×
27.12.2014
216.013.1689

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ СПУСКОМ КОСМИЧЕСКОГО АППАРАТА В АТМОСФЕРЕ ПЛАНЕТЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к управлению спуском космического аппарата (КА) в атмосфере планеты путем регулирования его аэродинамического качества (АК). На начальном участке полета скорость КА в атмосфере увеличивается (КА движется к условному перицентру орбиты). Плотность атмосферы еще мала и не вызывает значительного торможения КА. При достижении КА плотных слоев атмосферы его скорость начинает уменьшаться, и в момент достижения ею скорости входа в атмосферу переключают угол крена (γ) со значения γ=π на γ=0. Этим маневром обеспечивают перевод КА на траекторию движения с максимальным АК. В режиме полета с γ=0 реализуют продолжительную рикошетирующую траекторию, на которой скорость КА монотонно уменьшается. При достижении максимальной высоты рикошета происходит увеличение угла атаки КА и, следовательно, более интенсивное торможение КА. Техническим результатом изобретения является снижение конечной скорости КА при вводе системы мягкой посадки и сокращение тем самым расхода топлива на осуществление мягкой посадки КА. 1 ил.
Основные результаты: Способ управления спуском космического аппарата в атмосфере планеты, заключающийся в его пространственной ориентации и управлении аэродинамическим торможением, стабилизации космического аппарата при входе в атмосферу планеты по углу крена γ, равному около π рад, и углу атаки α, обеспечивающему максимальное аэродинамическое качество космического аппарата, определении текущих значений скорости, плотности атмосферы и высоты полета космического аппарата, установлении угла крена γ равным около 0 рад в процессе торможения космического аппарата в атмосфере планеты, в осуществлении движения космического аппарата в атмосфере планеты с последующим вводом в действие системы мягкой посадки космического аппарата, отличающийся тем, что устанавливают угол крена γ космического аппарата равным около 0 рад, обеспечивающим движение космического аппарата по рикошетирующей траектории с увеличением высоты полета, в процессе торможения космического аппарата в атмосфере планеты при выполнении условия:V

Изобретение относится к космонавтике, в частности к управлению спуском космического аппарата (КА) в атмосфере планеты, использующее управляемое аэродинамическое торможение и обеспечивающее минимизацию конечной скорости космического аппарата.

Известен способ управления спуском космического аппарата в атмосфере планеты, использующий управляемое аэродинамическое торможение и обеспечивающий снижение конечной скорости космического аппарата, описанный в книге - Иванов Н.М., Мартынов А.И. «Движение космических летательных аппаратов в атмосферах планет». М.: Наука, 1985, стр.168-173 - [1]. Указанный способ заключается в управлении аэродинамическим торможением путем изменения угла крена γ космического аппарата. При этом движение космического аппарата осуществляется с постоянным значением угла атаки, соответствующим максимальному балансировочному аэродинамическому качеству. Способ предусматривает одноразовое переключение угла крена γ с величины, равной π рад, на нулевое значение, что соответствует переключению эффективного аэродинамического качества с минимального значения (-K) на максимальное (+K).

Недостаток данного способа заключается в том, что он не предусматривает управление углом атаки космического аппарата α. Это существенно уменьшает возможности гашения скорости, поскольку увеличение угла атаки α приводит к возрастанию интенсивности аэродинамического торможения космического аппарата.

Наиболее близким по технической сущности к заявляемому способу управления спуском космического аппарата в атмосфере планеты, использующему управляемое аэродинамическое торможение и обеспечивающему снижение конечной скорости космического аппарата, является способ, описанный в книге - Иванов Н.М., Мартынов А.И. «Управление движением космических аппаратов в атмосфере Марса». Москва, «Наука», Главная редакция физико-математической литературы, 1977, стр.192-213 - [2], который выбран прототипом. Указанный способ заключается в двухпараметрическом управлении углами крена и атаки космического аппарата. Вход космического аппарата в атмосферу планеты осуществляется с углом крена γ=π рад и углом атаки α, соответствующим максимальному значению балансировочного аэродинамического качества. На начальном этапе полета осуществляется переключение угла крена γ на нулевое значение. После достижения углом наклона вектора скорости к местному горизонту нулевого значения угол крена γ определяется из условия обеспечения полета космического аппарата по изовысотному участку (участку с постоянной высотой). Затем осуществляется переключение угла крена γ на нулевое значение, обеспечивающее движение космического аппарата по рикошетирующей траектории с увеличением высоты полета. На этом участке происходит увеличение угла атаки α от значения, соответствующего максимуму аэродинамического коэффициента подъемной силы, до значения, соответствующего максимуму аэродинамического коэффициента лобового сопротивления.

