×
10.01.2015
216.013.1782

СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ФЛЮИДОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002537446
Дата охранного документа
10.01.2015
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к геофизическим исследованиям скважин и предназначено для определения скоростей течения пластовых флюидов в нефтяных скважинах. Техническим результатом является выделение интервалов глубин (пластов), где происходит движение флюидов, и оценка скорости их фильтрации в месте расположения наблюдательной скважины. В остановленной скважине осуществляют измерение температуры и определяют скорость изменения температуры на интервалах глубин, находящихся в пределах продуктивных пластов, и на интервалах глубин, находящихся в непосредственной близости от продуктивных пластов. На интервалах глубин, находящихся в пределах продуктивных пластов, выделяют участки, скорость изменения температуры в которых существенно выше скорости изменения температуры на интервалах глубин, находящихся в непосредственной близости от продуктивных пластов. Создают численную модель изменения температуры в остановленной скважине, учитывающую влияние фильтрации пластового флюида на скорость изменения температуры в остановленной скважине, сравнивают результаты измерений с результатами численного моделирования и по наилучшему совпадению результатов измерений и результатов моделирования определяют скорость фильтрации пластовых флюидов на интервалах глубин, находящихся в пределах продуктивных пластов. 7 з.п. ф-лы, 7 ил.
Реферат Свернуть Развернуть

Изобретение относится к геофизическим исследованиям скважин и предназначено для определения скоростей течения пластовых флюидов в нефтяных скважинах.

Для оптимизации взаимного расположения и режимов работы добывающих и нагнетательных скважин желательно иметь информацию о направлениях и скоростях течения пластовых флюидов в нефтяных залежах, где пробурены десятки и сотни скважин. Эта информация позволит уточнить гидродинамическую модель нефтяной залежи. Особую важность информация о движении пластовых флюидов имеет в случае добычи высоковязкой нефти. Кроме гетерогенности свойств нефтяного пласта, которая может быть известна из геофизических исследований, в процессе добычи возникает неоднородность фильтрационных свойств пласта, связанная с составом пластового флюида. Между нагнетательными и добывающими скважинами могут возникать каналы, заполненные водой (имеющей низкую вязкость), по которым закачиваемая вода поступает в добывающую скважину и не обеспечивает вытеснения нефти и прогрева нефтесодержащих участков пласта. По этим причинам разработка методов контроля за движением пластовых флюидов в нефтяной залежи с большим количеством добывающих и нагнетательных скважин представляет большой интерес.

В настоящее время контроль за движением пластовых флюидов в нефтяной залежи осуществляют косвенным образом, с помощью мониторинга гидравлической связи между скважинами методом гидропрослушивания (см., например, Amanat U. Chaudhry, Oil Well Testing Handbook, Elsevier Science, 2004, p.429-462). Этот метод основан на наблюдениях изменения давления в простаивающих скважинах при изменении режимов работы возмущающих скважин.

Более прямым методом является трассирование фильтрационных потоков с помощью индикаторных веществ (см., например, G. Michael Shook, Shannon L. Ansley, Allan Wylie, Tracers and Tracer Testing: Design, Implementation, and Interpretation Methods, 2004, INEEL). Метод состоит в добавлении индикаторного вещества в нагнетаемую в скважину жидкость и регистрации момента появления и концентрации индикатора в жидкости, поступающей из добывающих скважин. В качестве индикаторов используют различные химические и радиоактивные вещества, которые должны хорошо растворяться в воде, не выпадать в осадок, не сорбироваться горной породой, регистрироваться в широком диапазоне концентраций и т.д.. Трассирование фильтрационных потоков является достаточно дорогим и трудоемким методом, который применяется относительно редко. Кроме того, трассирование позволяет оценить только среднюю скорость фильтрации флюида между нагнетательной и добывающей скважиной. Скорость фильтрации флюида в месте расположения добывающей скважины (если бы она была остановлена) остается неизвестной.

Технический результат, достигаемый при реализации изобретения, заключается в обеспечении возможности выделения интервалов глубин (пластов), где происходит движение флюидов, и оценки скорости их фильтрации в месте расположения наблюдательной скважины.

