×
10.01.2015
216.013.1782

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ФЛЮИДОВ

Вид РИД

Изобретение

№ охранного документа
0002537446
Дата охранного документа
10.01.2015
Аннотация: Изобретение относится к геофизическим исследованиям скважин и предназначено для определения скоростей течения пластовых флюидов в нефтяных скважинах. Техническим результатом является выделение интервалов глубин (пластов), где происходит движение флюидов, и оценка скорости их фильтрации в месте расположения наблюдательной скважины. В остановленной скважине осуществляют измерение температуры и определяют скорость изменения температуры на интервалах глубин, находящихся в пределах продуктивных пластов, и на интервалах глубин, находящихся в непосредственной близости от продуктивных пластов. На интервалах глубин, находящихся в пределах продуктивных пластов, выделяют участки, скорость изменения температуры в которых существенно выше скорости изменения температуры на интервалах глубин, находящихся в непосредственной близости от продуктивных пластов. Создают численную модель изменения температуры в остановленной скважине, учитывающую влияние фильтрации пластового флюида на скорость изменения температуры в остановленной скважине, сравнивают результаты измерений с результатами численного моделирования и по наилучшему совпадению результатов измерений и результатов моделирования определяют скорость фильтрации пластовых флюидов на интервалах глубин, находящихся в пределах продуктивных пластов. 7 з.п. ф-лы, 7 ил.

Изобретение относится к геофизическим исследованиям скважин и предназначено для определения скоростей течения пластовых флюидов в нефтяных скважинах.

Для оптимизации взаимного расположения и режимов работы добывающих и нагнетательных скважин желательно иметь информацию о направлениях и скоростях течения пластовых флюидов в нефтяных залежах, где пробурены десятки и сотни скважин. Эта информация позволит уточнить гидродинамическую модель нефтяной залежи. Особую важность информация о движении пластовых флюидов имеет в случае добычи высоковязкой нефти. Кроме гетерогенности свойств нефтяного пласта, которая может быть известна из геофизических исследований, в процессе добычи возникает неоднородность фильтрационных свойств пласта, связанная с составом пластового флюида. Между нагнетательными и добывающими скважинами могут возникать каналы, заполненные водой (имеющей низкую вязкость), по которым закачиваемая вода поступает в добывающую скважину и не обеспечивает вытеснения нефти и прогрева нефтесодержащих участков пласта. По этим причинам разработка методов контроля за движением пластовых флюидов в нефтяной залежи с большим количеством добывающих и нагнетательных скважин представляет большой интерес.

В настоящее время контроль за движением пластовых флюидов в нефтяной залежи осуществляют косвенным образом, с помощью мониторинга гидравлической связи между скважинами методом гидропрослушивания (см., например, Amanat U. Chaudhry, Oil Well Testing Handbook, Elsevier Science, 2004, p.429-462). Этот метод основан на наблюдениях изменения давления в простаивающих скважинах при изменении режимов работы возмущающих скважин.

Более прямым методом является трассирование фильтрационных потоков с помощью индикаторных веществ (см., например, G. Michael Shook, Shannon L. Ansley, Allan Wylie, Tracers and Tracer Testing: Design, Implementation, and Interpretation Methods, 2004, INEEL). Метод состоит в добавлении индикаторного вещества в нагнетаемую в скважину жидкость и регистрации момента появления и концентрации индикатора в жидкости, поступающей из добывающих скважин. В качестве индикаторов используют различные химические и радиоактивные вещества, которые должны хорошо растворяться в воде, не выпадать в осадок, не сорбироваться горной породой, регистрироваться в широком диапазоне концентраций и т.д.. Трассирование фильтрационных потоков является достаточно дорогим и трудоемким методом, который применяется относительно редко. Кроме того, трассирование позволяет оценить только среднюю скорость фильтрации флюида между нагнетательной и добывающей скважиной. Скорость фильтрации флюида в месте расположения добывающей скважины (если бы она была остановлена) остается неизвестной.

Технический результат, достигаемый при реализации изобретения, заключается в обеспечении возможности выделения интервалов глубин (пластов), где происходит движение флюидов, и оценки скорости их фильтрации в месте расположения наблюдательной скважины.

