×
10.01.2015
216.013.191e

КОМПЛЕКСНЫЙ СПОСОБ И УСТРОЙСТВО ДЛЯ ОЧИСТКИ И УТИЛИЗАЦИИ ДЫМОВЫХ ГАЗОВ С КОНВЕРСИЕЙ ДИОКСИДА УГЛЕРОДА В КИСЛОРОД

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002537858
Дата охранного документа
10.01.2015
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к теплоэнергетике и может быть использовано в процессах очистки и утилизации дымовых газов теплоэнергетических установок ТЭС для снижения парникового эффекта окружающей атмосферы. Комплексный способ очистки и утилизации дымовых газов с конверсией диоксида углерода в кислород включает: охлаждение дымовых газов до температуры ниже точки росы, очистку от большей части окислов азота в присутствии озона за счет кислотообразования при конденсации водяных паров и абсорбции конденсатом, который очищается от кислотных компонентов анионитом, очистку от диоксида углерода абсорбцией раствором моноэтаноламина (МЭА); нагрев насыщенного диоксидом углерода раствора МЭА при избыточном давлении, дросселирование его до атмосферного давления, выделение газообразного диоксида углерода, который частично выводится из цикла, а частично поступает в окситенк, где при взаимодействии с водой и хлоропластами в результате фотосинтеза диоксид углерода превращается в кислород и органическую массу. Изобретение позволяет повысить экологическую и экономическую эффективности процесса очистки и утилизации дымовых газов теплоэнергетических установок. 1 з. п. ф-лы, 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к теплоэнергетике и может быть использовано в процессах очистки и утилизации дымовых газов теплоэнергетических установок ТЭС для снижения парникового эффекта окружающей атмосферы.

Известен способ очистки дымовых газов от оксидов азота и оксидов серы, включающий в себя охлаждение дымовых газов до температуры ниже температуры точки росы, конденсацию водяных паров в трубчатом теплообменнике, насыщение рециркуляционного конденсата озоном и кислородом воздуха, окисление и абсорбцию оксидов азота и оксидов серы насыщенным конденсатом с образованием кислого конденсата, стекающего в поддон, после чего очищенные дымовые газы выводятся в атмосферу, отвод части кислого конденсата из поддона в анионитовый фильтр для очистки от кислотных компонентов, которые выводят в процессе регенерации анионитового фильтра в виде солевого раствора NaNO3.

Устройство, в котором реализуется данный способ, содержит зону обработки в газоходе с размещенными в ней теплообменной секцией, выполненной в виде вертикального трубчатого теплообменника, абсорбционной секцией, выполненной также в виде вертикального трубчатого теплообменника с поддоном и размещенной в них коаксиально подъемной трубой эргазлифта, сепарационной секцией, выполненной в виде вертикального трубчатого теплообменника, причем поддон соединен трубопроводом с анионитовым фильтром [патент РФ №2186612, МКл.4 B01D 53/60, БИПМ №22, 2002].

Основные недостатки данного способа заключаются в низкой скорости охлаждения дымовых газов и абсорбции вредных примесей - оксидов азота и оксидов серы, обусловленные низкой допустимой скоростью газа при пленочной абсорбции, и невозможность их очистки от диоксида углерода, что снижает экологическую и экономическую эффективность очистки дымовых газов от вредных примесей.

Основным недостатком известного устройства является отсутствие оборудования для очистки дымовых газов от диоксида углерода, что также снижает экологическую и экономическую эффективность его работы.

Более близким по технической сущности к предлагаемому изобретению является комплексный способ для очистки дымовых газов с утилизацией тепла, вредных примесей и диоксида углерода, включающий охлаждение дымовых газов до температуры ниже точки росы с конденсацией водяных паров при дутьевым воздухом и наружным воздухом, где их очищают от большей части оксидов азота в присутствии озона за счет кислотообразования при конденсации водяных паров и абсорбции конденсатом, освобождают от диоксида углерода абсорбцией его раствором МЭА и выбрасывают в атмосферу, карбонизированный раствор нагревают за счет тепла дымовых газов до температуры насыщения при избыточном давлении, дросселируют до атмосферного давления и кипения, подают в декарбонизатор, где он делится на легколетучую фракцию, которая делится на конденсат МЭА и газообразный диоксид углерода, частично подаваемый вентилятором в поглотительную башню, он смешивается с разбрызгиваемым раствором едкого натрия с образованием углекислого натрия (Na2 СО3) и частично подается в чистом виде для реализации потребителям, а декарбонизированный раствор МЭА выводят из куба декарбонизатора, подогреваемого острым паром, смешивают с конденсатом из охладителя выпара и снова подают на абсорбцию, а конденсат водяных паров очищают от кислотных компонентов в анионитовом фильтре и направляют на водоподготовку, причем анионит регенерируют раствором едкого натра с получением азотнокислого натрия.