Недостатки данного способа заключаются в том, что при его осуществлении не полностью реализуются резервы управления космическим аппаратом по эффективному гашению его скорости. Это обусловлено следующими факторами. Во-первых, отсутствует обоснование оптимальности момента переключения угла крена со значения π рад на ноль рад по критерию минимизации конечной скорости. При этом момент переключения значительно влияет на динамику торможения КА на последующих участках полета. Во-вторых, использование изовысотных участков укорачивает общую продолжительность траекторий спуска и тем самым снижает эффективность торможения КА в атмосфере. В-третьих, управление углом атаки происходит на достаточно коротком участке: в начале этого участка, например, при спуске в атмосфере Марса скорость полета составляет около 1 км/с, а высота - менее 10 км. Вместе с тем, более раннее управление углом атаки также позволяет повысить интенсивность гашения скорости за счет увеличения аэродинамического сопротивления КА.

Техническим результатом предлагаемого способа управления спуском КА в атмосфере планеты является снижение конечной скорости при вводе в действие системы мягкой посадки за счет рационального управления углами крена и атаки. Это дает возможность сократить расход топлива на осуществление мягкой посадки КА на поверхность планеты. Применение предлагаемого способа в зависимости от проектно-баллистических характеристик космического аппарата, граничных условий и параметров планеты назначения позволяет снизить расход топлива ~ на 10-20% по сравнению с использованием способа-прототипа.

Сущность изобретения заключается в использовании рациональных программ управления углами крена и атаки, обеспечивающих минимизацию конечной скорости полета КА. Это достигается введением новых фрагментов управления по сравнению с прототипом. Во-первых, выбором рациональных условий переключения угла крена со значения π на ноль рад: переключение осуществляется в момент, когда скорость КА становится меньше скорости его входа в атмосферу планеты. Как известно, скорость КА на начальном участке полета в атмосфере увеличивается, так как аппарат движется в направлении условного перицентра оскулирующей орбиты, а плотность атмосферы еще сравнительно мала и не оказывает значительное влияние на торможение КА. Затем, при достижении КА плотных слоев атмосферы его скорость начинает уменьшаться и в определенный момент времени снижается до скорости входа в атмосферу. Именно в этот момент необходимо осуществлять переключение угла крена с π на ноль рад и переводить КА на траекторию движения с максимальным аэродинамическим качеством. При более раннем переключении угла γ (при скорости полета КА, большей скорости входа в атмосферу) возникающая подъемная сила может привести к вылету КА из атмосферы и к невыполнению основной задачи космической миссии - посадке аппарата в заданном районе поверхности планеты. Более позднее переключение угла крена γ приводит к уменьшению продолжительности траектории спуска и, следовательно, к снижению интенсивности торможения КА. Во-вторых, благоприятным фактором повышения эффективности снижения конечной скорости является более раннее, по сравнению с прототипом, начало управления углом атаки α. После перевода КА на режим полета с γ=0 рад реализуется продолжительная рикошетирующая траектория, где скорость полета КА монотонно уменьшается. При достижении максимальной высоты рикошета, например ~50-60 км в условиях снижения в атмосфере Марса и ~200-250 км при снижении в атмосфере Юпитера, происходит увеличение угла атаки и, следовательно, более интенсивное торможение КА. Такое условие начала управления по углу α является рациональным по следующим причинам: более раннее изменение угла α (до завершения набора максимальной высоты) приводит к уменьшению максимальной высоты рикошета, к снижению продолжительности полета и к уменьшению интегрального воздействия сопротивления атмосферы на КА. При более позднем введении управления по углу α (при снижении высоты полета КА) аппарат, как правило, не успевает погасить скорость в конце траектории спуска до минимально возможного значения.