Указанный технический результат достигается тем, что в соответствии с предлагаемым способом определения скорости фильтрации пластовых флюидов в остановленной скважине осуществляют измерение температуры и определяют скорость изменения температуры на интервалах глубин, находящихся в пределах продуктивных пластов, и на интервалах глубин, находящихся в непосредственной близости от продуктивных пластов. На интервалах глубин, находящихся в пределах продуктивных пластов, выделяют участки, скорость изменения температуры в которых существенно выше скорости изменения температуры на интервалах глубин, находящихся в непосредственной близости от продуктивных пластов. Создают численную модель изменения температуры в остановленной скважине, учитывающую влияние фильтрации пластового флюида на скорость изменения температуры в остановленной скважине, сравнивают результаты измерений с результатами численного моделирования и по наилучшему совпадению результатов измерений и результатов моделирования определяют скорость фильтрации флюидов на выделенных участках интервалов глубин, находящихся в пределах продуктивных пластов.

В соответствии с одним из вариантов реализации изобретения температуру в остановленной скважине измеряют с помощью оптико-волоконного измерителя.

В соответствии с другим вариантом реализации изобретения температуру в остановленной скважине измеряют посредством по меньшей мере трех термокаротажей этой скважины.

Измерения температуры осуществляют в скважине, остановленной или после цементации, или после добычи, или после нагнетания в скважину флюида, или после циркуляции флюида в скважине.

Предпочтительно выделение участков, на которых скорость изменения температуры существенно выше скорости изменения температуры на интервалах глубин в непосредственной близости от продуктивных пластов, осуществляют при временах выстойки скважины от 10 до 30 ч.

Изобретение поясняется чертежами, где на фиг.1 приведены примеры возмущения теплового поля пласта перед проведением измерений температуры в остановленной скважине, на фиг.2 показано расчетное поле температур в пласте после добычи в течение 30 дней, на фиг.3 - расчетное поле температур в пласте после выстойки скважины в течение 3 дней, на фиг.4 приведены расчетные температуры в скважине, нормированные на первоначальное отклонение температуры скважины от температуры пласта, на фиг.5 - нормированные на скорости изменения температуры для двух скоростей фильтрации, на фиг 6 - зависимость нормированной скорости изменения температуры от скорости фильтрации при времени выстойки скважины 20 ч, на фиг.7 приведена схема расчетной области, которая используется для оценки скорости фильтрации с помощью численного моделирования.

Предлагаемый способ основан на зависимости скорости изменения температуры, измеренной в наблюдательной скважине, от наличия и скорости фильтрации флюидов в пласте, который пересекает скважина.

Данное изобретение осуществляется следующим образом.

Проводят измерения температурного профиля по всему стволу скважины с помощью термокаротажных устройств или с помощью волоконного измерителя температуры в скважине, остановленной после цементации (фиг 1а), добычи (фиг.1б), нагнетания флюида (фиг.1c) или циркуляции флюида (фиг.1d). В случае термокаротажа измерения проводят многократно, не менее 3-5 раз. Во всех случаях начальная температура в скважине и в околоскважинном пространстве отличается от температуры пород вдали (в нескольких метрах) от скважины.

Рассчитывают скорость изменения температуры, измеренной в скважине на различных глубинах: на интервалах глубин, находящихся в пределах продуктивных пластов, и на интервалах глубин, примыкающих к продуктивным пластам (на расстоянии не более нескольких десятков метров).

Предпочтительно, спустя 10-30 ч после остановки скважины на интервалах глубин, находящихся в пределах продуктивных пластов, выделяют участки с фильтрацией пластовых флюидов, где скорость изменения температуры существенно выше, чем вне продуктивных пластов.

Создают численную модель изменения температуры в остановленной скважине, учитывающую влияние фильтрации пластового флюида на скорость изменения температуры в остановленной скважине, сравнивают результаты измерений с результатами численного моделирования и по наилучшему совпадению результатов измерений и результатов моделирования определяют скорость фильтрации флюидов на выделенных участках интервалов глубин, находящихся в пределах продуктивных пластов.