Предлагаемый способ реализуется в устройстве, включающем газоход, соединенный последовательно с подогревателем карбонизированного раствора моноэтаноламина (МЭА) и вертикальным трубчатым теплообменником, состоящим из соединенных последовательно по газу сверху вниз трубчатыми воздухоподогревателем и конденсатором, соответственно, который соединен по конденсату с анионитовым фильтром, по газу - с карбонизатором, представляющим собой полую башню, в верхней части которого размещены диспергатор жидкости и каплеотбойник, а днище соединено трубопроводом и первым циркуляционным насосом через подогреватель карбонизированного раствора МЭА и дроссель с декарбонизатором, внутри которого помещены верхние и нижние распределители жидкости и секции, заполненные насадкой, соответственно, причем верх декарбонизатора соединен трубопроводом с охладителем выпара, который соединен через конденсатосборник и гидрозатвор с верхним распределителем жидкости, а по СО2 - с вентилятором и поглотительной башней, внутри которой помещен диспергатор жидкости, нижний распределитель жидкости декарбонизатора соединен с дросселем, а его днище через трубопровод и второй циркуляционный насос соединено с гидрозатвором охладителя выпара и диспергатором жидкости карбонизатора [патент РФ №2371238, МКл. B01D 53/14, 53/62, 53/75, 53/56, 2003].

К недостаткам известного способа относятся незначительная возможность утилизации диоксида углерода путем получения с его помощью углекислого натрия (Na2 СО3), обусловленная ограниченной потребностью последнего в народном хозяйстве, несоизмеримой с выбросами CO2 и невозможность его переработки в экологически безопасные вещества, например кислород (O2), который безвозвратно теряется при образовании CO2, что снижает экономическую и экологическую эффективность очистки дымовых газов.

Основным недостатком известного устройства является также невозможность переработки диоксида углерода в экологически безопасные вещества (например, кислород), что снижает экономическую и экологическую эффективность очистки дымовых газов.

Техническим результатом предлагаемого изобретения является повышение экологической и экономической эффективности процесса очистки и утилизации дымовых газов теплоэнергетических установок.

Технический результат достигается в комплексном способе очистки и утилизации дымовых газов с конверсией диоксида углерода в кислород, включающем охлаждение дымовых газов до температуры ниже точки росы с конденсацией водяных паров в подогревателе карбонизированного раствора моноэтаноламина (МЭА), подогреваемом дымовыми газами, и теплообменнике, состоящем из воздухоподогревателя и конденсатора, охлаждаемых дутьевым воздухом и наружным воздухом, соответственно, где они очищаются от большей части оксидов азота в присутствии озона за счет кислотообразования при конденсации водяных паров и абсорбции конденсатом, освобождаются от диоксида углерода абсорбцией его раствором МЭА и сепарацией от уносимых капель в карбонизаторе и выбрасываются в атмосферу; карбонизированный раствор МЭА насосом подается в подогреватель, где нагревается за счет тепла дымовых газов до температуры насыщения при избыточном давлении, дросселируется до атмосферного давления, вскипает и поступает в среднюю часть декарбонизатора, где карбонизированный раствор МЭА делится на легколетучую фракцию, которая в результате конденсации в охладителе выпара, охлаждаемом питательной водой, делится на конденсат МЭА и газообразный диоксид углерода, а декарбонизированный раствор МЭА выводится из куба декарбонизатора, подогреваемого острым паром, смешивается с конденсатом из охладителя выпара и циркуляционным насосом снова подается на абсорбцию; конденсат водяных паров очищается от кислотных компонентов в анионитовом фильтре и направляется на водоподготовку, причем анионит регенерируется раствором едкого натрия, который в результате регенерации превращается в азотнокислый натрий; из охладителя выпара СО2 вентилятором частично в чистом виде выводится из цикла, частично через распределитель подается в окситенк, где, в результате солнечного или искусственного облучения, происходит его взаимодействие с водой, в которой присутствуют фотосинтезирующие водоросли - хлоропласты - и происходит фотосинтез с образованием углеводов и кислорода при световой и темновой фазах фотосинтеза, при этом полученные углеводы постепенно опускаются, образуя осадок в виде водного раствора органической массы, который удаляется через патрубок удаления осадка, а кислород за счет своего удельного веса поднимается вверх, собирается в кислородной головке и выводится их аппарата.