Также сущность заявленного способа управления спуском космического аппарата в атмосфере планеты заключается в его пространственной ориентации и управлении аэродинамическим торможением, стабилизации космического аппарата при входе в атмосферу планеты по углу крена γ, равному около π рад, и углу атаки α, обеспечивающему максимальное аэродинамическое качество космического аппарата, определении текущих значений скорости, плотности атмосферы и высоты полета космического аппарата, установлении угла крена γ равным около 0 рад в процессе торможения космического аппарата в атмосфере планеты, в осуществлении движения космического аппарата в атмосфере планеты с последующим вводом в действие системы мягкой посадки космического аппарата, при этом устанавливают угол крена γ космического аппарата, равный около 0 рад, обеспечивающий движение космического аппарата по рикошетирующей траектории с увеличением высоты полета, в процессе торможения космического аппарата в атмосфере планеты при выполнении условия:

Vi<Vвх,

где: Vi - текущее значение скорости движения космического аппарата в процессе его торможения в атмосфере планеты;

Vвх - скорость входа космического аппарата в атмосферу планеты,

осуществляют дальнейшее движение космического аппарата по рикошетирующей траектории

и при выполнении условия:

hi<hmax,

где: hi - текущее значение высоты полета космического аппарата в атмосфере планеты;

hmax - максимальное значение высоты полета космического аппарата при его движении по рикошетирующей траектории,

устанавливают значение угла атаки α космического аппарата в соответствии с математическим выражением:

,

где:

; ;

αi - угол атаки α космического аппарата в моменты времени ti;

Vi - текущее значение скорости космического аппарата в моменты времени ti;

ρi - плотность атмосферы планеты в моменты времени ti;

Δti - интервалы времени между последующими измерениями, i=1, 2, 3, …;

Cx - аэродинамический коэффициент лобового сопротивления космического аппарата;

S - площадь миделева сечения космического аппарата;

m - масса космического аппарата;

β - логарифмический коэффициент изменения плотности атмосферы от высоты;

l, n - постоянные коэффициенты при аппроксимации зависимостей аэродинамических коэффициентов от угла атаки космического аппарата к аналитическому виду;

a1, a2, a3 - постоянные коэффициенты, полученные при интегрировании дифференциальных уравнений сопряженных переменных,

по достижении углом атаки α космического аппарата величины α*, соответствующей максимальному значению его аэродинамического коэффициента лобового сопротивления, осуществляют полет с этим значением угла атаки α* до ввода в действие системы мягкой посадки.

Заявленный способ управления спуском космического аппарата в атмосфере планеты поясняется чертежом, на котором приведены зависимости скорости V, высоты полета h космического аппарата, его углов крена γ и атаки α от времени движения в атмосфере Марса t при минимизации конечной скорости.

Кроме того, на чертеже и в тексте принято следующее обозначение: tп - момент переключения угла крена с π рад на 0 рад.

Согласно работе [2], стр.194 аэродинамические коэффициенты лобового сопротивления и подъемной силы с высокой степенью точности могут быть аппроксимированы следующими аналитическими зависимостями:

Cx=Cx0+Asin2(nα+l),

Cy=Cy0+Asin(nα+l)cos(nα+l).

В частности, при использовании формы космического аппарата типа несущий корпус: Cx0=0,2; Cy0=-0,1; A=2,3; n=1,125; l=5,625°.

Для других типов форм могут быть использованы аналогичные зависимости при других значениях коэффициентов - [2], стр.194.

Техническим результатом изобретения является уменьшение потребных энергетических затрат на осуществление космических миссий по исследованию планет Солнечной системы и, следовательно, увеличение доли полезной нагрузки в общем весовом балансе космического аппарата.

Указанный технический результат достигается за счет установки на борту спускаемых аппаратов системы управления аэродинамическим качеством и отработки рациональных программ управления углами крена и атаки КА, а именно за счет того, что в способе управления спуском космического аппарата в атмосфере планеты, выбранном прототипом и заключающемся в пространственной ориентации КА и управлении его аэродинамическим торможением, стабилизации космического аппарата при входе в атмосферу планеты по углу крена γ, равному около π рад, и углу атаки α, обеспечивающему максимальное аэродинамическое качество космического аппарата, определении текущих значений скорости, плотности атмосферы и высоты полета космического аппарата, установлении угла крена γ равным около 0 рад в процессе торможения космического аппарата в атмосфере планеты, в осуществлении движения космического аппарата в атмосфере планеты с последующим вводом в действие системы мягкой посадки космического аппарата, дополнительно устанавливают угол крена γ космического аппарата, равный около 0 рад, обеспечивающий движение космического аппарата по рикошетирующей траектории с увеличением высоты полета, в процессе торможения космического аппарата в атмосфере планеты при выполнении условия:

