×
27.12.2014
216.013.1537

Результат интеллектуальной деятельности: КОМПЕНСАЦИОННЫЙ АКСЕЛЕРОМЕТР

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения ускорений в системах коррекции дальности полета реактивных снарядов. Целью предлагаемого изобретения является уменьшение температурной нестабильности коэффициента преобразования акселерометра. Компенсационный акселерометр содержит инерционный элемент (1), колебательную систему (2), преобразователь перемещения (3), усилитель цепи уравновешивания (4), обратный преобразователь (5), узел подключения масштабирующего резистора (6), термокомпенсирующий усилитель (7). В цепь отрицательной обратной связи термокомпенсирующего усилителя между его инвертирующим входом и резистором обратной связи включена цепь, состоящая из датчика температуры R, зашунтированного резистором R, значение электрического сопротивления которого выбирается из условия: где где K(t) - скомпенсированное значение температурной нестабильности коэффициента преобразования акселерометра; K(t), K(Δt), K(Δt) - температурная характеристика усилителя термокомпенсации при отключенных датчиках температуры в условиях воздействия номинальной, пониженной и повышенной рабочих температур акселерометра соответственно; K(t), K(Δt), K(Δt) - температурная характеристика акселерометра при отключенных датчиках температуры в условиях воздействия номинальной, пониженной и повышенной рабочих температур акселерометра соответственно; K(t), K(Δt), K(Δt) - температурная характеристика выбранной конфигурации термокомпенсирующего усилителя в условиях воздействия номинальной, пониженной и повышенной рабочих температур акселерометра соответственно; R, R - электрическое сопротивление медных катушек, подключенных ко входу термокомпенсирующего усилителя и в цепь его отрицательной обратной связи соответственно, при номинальном значении окружающей среды; α, α - температурные коэффициенты сопротивления резисторов R, R и медных катушек R, R соответственно; Δt - приращение значения температуры окружающей среды акселерометра относительно ее номинального значения. Подключение двух датчиков температуры в схему термокомпенсирующего усилителя позволяет линеаризовать скомпенсированную температурную характеристику акселерометра, что обеспечивает уменьшение температурной нестабильности его коэффициента преобразования и снижение трудоемкости процесса его температурной отладки. 3 ил.
Основные результаты: Компенсационный акселерометр, содержащий инерционный элемент, колебательную систему, датчик перемещения, усилитель цепи уравновешивания, выход которого соединен с последовательно соединенными обмоткой обратного преобразователя и масштабирующим резистором, резистор цепи отрицательной обратной связи усилителя, один вывод которого подключен к его инвертирующему входу, а его свободный вывод - к выходу усилителя цепи уравновешивания, термокомпенсирующий усилитель, резистор его обратной связи, подключенную к инвертирующему входу термокомпенсирующего усилителя цепь, содержащую параллельное включение медной обмотки датчика температуры и шунтирующего резистора R, соединенное последовательно с резистором R, а также дополнительный конденсатор C, подключенный параллельно к масштабирующему резистору, отличающийся тем, что в цепь отрицательной обратной связи термокомпенсирующего усилителя дополнительно введена цепь из датчика температуры R, подключенного одним выводом к инвертирующему входу операционного усилителя, другим выводом - к резистору обратной связи R операционного усилителя, и зашунтированного дополнительным резистором R, электрическое сопротивление которого выбирается из следующего условия где где K(t) - скомпенсированное значение температурной нестабильности коэффициента преобразования акселерометра;K(t), K(Δt), K(Δt) - температурная характеристика усилителя термокомпенсации при отключенных датчиках температуры в условиях воздействия номинальной, пониженной и повышенной рабочих температур акселерометра соответственно;K(t), K(Δt), K(Δt) - температурная характеристика акселерометра при отключенных датчиках температуры в условиях воздействия номинальной, пониженной и повышенной рабочих температур акселерометра соответственно;K(t), K(Δt), K(Δt) - температурная характеристика выбранной конфигурации термокомпенсирующего усилителя в условиях воздействия номинальной, пониженной и повышенной рабочих температур акселерометра соответственно;R, R - электрическое сопротивление медных катушек, подключенных ко входу термокомпенсирующего усилителя и в цепь его отрицательной обратной связи соответственно, при номинальном значении окружающей среды;α, α - температурные коэффициенты сопротивления резисторов R, R и медных катушек R, R соответственно;Δt - приращение значения температуры окружающей среды акселерометра относительно ее номинального значения..

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения ускорений в системах коррекции дальности полета реактивных снарядов.