Предлагаемый способ реализуется в устройстве, включающем газоход, соединенный последовательно с подогревателем карбонизированного раствора моноэтаноламина (МЭА) и вертикальным трубчатым теплообменником, состоящим из соединенных последовательно по газу сверху - вниз трубчатыми воздухоподогревателем и конденсатором, соответственно, который соединен по конденсату с анионитовым фильтром, по газу - с карбонизатором, представляющим собой полую башню, в верхней части которого размещены диспергатор жидкости и каплеотбойник, а днище соединено трубопроводом и насосом через подогреватель карбонизированного раствора МЭА и дроссель с декарбонизатором, внутри которого помещены верхние и нижние распределители жидкости и секции, заполненные насадкой, соответственно, причем верх декарбонизатора соединен трубопроводом с охладителем выпара, который соединен через конденсатосборник и гидрозатвор с верхним распределителем жидкости, а по CO2 - с вентилятором и окситенком, нижний распределитель жидкости декарбонизатора соединен с дросселем, его днище через трубопровод и циркуляционный насос соединено с гидрозатвором охладителя выпара и диспергатором жидкости карбонизатора; окситенк состоит из корпуса с кислородной головкой, изготовленных из светопрозрачного материала, и конусного днища, снабженных патрубками подачи диоксида углерода, выгрузки осадка и подачи подпиточной воды, соответственно, внутри которого расположен распределитель СО2, соединенный с патрубком подачи диоксида углерода;

В основу работы предлагаемых способа и устройства положены особенности состава дымовых газов теплоэнергетических агрегатов, основными компонентами которых, на основании опытных данных и расчета состава продуктов сгорания, являются азот (76-82)% об., диоксид углерода (7-14)% об., водяные пары (5-17)% об., концентрация которых зависит от вида топлива и способа его сжигания [Н.В. Кузнецов и др. Тепловой расчет котельных агрегатов (нормативный метод). - М.: Энергия, 1973, с.15]; высокая растворимость диоксида углерода в растворе моноэтаноламина (МЭА) [Н.В. Атрощенко и др. Методы расчета по технологии связанного азота. - К.: Вища школа, 1978, с.90]; способность газов десорбироваться из абсорбента при повышении температуры и понижении давления согласно законам Генри и Дальтона [А.Н. Плановский, П.И. Николаев. Процессы и аппараты химической и нефтехимической технологии. - М.: Химия, 1972, с.289]; взаимодействие раствора едкого натрия с кислотными остатками с образованием соответствующей соли [Н.Н. Абрамов и др. Водоснабжение. - М.: Госстройизд. 1960, с.424] и способность фотосинтезирующих организмов (зеленых растений, водорослей, цианобактерий) улавливать кванты солнечного света и трансформировать их в химическую энергию в процессе фотосинтеза, заключительной стадией которого является синтез углеводов с попутным выделением кислорода из СО2 в присутствии воды [В.П. Комов, В.Н. Шведова. Биохимия. - М.: Дрофа, 2004, с.210].

Устройство для очистки и утилизации дымовых газов с конверсией диоксида углерода в кислород изображено на фиг.1.