Возможность выделения интервалов глубин и оценки скорости фильтрации пластовых флюидов была продемонстрирована на синтетических случаях с использованием коммерческого симулятора COMSOL Multiphysics 3.5.

Проводилось 2D моделирование стационарного поля давления (и скорости фильтрации) и нестационарного поля температур в горизонтально расположенной однородной расчетной области, включающей скважину.

Уравнения для давления и температуры имеют вид:

,

где скорость фильтрации флюида, , k - проницаемость пласта, µ - вязкость фильтрующегося флюида, λ - теплопроводность флюидонасыщенного пласта, ρmcm - объемная теплоемкость кристаллической матрицы пласта, ρfcf - объемная теплоемкость флюида, ϕ - пористость пласта.

Граничные условия уравнения для расчета давления (фиг.7): непроницаемые верхняя и нижняя границы расчетной области и поверхность скважины, заданные давления P1 и P2 на левой и правой границах расчетной области. При этом разность давлений P1-P2 подбиралась таким образом, чтобы при заданном значении проницаемости пласта обеспечить требуемую скорость фильтрации флюида.

Граничные условия для уравнения энергии (фиг.7): теплоизолированные верхняя и нижняя границы расчетной области, температура T0, равная температуре пласта, на левой границе и условие свободного истекания на правой границе расчетной области.

Расчет проводился в два этапа.

На первом этапе на границах скважины задавалась постоянная температура, которая соответствует температуре флюида, текущего по скважине во время добычи или циркуляции, и рассчитывалось поле температур в конце циркуляции, которое использовалось как начальное условие для второго этапа. На втором этапе рассчитывалась эволюция поля температур после остановки скважины. Расчет проводился во всей расчетной области, включая скважину.

В качестве примера рассмотрим месторождение с двумя продуктивными пластами, причем добыча ведется из нижнего пласта (фиг.1б). Фиг.2 показывает расчетное поле температур в верхнем пласте (на фиксированной глубине) после 30 дней добычи при скорости фильтрации в этом пласта 0,25 м/день.

Расчетное поле температур в пласте после 3 дней выстойки скважины приведено на фиг.3. Скважина на этом рисунке показана черным кружком. Поскольку размер области, где температура существенно отличается от пластовой, существенно превосходит радиус скважины, происходит снос области повышенной температуры фильтрующимся флюидом. Как следствие, температура, измеренная в скважине, изменяется быстрее, чем при отсутствии потока.

Расчетные температуры в скважине, нормированные на первоначальное отклонение температуры скважины от температуры пласта при скоростях фильтрации 0, 0,12 и 0,25 м/день показаны на фиг.4, кривая 1 - V=0, кривая 2 - V=0,12 м/д, кривая 3 - V=0,25 м/д. Фиг.5 показывает скорость изменения температуры при скоростях фильтрации 0,12 и 0,25 м/день, нормированную на скорость изменения температуры при отсутствии фильтрации в пласте (кривая 1 - V=0,25 м/д, кривая 2 - V=0,12 м/д).

Расчеты показывают, что нормированная таким образом скорость релаксации температуры имеет наибольшие значения в интервале времен выстойки скважины 10-30 ч. Фиг.6 дает зависимость этой величины от скорости фильтрации флюида при времени выстойки 20 ч. Конкретный вид нормированной скорости релаксации температуры зависит от конструкции скважины, тепловых свойств горных пород и должен рассчитываться в каждом конкретном случае, например, с помощью коммерческого симулятора COMSOL Multiphysics 3.5.

Тем не менее из фиг.6 видно, что с помощью предлагаемого способа можно получить информацию о фильтрационных потоках, имеющих скорость более 0,03-0,05 м/день.


СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ФЛЮИДОВ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ФЛЮИДОВ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ФЛЮИДОВ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ФЛЮИДОВ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ФЛЮИДОВ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ФЛЮИДОВ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ФЛЮИДОВ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 112.
27.01.2013
№216.012.206a

Способ увеличения проницаемости призабойной зоны пласта

Изобретение относится к области обслуживания скважин, в частности к способам увеличения проницаемости призабойной зоны пласта посредством интенсификации притока флюидов в скважину - гидроразрывом. Обеспечивает повышение надежности и эффективности интенсификации притока флюидов в скважину,...
Тип: Изобретение
Номер охранного документа: 0002473799
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.2070

Способ определения акустических характеристик глинистой корки

Изобретение относится к способу определения акустических характеристик глинистой корки, образующейся при бурении скважины, таких, как подвижность флюида и пьезопроводность глинистой корки. Техническим результатом является создание простого, эффективного и точного способа определения...
Тип: Изобретение
Номер охранного документа: 0002473805
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.23e1

Способ определения профиля притока флюидов многопластовых залежей

Изобретение относится к нефтедобыче, а именно к устройствам для измерения количества нефти и нефтяного газа, извлекаемого из недр, и может быть использовано для оперативного учета дебитов продукции нефтяных и газоконденсатных скважин, как отдельных, так и кустов. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002474687
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.23e2

Способ определения акустических характеристик глинистой корки

Изобретение относится к способу определения акустических характеристик глинистой корки, образующейся при бурении скважины, таких как подвижность флюида и пьезопроводность глинистой корки. Техническим результатом является создание простого и эффективного способа определения характеристик...
Тип: Изобретение
Номер охранного документа: 0002474688
Дата охранного документа: 10.02.2013
20.05.2013
№216.012.41ff

Способ исследования образцов мерзлых пород

Изобретение относится к области исследования образцов мерзлых пород и может быть использовано для изучения пространственного распределения и концентрации ледяных и/или газогидратных включений в поровом пространстве образцов, определения размера включений, открытой или закрытой пористости и т.п....
Тип: Изобретение
Номер охранного документа: 0002482465
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.48e1

Способ очистки трещины гидроразрыва пласта

Изобретение относится к извлечению углеводородов из подземных продуктивных пластов, в частности к способам очистки трещины гидроразрыва. При осуществлении способа создают электропроводящую упаковку расклинивающего агента, осуществляют гидравлический разрыв с помощью электропроводящей жидкости...
Тип: Изобретение
Номер охранного документа: 0002484237
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.48e7

Способ гетерогенного размещения расклинивающего наполнителя в трещине гидроразрыва разрываемого слоя

Изобретение относится к извлечению жидкостей из подземных формаций и может быть применено при интенсификации потока через формацию путем гидравлического разрыва. Способ включает гидравлический разрыв отдельного разрывного коллекторного слоя подземной формации с целью обеспечения гетерогенного...
Тип: Изобретение
Номер охранного документа: 0002484243
Дата охранного документа: 10.06.2013
27.06.2013
№216.012.51a6

Способ исследования образцов неконсолидированных пористых сред

Использование: для исследования образцов неконсолидированных пористых сред. Сущность: заключается в том, что образец предварительно замораживают, замороженный образец в условиях отрицательной температуры приводят в контакт с замороженным раствором рентгеноконтрастного агента, по окончании...
Тип: Изобретение
Номер охранного документа: 0002486495
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.51ae

Способ определения местоположения и размеров неоднородных образований на стенках трубопровода

Использование: для диагностики состояния трубопроводов. Сущность: заключается в том, что осуществляют излучение акустического сигнала звукового диапазона в стенку трубопровода, граничащую со средой, окружающей трубопровод или протекающей внутри трубопровода, регистрацию отраженных от...
Тип: Изобретение
Номер охранного документа: 0002486503
Дата охранного документа: 27.06.2013
27.08.2013
№216.012.652c

Способ определения свойств пористых материалов

Изобретение относится к области исследования свойств пористых материалов, в частности к методам определения величины смачиваемости и распределения пор по размерам. Способ определения свойств пористых материалов заключает в том, что сперва образец пористого материала помещают в ячейку...
Тип: Изобретение
Номер охранного документа: 0002491537
Дата охранного документа: 27.08.2013
Показаны записи 1-10 из 81.
27.01.2013
№216.012.206a