Известен компенсационный акселерометр [1], содержащий чувствительный элемент, датчик положения, магнитоэлектрический силовой преобразователь с постоянным магнитом и компенсационной катушкой, первый вывод которой подсоединен к выходу усилителя, соединенные последовательно своими первыми выводами первой и второй масштабные резисторы, балластный резистор, первый и второй компараторы, логическое устройство ИЛИ, реле, первый вывод балластного резистора подключен к второму выводу компенсационной катушки, к второму выводу балластного резистора подключен второй вывод первого масштабного резистора, точка соединения балластного и первого масштабного резисторов соединена с противоположными по знаку входами первого и второго компараторов, выход первого компаратора подключен к одному входу логического устройства ИЛИ, выход второго компаратора подключен к другому входу логического устройства ИЛИ, к выходу логического устройства ИЛИ подключено реле, первый замыкающий контакт которого подключен между точкой соединения компенсационной катушки с балластным резистором и точкой соединения первого и второго масштабных резисторов, а второй замыкающий контакт подключен между точкой соединения балластного резистора с первым масштабным резистором и точкой соединения первого и второго масштабных резисторов.

Недостатком указанного акселерометра является значительная температурная нестабильность его коэффициента преобразования, минимальное значение которой определяется минимально возможной температурной нестабильностью индукции магнитов обратного преобразователя.

Известен компенсационный акселерометр [2], содержащий инерционный элемент, колебательную систему, преобразователь перемещения, усилитель, выход которого соединен с последовательно соединенными обмоткой обратного преобразователя и масштабирующим резистором, конденсатор, включенный параллельно обмотке обратного преобразователя, резистор отрицательной обратной связи усилителя, один вывод которого подключен к его инвертирующему входу, а другой вывод - к точке соединения обмотки обратного преобразователя и масштабирующего резистора.

Недостатком акселерометра является низкая температурная стабильность его коэффициента преобразования из-за отсутствия в его составе цепей термокомпенсации, обеспечивающих значение температурной нестабильности коэффициента преобразования не хуже 0,004%/°C.

Наиболее близким техническим решением к заявляемому является компенсационный акселерометр [3], содержащий инерционный элемент, колебательную систему, датчик перемещения, усилитель цепи уравновешивания, выход которого соединен с последовательно соединенными обмоткой обратного преобразователя и масштабирующим резистором, резистор цепи отрицательной обратной связи усилителя, один вывод которого подключен к его инвертирующему входу, дополнительный усилитель и резистор его обратной связи, подключенной к его инвертирующему входу цепью, содержащей параллельное включение медной обмотки датчика температуры и шунтирующего ее резистора RП, соединенной последовательно с резистором RШ, а также дополнительный конденсатор CДОП, подключенный параллельно к масштабирующему резистору, а свободный вывод резистора отрицательной обратной связи усилителя цепи уравновешивания подключен к его выходу. Электрические сопротивления резисторов RП, RШ определяются из выражений

где γ - назначенное значение составной части общей погрешности;

R0 - электрическое сопротивление медной катушки при температуре, соответствующей середине температурного интервала;

αR, αM - температурные коэффициенты сопротивлений резистора RП и медной катушки R0;

n - установленное отношение температурных приращений сопротивлений RП и R0 (n>1);

ΔT - приращение температур относительно середины интервала температуры, воздействующей на акселерометр.

Недостатком акселерометра является значительная сложность регулирования температурного коэффициента усиления акселерометра при решении задачи компенсации температурных погрешностей на уровне менее 0,8%/100°C вследствие значительной нелинейности скомпенсированной температурной характеристики акселерометра, обусловленной наложением некомпенсированной температурной характеристики, нелинейность которой тем больше, чем меньше ее наклон, и обратно пропорциональной температурной характеристики термокомпенсирующего усилителя.

Целью предлагаемого изобретения является уменьшение температурной нестабильности коэффициента преобразования акселерометра.

Поставленная цель достигается тем, что в компенсационный акселерометр, содержащий инерционный элемент, колебательную систему, датчик перемещения, усилитель цепи уравновешивания, выход которого соединен с последовательно соединенными обмоткой обратного преобразователя и масштабирующим резистором, резистор цепи отрицательной обратной связи усилителя, один вывод которого подключен к его инвертирующему входу, а его свободный вывод - к выходу усилителя цепи уравновешивания, термокомпенсирующий усилитель, резистор его обратной связи, подключенную к инвертирующему входу термокомпенсирующего усилителя цепь, содержащую параллельное включение медной обмотки датчика температуры и шунтирующего резистора RШ, соединенное последовательно с резистором RП, a также дополнительный конденсатор CДОП, подключенный параллельно к масштабирующему резистору, в цепь отрицательной обратной связи термокомпенсирующего усилителя согласно изобретению дополнительно введена цепь из датчика температуры R01, подключенного одним выводом к инвертирующему входу операционного усилителя, другим выводом - к резистору обратной связи RОС операционного усилителя, и зашунтированного дополнительным резистором RШ1, электрическое сопротивление которого выбирается из следующего условия

