Дата охранного документа: 20.08.2012
24.05.2019
№219.017.6032

Способ вызова притока пластового флюида из скважины

Изобретение относится к нефтегазовой промышленности и может быть использовано при освоении скважин с пластовым давлением в пределах от 0,8 до 1 от гидростатического давления столба жидкости в скважине. Способ вызова притока пластового флюида из скважины включает спуск колонны...
Тип: Изобретение
Номер охранного документа: 0002470150
Дата охранного документа: 20.12.2012
24.05.2019
№219.017.60a3

Способ разработки месторождения тяжелой нефти или битума с регулированием закачки теплоносителя в скважину

Изобретение относится к нефтяной промышленности. Технический результат - повышение эффективности работы паровой камеры за счет равномерной выработки запасов тяжелой нефти или битума путем прогрева на начальном этапе в большей степени начальной зоны прогрева продуктивного пласта, исключение...
Тип: Изобретение
Номер охранного документа: 0002469185
Дата охранного документа: 10.12.2012
24.05.2019
№219.017.60a5

Башмак для установки профильного перекрывателя в скважине

Изобретение относится к бурению скважин, в частности к устройствам для установки профильных перекрывателей при изоляции ими зон осложнений бурения. Башмак для установки профильного перекрывателя в скважине включает корпус с центральным проходным каналом с седлом и расположенным выше кольцевым...
Тип: Изобретение
Номер охранного документа: 0002469176
Дата охранного документа: 10.12.2012
24.05.2019
№219.017.60a6

Способ разработки месторождения тяжелой нефти или битума с регулированием закачки теплоносителя в скважину

Изобретение относится к нефтяной промышленности и может найти применение при разработке месторождения тяжелой нефти или битума. Обеспечивает повышение эффективности способа за счет постепенной выработки запасов и исключения прямого прорыва теплоносителя в добывающую скважину. Сущность...
Тип: Изобретение
Номер охранного документа: 0002469187
Дата охранного документа: 10.12.2012
24.05.2019
№219.017.60a7

Клиновой отклонитель для забуривания боковых стволов из скважины

Изобретение относится к области бурения и капитального ремонта газонефтяных скважин, а именно к устройствам, предназначенным для забуривания боковых стволов из ранее пробуренных обсаженных и необсаженных скважин. Содержит отклоняющий клин с гидравлическим якорем, канал для подачи жидкости,...
Тип: Изобретение
Номер охранного документа: 0002469172
Дата охранного документа: 10.12.2012
29.05.2019
№219.017.679b

Башмак для установки профильного перекрывателя в скважине

Изобретение относится к бурению скважин, а именно к устройствам для установки профильных перекрывателей при изоляции ими зон осложнений в бурении скважин. Устройство содержит корпус, выполненный с возможностью соединения с перекрывателем, с центральным проходным каналом, в который жестко и...
Тип: Изобретение
Номер охранного документа: 0002416021
Дата охранного документа: 10.04.2011
29.05.2019
№219.017.68ec

Способ извлечения высоковязкой нефти и битума из пласта

Изобретение относится к области разработки нефтяных месторождений с применением тепла, в частности к разработке месторождений высоковязких нефтей, сложенных слабосцементированными нефтесодержащими породами. Технический результат - повышение коэффициента нефтеизвлечения высоковязкой нефти с...
Тип: Изобретение
Номер охранного документа: 0002435949
Дата охранного документа: 10.12.2011
Показаны записи 511-520 из 618.
20.02.2019
№219.016.c07e

Пакер

Изобретение относится к нефтегазодобывающей промышленности, а именно к устройствам для герметичного разобщения пластов. Обеспечивает создание простой, надежной и технологичной конструкции. Пакер включает корпус с центральным каналом, патрубком, имеющим фигурный паз на наружной поверхности, и...
Тип: Изобретение
Номер охранного документа: 0002305751
Дата охранного документа: 10.09.2007
20.02.2019
№219.016.c0bd