Указанный технический результат достигается тем, что в соответствии с предлагаемым способом определения скорости фильтрации пластовых флюидов в остановленной скважине осуществляют измерение температуры и определяют скорость изменения температуры на интервалах глубин, находящихся в пределах продуктивных пластов, и на интервалах глубин, находящихся в непосредственной близости от продуктивных пластов. На интервалах глубин, находящихся в пределах продуктивных пластов, выделяют участки, скорость изменения температуры в которых существенно выше скорости изменения температуры на интервалах глубин, находящихся в непосредственной близости от продуктивных пластов. Создают численную модель изменения температуры в остановленной скважине, учитывающую влияние фильтрации пластового флюида на скорость изменения температуры в остановленной скважине, сравнивают результаты измерений с результатами численного моделирования и по наилучшему совпадению результатов измерений и результатов моделирования определяют скорость фильтрации флюидов на выделенных участках интервалов глубин, находящихся в пределах продуктивных пластов.

В соответствии с одним из вариантов реализации изобретения температуру в остановленной скважине измеряют с помощью оптико-волоконного измерителя.

В соответствии с другим вариантом реализации изобретения температуру в остановленной скважине измеряют посредством по меньшей мере трех термокаротажей этой скважины.

Измерения температуры осуществляют в скважине, остановленной или после цементации, или после добычи, или после нагнетания в скважину флюида, или после циркуляции флюида в скважине.

Предпочтительно выделение участков, на которых скорость изменения температуры существенно выше скорости изменения температуры на интервалах глубин в непосредственной близости от продуктивных пластов, осуществляют при временах выстойки скважины от 10 до 30 ч.

Изобретение поясняется чертежами, где на фиг.1 приведены примеры возмущения теплового поля пласта перед проведением измерений температуры в остановленной скважине, на фиг.2 показано расчетное поле температур в пласте после добычи в течение 30 дней, на фиг.3 - расчетное поле температур в пласте после выстойки скважины в течение 3 дней, на фиг.4 приведены расчетные температуры в скважине, нормированные на первоначальное отклонение температуры скважины от температуры пласта, на фиг.5 - нормированные на скорости изменения температуры для двух скоростей фильтрации, на фиг 6 - зависимость нормированной скорости изменения температуры от скорости фильтрации при времени выстойки скважины 20 ч, на фиг.7 приведена схема расчетной области, которая используется для оценки скорости фильтрации с помощью численного моделирования.

Предлагаемый способ основан на зависимости скорости изменения температуры, измеренной в наблюдательной скважине, от наличия и скорости фильтрации флюидов в пласте, который пересекает скважина.

Данное изобретение осуществляется следующим образом.

Проводят измерения температурного профиля по всему стволу скважины с помощью термокаротажных устройств или с помощью волоконного измерителя температуры в скважине, остановленной после цементации (фиг 1а), добычи (фиг.1б), нагнетания флюида (фиг.1c) или циркуляции флюида (фиг.1d). В случае термокаротажа измерения проводят многократно, не менее 3-5 раз. Во всех случаях начальная температура в скважине и в околоскважинном пространстве отличается от температуры пород вдали (в нескольких метрах) от скважины.

Рассчитывают скорость изменения температуры, измеренной в скважине на различных глубинах: на интервалах глубин, находящихся в пределах продуктивных пластов, и на интервалах глубин, примыкающих к продуктивным пластам (на расстоянии не более нескольких десятков метров).

Предпочтительно, спустя 10-30 ч после остановки скважины на интервалах глубин, находящихся в пределах продуктивных пластов, выделяют участки с фильтрацией пластовых флюидов, где скорость изменения температуры существенно выше, чем вне продуктивных пластов.

Создают численную модель изменения температуры в остановленной скважине, учитывающую влияние фильтрации пластового флюида на скорость изменения температуры в остановленной скважине, сравнивают результаты измерений с результатами численного моделирования и по наилучшему совпадению результатов измерений и результатов моделирования определяют скорость фильтрации флюидов на выделенных участках интервалов глубин, находящихся в пределах продуктивных пластов.