где

где K(t) - скомпенсированное значение температурной нестабильности коэффициента преобразования акселерометра;

Kt0(t0), Kt0(Δt1), Kt0(Δt2) - температурная характеристика усилителя термокомпенсации при отключенных датчиках температуры в условиях воздействия номинальной, пониженной и повышенной рабочих температур акселерометра соответственно;

KA(t0), KA(Δt1), KA(Δt2) - температурная характеристика акселерометра при отключенных датчиках температуры в условиях воздействия номинальной, пониженной и повышенной рабочих температур акселерометра соответственно;

Kt(t0), Kt(Δt1), Kt(Δt2) - температурная характеристика выбранной конфигурации термокомпенсирующего усилителя в условиях воздействия номинальной, пониженной и повышенной рабочих температур акселерометра соответственно;

R0, R01 - электрическое сопротивление медных катушек, подключенных ко входу термокомпенсирующего усилителя и в цепь его отрицательной обратной связи соответственно, при номинальном значении температуры окружающей среды;

αR, αM - температурные коэффициенты сопротивления резисторов RП, RП1 и медных катушек R0, R01 соответственно;

Δt - приращение значения температуры окружающей среды акселерометра относительно ее номинального значения.

Подключение дополнительного датчика температуры в обратную связь термокомпенсирующего усилителя позволяет линеаризовать скомпенсированную температурную характеристику акселерометра, что обеспечивает уменьшение температурной нестабильности его коэффициента преобразования и снижение трудоемкости процесса его температурной отладки.

На фиг. 1 представлена обобщенная структурная схема компенсационного акселерометра, содержащего:

1 - инерционный элемент;

2 - колебательную систему;

3 - преобразователь перемещения;

4 - усилитель цепи уравновешивания;

5 - обратный преобразователь;

6 - узел подключения масштабирующего резистора;

7 - термокомпенсирующий усилитель.

На фиг. 2 представлена обобщенная конфигурация термокомпенсирующего усилителя, содержащего:

RП - последовательный резистор цепи, подключенной к инвертирующему входу термокомпенсирующего усилителя;

RОС - резистор обратной связи термокомпенсирующего усилителя;

R0(t), R01(t) - медные датчики температуры;

RШ, RШ1 - шунтирующие резисторы;

DA - операционный усилитель.

На фиг. 3 представлены результаты моделирования процесса термокомпенсации средствами программы Mathcad с термокомпенсирующим усилителем согласно [3] и согласно предложенному техническому решению:

а - при конфигурации термокомпенсирующего усилителя [3], содержащей цепь из датчика температуры R0(t), зашунтированного резистором RШ, подключенную к инвертирующему входу термокомпенсирующего усилителя;

б - при конфигурации термокомпенсирующего усилителя, содержащей цепь из датчика температуры R0(t), зашунтированного резистором RШ, подключенную к инвертирующему входу термокомпенсирующего усилителя, и дополнительную цепь, состоящую из датчика температуры R01(t), зашунтированного резистором RШ1.

Процесс термокомпенсации реализуется следующим образом. Предварительно экспериментальным путем определяется температурная характеристика акселерометра KA(t) при отключенных датчиках температуры. В том случае, если полученные значения KA(Δt1) и KA(Δt2) не удовлетворяют заданным требованиям, по результатам моделирования, реализующего алгоритм нахождения корней уравнений, описывающих условие (1) ,определяется конфигурация термокомпенсирующего усилителя, обеспечивающая минимизацию температурной нестабильности коэффициента преобразования акселерометра:

- на основе полученных значений KA(Δt1), KA(Δt1) выбирается оптимальная конфигурация термокомпенсирующего усилителя;

- задаются начальные условия задачи: KA(t), RП, RОС, R0, R01;

- выполняется поиск решений (RШ, RШ1) системы неравенств, реализующих условие (1);

- оценивается соответствие заданным требованиям расчетной характеристики K(t) с выбранной конфигурацией термокомпенсирующего усилителя.

После подключения выбранной конфигурации термокомпенсирующего усилителя в измерительную цепь акселерометра экспериментальным путем определяется скомпенсированная характеристика K(t) акселерометра.

Результаты оценки эффективности предлагаемого решения на основе моделирования средствами программы Mathcad приведены в таблице 1.