Vi<Vвх,

где: Vi - текущее значение скорости движения космического аппарата в процессе его торможения в атмосфере планеты;

Vвх - скорость входа космического аппарата в атмосферу планеты,

осуществляют дальнейшее движение космического аппарата по рикошетирующей траектории

и при выполнении условия:

hi<hmax,

где: hi - текущее значение высоты полета космического аппарата в атмосфере планеты;

hmax - максимальное значение высоты полета космического аппарата при его движении по рикошетирующей траектории,

устанавливают значение угла атаки α космического аппарата в соответствии с математическим выражением:

,

где:

; ;

αi - угол атаки α космического аппарата в моменты времени ti;

Vi - текущее значение скорости космического аппарата в моменты времени ti;

ρi - плотность атмосферы планеты в моменты времени ti;

Δti - интервалы времени между последующими измерениями, i=1, 2, 3, …;

Cx - аэродинамический коэффициент лобового сопротивления космического аппарата;

S - площадь миделева сечения космического аппарата;

m - масса космического аппарата;

β - логарифмический коэффициент изменения плотности атмосферы от высоты;

l, n - постоянные коэффициенты при аппроксимации зависимостей аэродинамических коэффициентов от угла атаки космического аппарата к аналитическому виду;

a1, a2, a3 - постоянные коэффициенты, полученные при интегрировании дифференциальных уравнений сопряженных переменных, по достижении углом атаки α космического аппарата величины α*, соответствующей максимальному значению его аэродинамического коэффициента лобового сопротивления, осуществляют полет с этим значением угла атаки α* до ввода в действие системы мягкой посадки.

Покажем возможность осуществления изобретения, т.е. возможность его промышленного применения. Особенностью ведения космической деятельности во многих странах мира является активизация изучения планет Солнечной системы. В рамках Федеральной космической программы 2016-2025 гг. предусмотрены работы по созданию космических комплексов для исследования Марса, Венеры, Юпитера, Меркурия, в том числе по проектированию спускаемых аппаратов. При этом, одной из важнейших проблем является разработка ключевых технологий управления, обеспечивающих снижение массово-энергетических затрат на всех участках межпланетных перелетов. Успешное решение этой проблемы во многом обеспечивается при размещении на борту спускаемых аппаратов систем управления аэродинамическим торможением, использующих принципы управления углами крена и атаки, изложенные в предлагаемом изобретении.

Что касается технических средств, обеспечивающих управление аэродинамическим качеством КА, то есть управление его углами крена и атаки, то они известны - см., например, работы [1], стр.37, [2], стр.57, 270, а также работу «Навигационное обеспечение полета орбитального комплекса «САЛЮТ-6» - «СОЮЗ» - «ПРОГРЕС»», ответственные редакторы Б.Н. Петров, И.К. Бажинов, Москва, «Наука», 1985, глава 1 - [3].

Примечания.

1. Заявитель поместил в Приложении к материалам заявки обоснование использованного им (в описании и формуле изобретения) математического выражения для расчета угла атаки КА на его конечном участке спуска в атмосфере планеты, чтобы излишне не перегружать описание изобретения. Однако если Экспертиза сочтет целесообразным, заявитель не будет возражать на его включение в состав описания.

2. Согласно п.2.3.1 Руководства по экспертизе заявок на изобретения от 25.07.2011 г. использование в формуле изобретения признака «около» при характеристике значений числовых параметров допустимо.

3. Заявитель в материалах заявки использовал два тождественных термина «переключают» значение угла крена γ КА (используемое при описании аналогов) и «устанавливают» значение угла крена γ КА (в формуле изобретения), как, по его мнению, более предпочтительное. При этом полагая, что единство терминологии в данном случае не нарушено.

Приложение. Относится к заявке на изобретение «Способ управления спуском космического аппарата в атмосфере планеты» (использующий управляемое аэродинамическое торможение и обеспечивающий минимизацию конечной скорости космического аппарата (примечание Заявителя)).