Возможность выделения интервалов глубин и оценки скорости фильтрации пластовых флюидов была продемонстрирована на синтетических случаях с использованием коммерческого симулятора COMSOL Multiphysics 3.5.

Проводилось 2D моделирование стационарного поля давления (и скорости фильтрации) и нестационарного поля температур в горизонтально расположенной однородной расчетной области, включающей скважину.

Уравнения для давления и температуры имеют вид:

,

где скорость фильтрации флюида, , k - проницаемость пласта, µ - вязкость фильтрующегося флюида, λ - теплопроводность флюидонасыщенного пласта, ρmcm - объемная теплоемкость кристаллической матрицы пласта, ρfcf - объемная теплоемкость флюида, ϕ - пористость пласта.

Граничные условия уравнения для расчета давления (фиг.7): непроницаемые верхняя и нижняя границы расчетной области и поверхность скважины, заданные давления P1 и P2 на левой и правой границах расчетной области. При этом разность давлений P1-P2 подбиралась таким образом, чтобы при заданном значении проницаемости пласта обеспечить требуемую скорость фильтрации флюида.

Граничные условия для уравнения энергии (фиг.7): теплоизолированные верхняя и нижняя границы расчетной области, температура T0, равная температуре пласта, на левой границе и условие свободного истекания на правой границе расчетной области.

Расчет проводился в два этапа.

На первом этапе на границах скважины задавалась постоянная температура, которая соответствует температуре флюида, текущего по скважине во время добычи или циркуляции, и рассчитывалось поле температур в конце циркуляции, которое использовалось как начальное условие для второго этапа. На втором этапе рассчитывалась эволюция поля температур после остановки скважины. Расчет проводился во всей расчетной области, включая скважину.

В качестве примера рассмотрим месторождение с двумя продуктивными пластами, причем добыча ведется из нижнего пласта (фиг.1б). Фиг.2 показывает расчетное поле температур в верхнем пласте (на фиксированной глубине) после 30 дней добычи при скорости фильтрации в этом пласта 0,25 м/день.

Расчетное поле температур в пласте после 3 дней выстойки скважины приведено на фиг.3. Скважина на этом рисунке показана черным кружком. Поскольку размер области, где температура существенно отличается от пластовой, существенно превосходит радиус скважины, происходит снос области повышенной температуры фильтрующимся флюидом. Как следствие, температура, измеренная в скважине, изменяется быстрее, чем при отсутствии потока.

Расчетные температуры в скважине, нормированные на первоначальное отклонение температуры скважины от температуры пласта при скоростях фильтрации 0, 0,12 и 0,25 м/день показаны на фиг.4, кривая 1 - V=0, кривая 2 - V=0,12 м/д, кривая 3 - V=0,25 м/д. Фиг.5 показывает скорость изменения температуры при скоростях фильтрации 0,12 и 0,25 м/день, нормированную на скорость изменения температуры при отсутствии фильтрации в пласте (кривая 1 - V=0,25 м/д, кривая 2 - V=0,12 м/д).

Расчеты показывают, что нормированная таким образом скорость релаксации температуры имеет наибольшие значения в интервале времен выстойки скважины 10-30 ч. Фиг.6 дает зависимость этой величины от скорости фильтрации флюида при времени выстойки 20 ч. Конкретный вид нормированной скорости релаксации температуры зависит от конструкции скважины, тепловых свойств горных пород и должен рассчитываться в каждом конкретном случае, например, с помощью коммерческого симулятора COMSOL Multiphysics 3.5.

Тем не менее из фиг.6 видно, что с помощью предлагаемого способа можно получить информацию о фильтрационных потоках, имеющих скорость более 0,03-0,05 м/день.


СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ФЛЮИДОВ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ФЛЮИДОВ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ФЛЮИДОВ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ФЛЮИДОВ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ФЛЮИДОВ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ФЛЮИДОВ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ФЛЮИДОВ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 112.
10.03.2015
№216.013.2fc8

Способ определения весовой концентрации полимера, проникшего в пористую среду

Изобретение относится к способам анализа образцов пористых материалов и может быть использовано для количественного исследования ухудшения свойств околоскважинной зоны нефте/газосодержащих пластов из-за проникновения в нее полимеров, содержащихся в буровом растворе. Согласно заявленному...
Тип: Изобретение
Номер охранного документа: 0002543700
Дата охранного документа: 10.03.2015
20.04.2015
№216.013.420c

Способ определения изменения свойств околоскважинной зоны пласта-коллектора под воздействием бурового раствора

Использование: для определения изменения свойств околоскважинной зоны пласта-коллектора под воздействием бурового раствора. Сущность изобретения заключается в том, что отбирают керн из стенки скважины и откалывают от керна по меньшей мере одну часть. Осуществляют облучение отколотых частей...
Тип: Изобретение
Номер охранного документа: 0002548406
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.420e

Способ для определения теплопроводности и температуропроводности материалов

Изобретение относится к способам определение теплопроводности и температуропроводности материалов. В соответствии с предлагаемым способом регистрируют электрические сигналы, соответствующие начальным температурам поверхностей исследуемого образца материала по меньшей мере двух эталонных...
Тип: Изобретение
Номер охранного документа: 0002548408
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.42f2

Способ отслеживания перемещения обрабатывающей жидкости в продуктивном пласте

Изобретение относится к добыче углеводородного сырья из продуктивного пласта, пробуренного скважиной, и относится, в частности к нерадиоактивным индикаторам и методам их использования для отслеживания перемещения обрабатывающей жидкости и пластовых флюидов. Технический результат заключается в...
Тип: Изобретение
Номер охранного документа: 0002548636
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4416

Способ определения изменений параметров пористой среды под действием загрязнителя

Использование: для определения изменений параметров пористой среды под действием загрязнителя. Сущность изобретения заключается в том, что размещают излучатель и приемник акустических волн на противоположных поверхностях образца пористой среды, осуществляют первое облучение по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002548928
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4417

Способ определения профиля прочности материалов и устройство для его осуществления

Изобретение относится к области исследования механических свойств материалов. Сущность: осуществляют нагрев поверхности образца и наносят резцом царапину на нагретую поверхность образца. В процессе царапания измеряют горизонтальную и вертикальную составляющие силы сопротивления разрушению...
Тип: Изобретение
Номер охранного документа: 0002548929
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4418

Способ определения распределения и профиля загрязнителя в пористой среде

Изобретение относится к способам анализа образцов пористых материалов. Для определения распределения и профиля проникшего загрязнителя в пористой среде приготовляют суспензию загрязнителя, содержащего по меньшей мере один твердый компонент и окрашенного по меньшей мере одним катионным...
Тип: Изобретение
Номер охранного документа: 0002548930
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.4a76

Способ определения смачиваемости

Изобретение относится к области исследования смачиваемости поверхностей и может найти применение в различных отраслях промышленности, например в нефтегазовой, химической, лакокрасочной и пищевой. Для определения смачиваемости поверхности исследуемого материала по меньшей мере один образец...
Тип: Изобретение
Номер охранного документа: 0002550569
Дата охранного документа: 10.05.2015
27.06.2015
№216.013.5a69

Способ повышения точности измерений расхода многофазной смеси в трубопроводе

Предложенное изобретение относится к процедуре контроля многофазных смесей при их транспортировке по трубопроводу, в процессе которого исключают процесс пробкообразования. Предложенный способ повышения точности измерений расхода многофазной смеси в трубопроводе заключается в том, что определяют...
Тип: Изобретение
Номер охранного документа: 0002554686
Дата охранного документа: 27.06.2015
20.09.2015
№216.013.7bf2

Способ характеристики неоднородности и определения теплопроводности материалов (варианты) и устройство для его осуществления

Изобретение относится к области изучения теплофизических свойств материалов и может быть использовано для определения теплопроводности материалов. Способы характеристики неоднородности и определения теплопроводности материалов предусматривают нагрев поверхности образцов неоднородных материалов...
Тип: Изобретение
Номер охранного документа: 0002563327
Дата охранного документа: 20.09.2015
Показаны записи 41-50 из 81.
20.12.2014
№216.013.108a