Моделирование процесса термокомпенсации при конфигурации термокомпенсирующего усилителя с предложенной конфигурацией (Фиг. 3) при значениях , дает результат , , что подтверждает существенное расширение возможностей по минимизации температурной нестабильности коэффициента преобразования акселерометра.

Эффективность решения подтверждена результатами серийного изготовления и испытаний в составе изделия акселерометров АЛЕ 055-01 по КД, откорректированной с применением предлагаемого технического решения, в 2012 году.

Источники информации

1. RU патент № 2155965, G01 Р 15/13. Компенсационный акселерометр. Опубл.10.09.2000.

2. RU патент № 2138822, G01 P 15/08. Компенсационный аселерометр. Опубл.27.09 1999.

3. RU патент № 2341805, G01 P 15/13. Компенсационный акселерометр. Опубл. 2012.2008.

Компенсационный акселерометр, содержащий инерционный элемент, колебательную систему, датчик перемещения, усилитель цепи уравновешивания, выход которого соединен с последовательно соединенными обмоткой обратного преобразователя и масштабирующим резистором, резистор цепи отрицательной обратной связи усилителя, один вывод которого подключен к его инвертирующему входу, а его свободный вывод - к выходу усилителя цепи уравновешивания, термокомпенсирующий усилитель, резистор его обратной связи, подключенную к инвертирующему входу термокомпенсирующего усилителя цепь, содержащую параллельное включение медной обмотки датчика температуры и шунтирующего резистора R, соединенное последовательно с резистором R, а также дополнительный конденсатор C, подключенный параллельно к масштабирующему резистору, отличающийся тем, что в цепь отрицательной обратной связи термокомпенсирующего усилителя дополнительно введена цепь из датчика температуры R, подключенного одним выводом к инвертирующему входу операционного усилителя, другим выводом - к резистору обратной связи R операционного усилителя, и зашунтированного дополнительным резистором R, электрическое сопротивление которого выбирается из следующего условия где где K(t) - скомпенсированное значение температурной нестабильности коэффициента преобразования акселерометра;K(t), K(Δt), K(Δt) - температурная характеристика усилителя термокомпенсации при отключенных датчиках температуры в условиях воздействия номинальной, пониженной и повышенной рабочих температур акселерометра соответственно;K(t), K(Δt), K(Δt) - температурная характеристика акселерометра при отключенных датчиках температуры в условиях воздействия номинальной, пониженной и повышенной рабочих температур акселерометра соответственно;K(t), K(Δt), K(Δt) - температурная характеристика выбранной конфигурации термокомпенсирующего усилителя в условиях воздействия номинальной, пониженной и повышенной рабочих температур акселерометра соответственно;R, R - электрическое сопротивление медных катушек, подключенных ко входу термокомпенсирующего усилителя и в цепь его отрицательной обратной связи соответственно, при номинальном значении окружающей среды;α, α - температурные коэффициенты сопротивления резисторов R, R и медных катушек R, R соответственно;Δt - приращение значения температуры окружающей среды акселерометра относительно ее номинального значения..
КОМПЕНСАЦИОННЫЙ АКСЕЛЕРОМЕТР
КОМПЕНСАЦИОННЫЙ АКСЕЛЕРОМЕТР
КОМПЕНСАЦИОННЫЙ АКСЕЛЕРОМЕТР
КОМПЕНСАЦИОННЫЙ АКСЕЛЕРОМЕТР
КОМПЕНСАЦИОННЫЙ АКСЕЛЕРОМЕТР
КОМПЕНСАЦИОННЫЙ АКСЕЛЕРОМЕТР
КОМПЕНСАЦИОННЫЙ АКСЕЛЕРОМЕТР
Источник поступления информации: Роспатент

Показаны записи 11-20 из 51.
10.11.2013
№216.012.7f40

Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектрических систем (НиМЭМС) с мостовой измерительной пенью, предназначенных для использования в системах управления, контроля и диагностики объектов...
Тип: Изобретение
Номер охранного документа: 0002498249
Дата охранного документа: 10.11.2013
20.01.2014
№216.012.98ff

Интегральный тензопреобразователь ускорения

Изобретение относится к измерительной технике и может быть использовано при конструировании микромеханических тензорезисторных акселерометров, работоспособных при повышенных температурах. Интегральный тензопреобразователь ускорения содержит выполненные из единого монокристалла кремния два...
Тип: Изобретение
Номер охранного документа: 0002504866
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9c95

Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов...
Тип: Изобретение
Номер охранного документа: 0002505791
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9cb4