Способ увеличения проницаемости призабойной зоны пласта

Изобретение относится к области обслуживания скважин, в частности к способам увеличения проницаемости призабойной зоны пласта посредством интенсификации притока флюидов в скважину - гидроразрывом. Обеспечивает повышение надежности и эффективности интенсификации притока флюидов в скважину,...
Тип: Изобретение
Номер охранного документа: 0002473799
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.2070

Способ определения акустических характеристик глинистой корки

Изобретение относится к способу определения акустических характеристик глинистой корки, образующейся при бурении скважины, таких, как подвижность флюида и пьезопроводность глинистой корки. Техническим результатом является создание простого, эффективного и точного способа определения...
Тип: Изобретение
Номер охранного документа: 0002473805
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.23e1

Способ определения профиля притока флюидов многопластовых залежей

Изобретение относится к нефтедобыче, а именно к устройствам для измерения количества нефти и нефтяного газа, извлекаемого из недр, и может быть использовано для оперативного учета дебитов продукции нефтяных и газоконденсатных скважин, как отдельных, так и кустов. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002474687
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.23e2

Способ определения акустических характеристик глинистой корки

Изобретение относится к способу определения акустических характеристик глинистой корки, образующейся при бурении скважины, таких как подвижность флюида и пьезопроводность глинистой корки. Техническим результатом является создание простого и эффективного способа определения характеристик...
Тип: Изобретение
Номер охранного документа: 0002474688
Дата охранного документа: 10.02.2013
20.05.2013
№216.012.41ff

Способ исследования образцов мерзлых пород

Изобретение относится к области исследования образцов мерзлых пород и может быть использовано для изучения пространственного распределения и концентрации ледяных и/или газогидратных включений в поровом пространстве образцов, определения размера включений, открытой или закрытой пористости и т.п....
Тип: Изобретение
Номер охранного документа: 0002482465
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.48e1

Способ очистки трещины гидроразрыва пласта

Изобретение относится к извлечению углеводородов из подземных продуктивных пластов, в частности к способам очистки трещины гидроразрыва. При осуществлении способа создают электропроводящую упаковку расклинивающего агента, осуществляют гидравлический разрыв с помощью электропроводящей жидкости...
Тип: Изобретение
Номер охранного документа: 0002484237
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.48e7

Способ гетерогенного размещения расклинивающего наполнителя в трещине гидроразрыва разрываемого слоя

Изобретение относится к извлечению жидкостей из подземных формаций и может быть применено при интенсификации потока через формацию путем гидравлического разрыва. Способ включает гидравлический разрыв отдельного разрывного коллекторного слоя подземной формации с целью обеспечения гетерогенного...
Тип: Изобретение
Номер охранного документа: 0002484243
Дата охранного документа: 10.06.2013
27.06.2013
№216.012.51a6

Способ исследования образцов неконсолидированных пористых сред

Использование: для исследования образцов неконсолидированных пористых сред. Сущность: заключается в том, что образец предварительно замораживают, замороженный образец в условиях отрицательной температуры приводят в контакт с замороженным раствором рентгеноконтрастного агента, по окончании...
Тип: Изобретение
Номер охранного документа: 0002486495
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.51ae

Способ определения местоположения и размеров неоднородных образований на стенках трубопровода

Использование: для диагностики состояния трубопроводов. Сущность: заключается в том, что осуществляют излучение акустического сигнала звукового диапазона в стенку трубопровода, граничащую со средой, окружающей трубопровод или протекающей внутри трубопровода, регистрацию отраженных от...
Тип: Изобретение
Номер охранного документа: 0002486503
Дата охранного документа: 27.06.2013
27.08.2013
№216.012.652c

Способ определения свойств пористых материалов

Изобретение относится к области исследования свойств пористых материалов, в частности к методам определения величины смачиваемости и распределения пор по размерам. Способ определения свойств пористых материалов заключает в том, что сперва образец пористого материала помещают в ячейку...
Тип: Изобретение
Номер охранного документа: 0002491537
Дата охранного документа: 27.08.2013
+ добавить свой РИД