Вывод используемых математических зависимостей для расчета угла атаки на конечном участке спуска космического аппарата (КА) в атмосфере планеты.

Движение КА в атмосфере планеты согласно работам [1, 2] описывается системой дифференциальных уравнений в скоростной системе координат с учетом влияния гравитационных, аэродинамических, центробежных и кориолисовых сил в предположении центральности поля тяготения:

Здесь V - скорость КА, θ - угол наклона вектора скорости к местному горизонту, ε - курсовой угол, r - радиус-вектор, соединяющий центр планеты и положение КА, λ и φ - долгота и широта подспутниковых точек КА соответственно, m - масса КА, t - время, ρ - плотность атмосферы, Cx и Cy - аэродинамические коэффициенты лобового сопротивления и подъемной силы соответственно, R - радиус планеты, h - высота полета, g - ускорение силы тяжести, µ - произведение постоянной притяжения на массу планеты, S - площадь миделева сечения.

Значения управляющих параметров α и γ могут изменяться в пределах:

0≤α≤αmax, -π≤γ≤π.

Преобразуем исходные уравнения (1) с учетом введения допущений, ранее применяемых в ряде отечественных и зарубежных работ, в частности в работах [1, 2]:

h<<R, ρ=ρ0exp(-βh), Fк+Fц<<Fгр<<Fа,

где ρ0 - плотность атмосферы на поверхности Марса, β - логарифмический коэффициент изменения плотности атмосферы от высоты, Fк, Fц, Fгр, Fа - кориолисова, центробежная, гравитационная и аэродинамическая силы соответственно.

Будем рассматривать только конечный участок спуска КА, начинающийся с момента достижения аппаратом максимальной высоты после полета по рикошетирующей траектории и завершающийся моментом ввода в действие системы мягкой посадки.

Используя указанные допущения, рассматривая движение КА в плоскости входа в атмосферу и учитывая, что на конечном участке осуществляется спуск аппарата с нулевым углом крена, преобразуем систему уравнений к виду:

, , ,

где M - кусочно-постоянная функция, согласно работам [1, 2].

Решение задачи поиска оптимального управления КА при обеспечении минимальной конечной скорости проводилось с использованием принципа максимума Понтрягина. Запишем гамильтониан H и сопряженные переменные Ψi:

,

,

, .

Сопоставляя уравнения для расчета функций H, Ψ1, Ψ3 преобразуем формулы для сопряженных переменных следующим образом:

, .

Из условия трансверсальности в конечной точке траектории полета КА следует, что

Учитывая, что гамильтониан не зависит в явном виде от времени полета, правомерно записать уравнение:

H≡0.

Это позволяет представить зависимости для расчета сопряженных переменных в виде:

, .

Интегрируя эти уравнения с учетом формул (2), получим:

,

, Ψ3(t)=a3=const.

При условии непрерывного измерения текущих значений скорости полета Vi и плотности атмосферы ρi сопряженные переменные с высокой степенью точности в моменты измерений ti могут быть вычислены по формулам:

где Δti - интервалы времени между последующими измерениями.

Анализ зависимостей для расчетов сопряженных переменных с учетом равенства нулю гамильтониана показал, что Ψ1(t) является отрицательной монотонно возрастающей функцией, достигающей в конечной точке траектории величины, равной -1; Ψ2(t) - положительная монотонно убывающая функция, достигающая в конечной точке траектории величины, равной нулю; Ψ3(t) - является постоянной функцией, имеющей отрицательное значение.

Определим оптимальный закон управления углом атаки из условия достижения экстремума гамильтониана:

.

Решая это уравнение, получим:

Учитывая описанный характер изменения сопряженных переменных Ψ1 и Ψ2, приходим к выводу, что выражение ∂Cx/∂Cy имеет отрицательное значение на всем заключительном участке полета. Это соответствует монотонному увеличению угла атаки: в этом случае ∂Сx>0, а ∂Cy<0. Причем, интенсивность изменения угла атаки увеличивается в связи с монотонным уменьшением скорости полета КА.

Согласно работам [1, 2] аэродинамические коэффициенты лобового сопротивления и подъемной силы с высокой степенью точности могут быть аппроксимированы следующими аналитическими зависимостями:

Cx=Cx0+Asin2(nα+l),

Cy=Cy0+Asin(nα+l)cos(nα+l).