Ловильное устройство для прихваченного инструмента

Изобретение относится к нефтяной и газовой промышленности, в частности к аварийным инструментам для извлечения труб из скважин. Устройство содержит корпус с захватными элементами, направляющей поверхностью и продольным промывочным отверстием, смещенные вдоль оси корпуса диаметрально...
Тип: Изобретение
Номер охранного документа: 0002368757
Дата охранного документа: 27.09.2009
20.02.2019
№219.016.c109

Способ разработки месторождений высоковязкой нефти

Изобретение относится к способу разработки месторождений высоковязкой нефти. Техническим результатом является повышение эффективности разогревания теплоносителем месторождения высоковязкой нефти, плотность которой в разогретом состоянии ниже плотности теплоносителя, а также снижение тепловых...
Тип: Изобретение
Номер охранного документа: 0002363839
Дата охранного документа: 10.08.2009
20.02.2019
№219.016.c10a

Способ разработки месторождений битума

Изобретение относится к способу разработки месторождений битума. Техническим результатом изобретения является повышение надежности осуществления способа за счет сокращения количества применяемых пакеров, а также повышение эффективности разогревания теплоносителем месторождения высоковязкой...
Тип: Изобретение
Номер охранного документа: 0002363838
Дата охранного документа: 10.08.2009
01.03.2019
№219.016.ccba

Способ одновременно-раздельной эксплуатации многопластовой скважины

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при эксплуатации многопластовых скважин, как для раздельной выработки пластов, так и для одновременной. Обеспечивает снижение затрат на осуществление способа. Сущность изобретения: способ включает селективную...
Тип: Изобретение
Номер охранного документа: 0002338057
Дата охранного документа: 10.11.2008
01.03.2019
№219.016.cccb

Устройство для одновременно раздельной эксплуатации многопластовой скважины

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при эксплуатации многопластовых скважин, как для раздельной выработки пластов, так и для одновременной. Обеспечивает упрощение конструкции устройства, а также снижение затрат на открытие-закрытие клапанов и...
Тип: Изобретение
Номер охранного документа: 0002334866
Дата охранного документа: 27.09.2008
01.03.2019
№219.016.cef6

Способ вызова притока из пласта и устройство для его осуществления

Группа изобретений относится к горной промышленности, в частности к процессам освоения скважин. Обеспечивает упрощение изобретений и регулирования величины депрессии на пласт в процессе освоения скважины. Сущность изобретений: способ включает спуск в скважину на насосно-компрессорных трубах -...
Тип: Изобретение
Номер охранного документа: 0002459944
Дата охранного документа: 27.08.2012
29.03.2019
№219.016.ef05

Пакер

Изобретение относится к нефтедобывающей промышленности и предназначено для временного отключения продуктивных пластов при проведении ремонтно-изоляционных работ в скважинах, а также для отключения нижних пластов при переходе на верхние. Позволяет избежать повторных и преждевременных работ,...
Тип: Изобретение
Номер охранного документа: 0002283420
Дата охранного документа: 10.09.2006
29.03.2019
№219.016.f0de

Способ разработки залежи высоковязкой нефти или битума

Изобретение относится к области разработки месторождений углеводородов двухустьевыми скважинами и может быть использовано для добычи высоковязкой нефти или битума. Обеспечивает повышение эффективности способа за счет снижения трудоемкости и увеличения длины горизонтального участка. Сущность...
Тип: Изобретение
Номер охранного документа: 0002342524
Дата охранного документа: 27.12.2008
29.03.2019
№219.016.f32a

Устройство для одновременно-раздельной эксплуатации многопластовой скважины

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при эксплуатации многопластовых скважин как для раздельной выработки пластов, так и для одновременной. Обеспечивает возможность избирательного перемещения клапанных втулок за один спуск механизма управления в...
Тип: Изобретение
Номер охранного документа: 0002339796
Дата охранного документа: 27.11.2008
+ добавить свой РИД