Способ и устройство для определения теплопроводности и температуропроводности неоднородного материала

Изобретение относится к области изучения физических свойств неоднородных материалов и может быть использовано для анализа теплопроводности, температуропроводности, объемной теплоемкости различных материалов. Для определения теплопроводности и температуропроводности неоднородного материала...
Тип: Изобретение
Номер охранного документа: 0002535657
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.1de8

Способ определения профиля теплопроводности горных пород в скважине

Изобретение относится к геофизическим исследованиям скважин и может найти применение для определения тепловых свойств пластов горных пород, окружающих скважины. Техническим результатом является возможность одновременного получения информации о свойствах относительно толстого (около 1 м) слоя...
Тип: Изобретение
Номер охранного документа: 0002539084
Дата охранного документа: 10.01.2015
10.03.2015
№216.013.2fc8

Способ определения весовой концентрации полимера, проникшего в пористую среду

Изобретение относится к способам анализа образцов пористых материалов и может быть использовано для количественного исследования ухудшения свойств околоскважинной зоны нефте/газосодержащих пластов из-за проникновения в нее полимеров, содержащихся в буровом растворе. Согласно заявленному...
Тип: Изобретение
Номер охранного документа: 0002543700
Дата охранного документа: 10.03.2015
20.04.2015
№216.013.420c

Способ определения изменения свойств околоскважинной зоны пласта-коллектора под воздействием бурового раствора

Использование: для определения изменения свойств околоскважинной зоны пласта-коллектора под воздействием бурового раствора. Сущность изобретения заключается в том, что отбирают керн из стенки скважины и откалывают от керна по меньшей мере одну часть. Осуществляют облучение отколотых частей...
Тип: Изобретение
Номер охранного документа: 0002548406
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.420e

Способ для определения теплопроводности и температуропроводности материалов

Изобретение относится к способам определение теплопроводности и температуропроводности материалов. В соответствии с предлагаемым способом регистрируют электрические сигналы, соответствующие начальным температурам поверхностей исследуемого образца материала по меньшей мере двух эталонных...
Тип: Изобретение
Номер охранного документа: 0002548408
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.42f2

Способ отслеживания перемещения обрабатывающей жидкости в продуктивном пласте

Изобретение относится к добыче углеводородного сырья из продуктивного пласта, пробуренного скважиной, и относится, в частности к нерадиоактивным индикаторам и методам их использования для отслеживания перемещения обрабатывающей жидкости и пластовых флюидов. Технический результат заключается в...
Тип: Изобретение
Номер охранного документа: 0002548636
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4416

Способ определения изменений параметров пористой среды под действием загрязнителя

Использование: для определения изменений параметров пористой среды под действием загрязнителя. Сущность изобретения заключается в том, что размещают излучатель и приемник акустических волн на противоположных поверхностях образца пористой среды, осуществляют первое облучение по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002548928
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4417

Способ определения профиля прочности материалов и устройство для его осуществления

Изобретение относится к области исследования механических свойств материалов. Сущность: осуществляют нагрев поверхности образца и наносят резцом царапину на нагретую поверхность образца. В процессе царапания измеряют горизонтальную и вертикальную составляющие силы сопротивления разрушению...
Тип: Изобретение
Номер охранного документа: 0002548929
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4418

Способ определения распределения и профиля загрязнителя в пористой среде

Изобретение относится к способам анализа образцов пористых материалов. Для определения распределения и профиля проникшего загрязнителя в пористой среде приготовляют суспензию загрязнителя, содержащего по меньшей мере один твердый компонент и окрашенного по меньшей мере одним катионным...
Тип: Изобретение
Номер охранного документа: 0002548930
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.4a76

Способ определения смачиваемости

Изобретение относится к области исследования смачиваемости поверхностей и может найти применение в различных отраслях промышленности, например в нефтегазовой, химической, лакокрасочной и пищевой. Для определения смачиваемости поверхности исследуемого материала по меньшей мере один образец...
Тип: Изобретение
Номер охранного документа: 0002550569
Дата охранного документа: 10.05.2015
+ добавить свой РИД