Для спускаемых аппаратов типа несущий корпус Cx0=0,2; Cy0=-0,1; A=2,3; n=1,125; l=5,625°.

С учетом этих зависимостей формула (5) преобразуется к следующему виду:

.

Тогда уравнение для определения текущих значений углов атаки в моменты проведения измерений параметров КА запишется следующим образом:

,

где переменные Ψ1i и Ψ2i рассчитываются по формулам (3), (4). Анализ этого уравнения показал, что угол атаки α на рассматриваемом участке полета КА монотонно возрастает от α≈45÷50° до α≈70÷85°, что соответствует максимальному значению аэродинамического коэффициента лобового сопротивления.

Источники информации

1. Иванов Н.М., Мартынов А.И. «Движение космических летательных аппаратов в атмосферах планет». М.: «Наука», 1985, стр.168-173.

2. Н.М. Иванов, А.И. Мартынов «Управление движением космических аппаратов в атмосфере Марса». Москва, «Наука», Главная редакция физико-математической литературы, 1977, стр.159-169.

Способ управления спуском космического аппарата в атмосфере планеты, заключающийся в его пространственной ориентации и управлении аэродинамическим торможением, стабилизации космического аппарата при входе в атмосферу планеты по углу крена γ, равному около π рад, и углу атаки α, обеспечивающему максимальное аэродинамическое качество космического аппарата, определении текущих значений скорости, плотности атмосферы и высоты полета космического аппарата, установлении угла крена γ равным около 0 рад в процессе торможения космического аппарата в атмосфере планеты, в осуществлении движения космического аппарата в атмосфере планеты с последующим вводом в действие системы мягкой посадки космического аппарата, отличающийся тем, что устанавливают угол крена γ космического аппарата равным около 0 рад, обеспечивающим движение космического аппарата по рикошетирующей траектории с увеличением высоты полета, в процессе торможения космического аппарата в атмосфере планеты при выполнении условия:VСПОСОБ УПРАВЛЕНИЯ СПУСКОМ КОСМИЧЕСКОГО АППАРАТА В АТМОСФЕРЕ ПЛАНЕТЫ
СПОСОБ УПРАВЛЕНИЯ СПУСКОМ КОСМИЧЕСКОГО АППАРАТА В АТМОСФЕРЕ ПЛАНЕТЫ
СПОСОБ УПРАВЛЕНИЯ СПУСКОМ КОСМИЧЕСКОГО АППАРАТА В АТМОСФЕРЕ ПЛАНЕТЫ
СПОСОБ УПРАВЛЕНИЯ СПУСКОМ КОСМИЧЕСКОГО АППАРАТА В АТМОСФЕРЕ ПЛАНЕТЫ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 71.
11.03.2019
№219.016.dd68

Способ идентификации космических аппаратов и их обломков в космическом пространстве (варианты)

На наружную поверхность корпуса космического аппарата и солнечные батареи наносят маркирующее покрытие. Покрытие составляют из композиции веществ, спектр отражения которой кодирует техническую и правовую информацию о космическим аппарате. Включают светоотражающие элементы на подслое или в...
Тип: Изобретение
Номер охранного документа: 0002442998
Дата охранного документа: 20.02.2012
29.03.2019
№219.016.f805

Способ отображения баллистического состояния орбитальной группировки космических аппаратов

Изобретение относится к области ракетно-космической техники и может быть использовано для повышения эффективности работы систем наблюдения за космической обстановкой. Технический результат - расширение функциональных возможностей за счет повышения надежности и оперативности восприятия...
Тип: Изобретение
Номер охранного документа: 0002461016
Дата охранного документа: 10.09.2012
29.03.2019
№219.016.f80c

Способ передачи информации в условиях отражений (варианты)

Изобретение относится к радиотехнике, в частности к способам и устройствам приема многолучевых сигналов в L-диапазоне частот (1,5/1,6 ГГц), и может быть использовано в системах подвижной спутниковой связи, навигации и передачи данных. Достигаемый технический результат заключается в повышении...
Тип: Изобретение
Номер охранного документа: 0002461124
Дата охранного документа: 10.09.2012
29.03.2019
№219.016.f823