Устройство содержит газоход 1, соединенный последовательно с подогревателем карбонизированного раствора МЭА 2 и теплообменником 3, состоящим из соединенных последовательно по газу сверху-вниз трубчатыми воздухоподогревателем и конденсатором, соответственно, который соединен по конденсату с анионитовым фильтром 4, по газу - с карбонизатором 5, представляющим собой полую башню, в верхней части которого размещены диспергатор жидкости 6 и каплеотбойник 7. Днище карбонизатора 5 соединено трубопроводом с насосом 8 через подогреватель 2 и дроссель 9 - с декарбонизатором 10, внутри которого помещены верхние и нижние распределители жидкости 11, 12 и верхняя и нижняя секции, заполненные насадкой 13, соответственно. Верхняя часть декарбонизатора 10 соединена трубопроводом с охладителем выпара 14, охлаждаемым подпиточной водой, который соединен через конденсатосборник 15 с гидрозатвором 16 с верхним распределителем жидкости 11, а по СO2 - с вентилятором 17. Нижний распределитель жидкости 12 соединен с трубопроводом нагретого карбонизированного раствора МЭА через дроссель 9, а днище декарбонизатора 10 через трубопровод и циркуляционный насос 18 соединено с диспергатором жидкости 6 карбонизатора 5. Вентилятор 17 соединен с окситенком 19, состоящим из корпуса 20 и кислородной головки 21, изготовленными из светопрозрачного материала, конусного днища 22, снабженных патрубками подачи диоксида углерода, выгрузки осадка и подачи подпиточной воды 23, 24 и 25, соответственно, внутри которого расположен распределитель CO2 26, соединенный с патрубком подачи диоксида углерода 23.

Очистка и утилизация дымовых газов с конверсией диоксида углерода в кислород осуществляется в предлагаемом устройстве следующим образом.

Дымовые газы, количество которых обусловлено производительностью устройства, из транзитного газохода 1 под напором, создаваемым дымососом (на фиг. 1 не показан), омывают подогреватель карбонизированного раствора МЭА 2, где охлаждаются до температуры близкой к точке росы и поступают в трубное пространство теплообменника 3, вверху которого размещен воздухоподогреватель, охлаждаемый дутьевым воздухом, до температуры 80-85°C, а внизу конденсатор, охлаждаемый наружным воздухом, который выбрасывается в атмосферу, где происходит смешение газов с озоновоздушной смесью, охлаждение с образованием конденсата, стекающего вниз по стенкам труб, окисление оксидов азота до высших, абсорбция их конденсатом и интенсивное кислотообразование в процессе конденсации водяных паров [Производство азотной кислоты в агрегатах большой единичной мощности, под. ред. В.М. Олевского. - М.: Химия, 1985, с. 44]. Из конденсатора очищенные от оксидов азота и охлажденные до температуры 35-45°C, в интервале которой рекомендуется осуществлять абсорбцию CO2 раствором МЭА, дымовые газы поступают в карбонизатор 5, где контактируют в противотоке с разбрызгиваемым из диспергатора 6 8-10% раствором МЭА, который поглощает диоксид углерода и карбонизированный собирается в кубе карбонизатора 5, а очищенные от диоксида углерода до концентрации 3-4% объемных (большая степень очистки экономически нецелесообразна с точки зрения себестоимости целевого продукта - CO2) дымовые газы сепарируются от уносимых капель раствора МЭА в каплеотбойнике 7 и выбрасываются в атмосферу. Конденсат, насыщенный кислотными компонентами, из конденсатора поступает в анионитовый фильтр 4, где очищается от кислотных компонентов и направляется на водоподготовку для последующего использования. При этом регенерация анионита фильтра 4 производится раствором едкого натрия (NaOH) с получением раствора NaNO3, который реализуется как азотное удобрение. Карбонизированный раствор МЭА из куба карбонизатора 5 насосом 8 с давлением выше атмосферного подается в подогреватель карбонизированного раствора МЭА 2, где нагревается до температуры насыщения при развиваемом давлении, поступает в дроссель 9, где его давление снижается до атмосферного, в результате чего он вскипает и в виде парожидкостной смеси через нижний распределитель жидкости 12 подается в декарбонизатор 10, работающий по принципу ректификации [А.Н. Плановский, П.И. Николаев. Процессы и аппараты химической и нефтехимической технологии. - М.: Химия, 1972, с.

270]. Легкая фракция из нижнего распределителя 12 в парообразном состоянии поднимается в верхнюю секцию, заполненную насадкой 13 (например, кольцами Рашига), где в противотоке с опускающееся жидкостью обогащается CO2, поступает в охладитель выпара 14, охлаждаемый питательной водой, в котором происходит конденсация раствора МЭА, поступающего в конденсатосборник 15 и отделение от него газообразного CO2. Тяжелая фракция из верхнего распределителя 11 в парожидкостном состоянии опускается в нижнюю секцию, заполненную насадкой (например, кольцами Рашига) 13 декарбонизатора 10, где в противотоке с поднимающимся CO2 обогащается раствором МЭА и поступает в куб декарбонизатора 10, который подогревается острым паром (например, паром из сепаратора непрерывной продувки), количество которого незначительно, т.к. предварительно карбонизированный раствор МЭА доводится до кипения дымовых газов при повышенном давлении в подогревателе 2, после чего декарбонизированнй раствор МЭА циркуляционным насосом 18 вновь подается на орошение в карбонизатор 5. Выделенный CO2, из охладителя выпара 14, вентилятором 17 через распределитель 26 подается в окситенк 19, корпус 20 и головка 21 которого выполнены из светопрозрачного материала, пропускающего солнечный свет. В окситенке 19 осуществляется контактирование CO2 с водой, в которой присутствуют фотосинтезирующие водоросли - хлоропласты (например, хлорелла, отличающаяся высокой скоростью усвоения CO2), и в результате солнечного облучения, которое при необходимости заменяется искусственным (источники облучения на фиг. 1 не показаны), происходит фотосинтез, заключительную стадию которого можно выразить стехиометрическим уравнением реакции

При этом в окситенке 19 в верхней прозрачной зоне происходит световая фаза фотосинтеза, в нижней (конусном днище 22) - темновая (ферментативная) фаза. Полученные углеводы постепенно опускаются, образуя осадок в виде водного раствора органической массы, который удаляется через патрубок 24, а кислород за счет своего удельного веса поднимается вверх, собирается в кислородной головке 21 и выбрасывается в атмосферу или реализуется потребителю. Сырой осадок органической массы направляется на дальнейшую переработку для получения топлива из полученной биомассы или для приготовления корма для животных и далее реализуется потребителям.

Таким образом, предлагаемые способ и устройство обеспечивают повышение скорости и степени очистки дымовых газов с одновременной утилизацией вредных компонентов, водяных паров, тепла, диоксида углерода, причем последний конвертируется в кислород, снижая тем самым угрозу парникового эффекта окружающей атмосферы и, в конечном счете, увеличивая экологическую и экономическую эффективность процесса очистки дымовых газов, приближая процесс получения тепла к безотходному производству с замкнутым циклом.


КОМПЛЕКСНЫЙ СПОСОБ И УСТРОЙСТВО ДЛЯ ОЧИСТКИ И УТИЛИЗАЦИИ ДЫМОВЫХ ГАЗОВ С КОНВЕРСИЕЙ ДИОКСИДА УГЛЕРОДА В КИСЛОРОД
Источник поступления информации: Роспатент

Показаны записи 91-92 из 92.
01.07.2018
№218.016.69b4

Термоэлектрическая инжекционная горелка

Предлагаемое изобретение относится к энергетике и может быть использовано в инжекционных горелках бытовых отопительных приборов (газовых плитах и т.п.) для совместной генерации тепла и электрической энергии. Термоэлектрическая инжекционная горелка включает опорное кольцо, выполненное из...
Тип: Изобретение
Номер охранного документа: 0002659309
Дата охранного документа: 29.06.2018
17.10.2019
№219.017.d6da

Способ использования исходной воды при охлаждении хладоагента гту и пластинчатый теплообменник для его осуществления

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано для нагрева и охлаждения газов и жидкостей в различных отраслях народного хозяйства, а именно, для интенсификации процесса теплопередачи и снижения скорости образования накипи в теплообменниках ГТУ. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002703117
Дата охранного документа: 15.10.2019
Показаны записи 91-100 из 143.
26.10.2018
№218.016.9630

Кольцевой капиллярный конденсатор

Изобретение относится к энергомашиностроению, а именно к теплообменной аппаратуре, и может быть использовано для конденсации отработанного пара без использования хладоагента. Технический результат - повышение надежности и эффективности работы кольцевого капиллярного конденсатора. Кольцевой...
Тип: Изобретение
Номер охранного документа: 0002670728
Дата охранного документа: 24.10.2018
01.11.2018
№218.016.9843