Способ определения эфемеридной информации в аппаратуре потребителя и устройство для его осуществления

Изобретение относится к спутниковым радионавигационным системам позиционирования, в частности, для определения, прогнозирования или корректировки эфемеридных данных. Технический результат - повышение точности и надежности. Для достижения данного результата при полете космического аппарата (КА)...
Тип: Изобретение
Номер охранного документа: 0002460970
Дата охранного документа: 10.09.2012
10.04.2019
№219.017.0210

Система глобального автоматического контроля в режиме реального времени параметров состояния объектов

Изобретение относится к системам автоматического дистанционного контроля в режиме реального времени состояния объектов, а также к системам аварийного оповещения. Техническим результатом является построение системы массового контроля в реальном времени физического состояния объектов для...
Тип: Изобретение
Номер охранного документа: 0002340004
Дата охранного документа: 27.11.2008
23.04.2019
№219.017.36dc

Устройство для испытаний моделей летательных аппаратов в аэродинамических трубах

Изобретение относится к экспериментальной аэродинамике, в частности к устройствам для испытания моделей летательных аппаратов в аэродинамических трубах, и может быть использовано для определения комплекса стационарных и нестационарных аэродинамических характеристик летательных аппаратов....
Тип: Изобретение
Номер охранного документа: 0002685576
Дата охранного документа: 22.04.2019
09.05.2019
№219.017.4fff

Способ создания тяги, устройство для его осуществления и средство перемещения

Изобретения относятся к области транспортных средств и могут быть использованы в двигательных системах различных объектов, в т.ч. космических. Способ заключается во вращении расположенных на объекте 2N роторов, каждый из которых выполнен с дополнительным массивным телом на его периферии и...
Тип: Изобретение
Номер охранного документа: 0002448023
Дата охранного документа: 20.04.2012
01.06.2019
№219.017.720b

Устройство для изменения положения модели в рабочей части аэродинамической трубы

Изобретение относится к экспериментальной аэродинамике, в частности к устройствам для изменения положения испытываемой модели в рабочей части аэродинамической трубы. Устройство содержит узел крепления державки для установки модели и три пары стоек, шарнирно соединенных одним концом с узлом...
Тип: Изобретение
Номер охранного документа: 0002690097
Дата охранного документа: 30.05.2019
19.06.2019
№219.017.86b9

Устройство для развертывания в космическом пространстве тепловой мишени

Изобретение предназначено для установки на наружной поверхности космического аппарата с последующим выведением в космическое пространство надувных тонкопленочных оболочек, служащих для проведения измерений. Устройство содержит кассету с самораскрывающимися створками, тонкопленочные оболочки в...
Тип: Изобретение
Номер охранного документа: 0002381436
Дата охранного документа: 10.02.2010
29.06.2019
№219.017.9c80

Способ установки и ориентации модели в аэродинамической трубе и устройство для его реализации (варианты)

Изобретение относится к экспериментальной аэрогазодинамике, в частности к средствам для установки и перемещения моделей различных летательных аппаратов в рабочих частях аэродинамических труб с высокими значениями скоростных напоров. Способ реализуется за счет того, что испытуемую модель...
Тип: Изобретение
Номер охранного документа: 0002396532
Дата охранного документа: 10.08.2010
Показаны записи 51-52 из 52.
26.08.2017
№217.015.d8c5

Способ защиты земли от потенциально опасного космического объекта и система для его осуществления

Изобретение относится к области космонавтики и касается защиты Земли от потенциально опасных космических объектов (ПОКО) естественного происхождения (астероидов, комет и болидов) путем изменения их орбит за счет внешнего на них воздействия. Для защиты Земли от ПОКО в качестве меры воздействия...
Тип: Изобретение
Номер охранного документа: 0002623415
Дата охранного документа: 26.06.2017
13.02.2018
№218.016.2211

Способ оценки стойкости материалов космической техники к воздействию факторов космического пространства

Изобретение относится к области испытаний полимерных материалов, входящих в состав конструкций космических аппаратов (КА). В предлагаемом способе образцы материалов экспонируют в течение заданного срока на поверхности КА, затем помещают в контейнер, который, в свою очередь, укладывают в...
Тип: Изобретение
Номер охранного документа: 0002642009
Дата охранного документа: 23.01.2018
+ добавить свой РИД