Секционный капиллярный конденсатор

Изобретение относится к энергомашиностроению, а именно к теплообменной аппаратуре, и может быть использовано для конденсации отработанного пара без использования хладоагента. Технический результат - повышение надежности и эффективности работы секционного капиллярного конденсатора. Секционный...
Тип: Изобретение
Номер охранного документа: 0002671288
Дата охранного документа: 30.10.2018
30.11.2018
№218.016.a1c7

Энергосберегающий пластинчатый теплообменник

Изобретение относится к теплотехнике, а именно к теплообменному оборудованию, и может быть использовано при воздушном охлаждении газов и жидкостей вне помещений без принудительной подачи охлаждающего воздуха. В пластинчатом теплообменнике содержится горизонтальный корытообразный кожух, днище и...
Тип: Изобретение
Номер охранного документа: 0002673631
Дата охранного документа: 28.11.2018
06.12.2018
№218.016.a43f

Устройство для термической обработки осадка сточных вод предприятий аграрно-промышленного комплекса

Изобретение предназначено для обезвоживания осадков, активного ила или отстоя промышленных и бытовых сточных вод и может быть использовано в водоснабжении и канализации. Устройство для термической обработки осадка сточных вод предприятий аграрно–промышленного комплекса включает осушительную...
Тип: Изобретение
Номер охранного документа: 0002674125
Дата охранного документа: 04.12.2018
10.01.2019
№219.016.adf7

Автономный термоэлектрогенератор на трубопроводе

Изобретение относится к теплоэлектроэнергетике и может быть использовано для получения электрической энергии в процессе транспортирования в трубах различных теплоносителей, в частности для защиты трубопровода от электрохимической коррозии или электропривода задвижек. Термоэлектрогенератор...
Тип: Изобретение
Номер охранного документа: 0002676551
Дата охранного документа: 09.01.2019
13.01.2019
№219.016.af32

Ленточный термоэлектрогенератор

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано для трансформации тепловой энергии в электрическую, при отсутствии источников электроснабжения. Технический результат заключается в повышении эффективности ленточного термоэлектрогенератора. Ленточный...
Тип: Изобретение
Номер охранного документа: 0002676803
Дата охранного документа: 11.01.2019
07.02.2019
№219.016.b799

Устройство для предпускового обогрева стационарного двигателя внутреннего сгорания

Изобретение относится к машиностроению, а именно к системам подогрева двигателей внутреннего сгорания в зимнее время для дистанционного запуска. Устройство для предпускового обогрева стационарного двигателя внутреннего сгорания, включающее бак с горючей жидкостью, соединенный трубопроводами с...
Тип: Изобретение
Номер охранного документа: 0002679048
Дата охранного документа: 05.02.2019
09.02.2019
№219.016.b8df

Мобильное устройство для снижения теплового излучения выхлопных газов

Изобретение относится к области военной техники. Мобильное устройство для снижения теплового излучения выхлопных газов включает камеру смешения и диффузор. Диффузор соосно соединен с трубой распределителя, заглушенной с тыльного торца, боковая поверхность которой снабжена расположенными...
Тип: Изобретение
Номер охранного документа: 0002679274
Дата охранного документа: 06.02.2019
14.02.2019
№219.016.ba34

Теплохимический генератор

Изобретение относится к энергетике и может быть использовано в теплогенерирующих установках, работающих на природном газе. Техническим результатом является увеличение эффективности и уменьшение загрязнения окружающей атмосферы путем утилизации вредных газообразных выбросов. Теплохимический...
Тип: Изобретение
Номер охранного документа: 0002679770
Дата охранного документа: 12.02.2019
30.03.2019
№219.016.f8e9

Энергосберегающее устройство для подготовки приточного воздуха

Предлагаемое изобретение относится к строительству и может быть использовано для предварительного подогрева и охлаждения приточного воздуха в системах вентиляции и кондиционирования в зимний и летний периоды, соответственно. Энергосберегающее устройство для подготовки приточного воздуха...
Тип: Изобретение
Номер охранного документа: 0002683331
Дата охранного документа: 28.03.2019
+ добавить свой РИД