Индукционный датчик частоты вращения

Изобретение относится к области контрольно-измерительной техники и может быть использовано для бесконтактного измерения частоты вращения валов двигателей в условиях широкого изменения рабочих температур. Технический результат заключается в повышении чувствительности преобразования, точности...
Тип: Изобретение
Номер охранного документа: 0002505822
Дата охранного документа: 27.01.2014
10.04.2014
№216.012.b552

Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Изобретение относится к измерительной технике, в частности к датчикам давления на основе тонкопленочных нано- и микроэлектрических систем (НиМЭМС), предназначенных для использования в системах управления, контроля и диагностики объектов длительного функционирования. Способ изготовления...
Тип: Изобретение
Номер охранного документа: 0002512142
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.c13b

Устройство формирования выходного сигнала индуктивного дифференциального измерительного преобразователя

Изобретение относится к измерительной технике и может быть применено в устройствах, использующих в качестве первичного преобразователя индуктивные дифференциальные измерительные преобразователи, применяемые для измерения перемещений, вибраций и биений валов и объектов, работающих в широком...
Тип: Изобретение
Номер охранного документа: 0002515216
Дата охранного документа: 10.05.2014
27.05.2014
№216.012.cb40

Тензорезисторный датчик давления на основе тонкопленочной нано- и микроэлектромеханической системы

Тензорезисторный датчик давления на основе тонкопленочной нано- и микроэлектромеханической системы. Датчик давления предназначен для использования при воздействии повышенных виброускорений и широкого диапазона нестационарных температур окружающей и измеряемой среды. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002517798
Дата охранного документа: 27.05.2014
20.07.2014
№216.012.de98

Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов...
Тип: Изобретение
Номер охранного документа: 0002522770
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dfd9

Пьезоэлектрический датчик давления

Изобретение относится к точному приборостроению, в частности к датчикам, предназначенным для использования в различных областях науки и техники, связанных с измерением динамических давлений. Пьезоэлектрический датчик давления содержит корпус с мембраной, в котором расположен чувствительный...
Тип: Изобретение
Номер охранного документа: 0002523091
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e024

Способ формирования импульсов из сигналов индукционных датчиков частоты вращения

Изобретение относится к измерительной технике и может быть использовано в системах автоматического измерения, управления и аварийной защиты, в состав которых входят датчики, вырабатывающие двухполярные сигналы, в частности индукционные датчики частоты вращения и расхода. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002523166
Дата охранного документа: 20.07.2014
Показаны записи 11-20 из 44.
10.11.2013
№216.012.7f40

Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектрических систем (НиМЭМС) с мостовой измерительной пенью, предназначенных для использования в системах управления, контроля и диагностики объектов...
Тип: Изобретение
Номер охранного документа: 0002498249
Дата охранного документа: 10.11.2013
20.01.2014
№216.012.98ff

Интегральный тензопреобразователь ускорения

Изобретение относится к измерительной технике и может быть использовано при конструировании микромеханических тензорезисторных акселерометров, работоспособных при повышенных температурах. Интегральный тензопреобразователь ускорения содержит выполненные из единого монокристалла кремния два...
Тип: Изобретение
Номер охранного документа: 0002504866
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9c95

Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов...
Тип: Изобретение
Номер охранного документа: 0002505791
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9cb4

Индукционный датчик частоты вращения

Изобретение относится к области контрольно-измерительной техники и может быть использовано для бесконтактного измерения частоты вращения валов двигателей в условиях широкого изменения рабочих температур. Технический результат заключается в повышении чувствительности преобразования, точности...
Тип: Изобретение
Номер охранного документа: 0002505822
Дата охранного документа: 27.01.2014
10.04.2014
№216.012.b552

Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Изобретение относится к измерительной технике, в частности к датчикам давления на основе тонкопленочных нано- и микроэлектрических систем (НиМЭМС), предназначенных для использования в системах управления, контроля и диагностики объектов длительного функционирования. Способ изготовления...
Тип: Изобретение
Номер охранного документа: 0002512142
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.c13b

Устройство формирования выходного сигнала индуктивного дифференциального измерительного преобразователя

Изобретение относится к измерительной технике и может быть применено в устройствах, использующих в качестве первичного преобразователя индуктивные дифференциальные измерительные преобразователи, применяемые для измерения перемещений, вибраций и биений валов и объектов, работающих в широком...
Тип: Изобретение
Номер охранного документа: 0002515216
Дата охранного документа: 10.05.2014
27.05.2014
№216.012.cb40

Тензорезисторный датчик давления на основе тонкопленочной нано- и микроэлектромеханической системы

Тензорезисторный датчик давления на основе тонкопленочной нано- и микроэлектромеханической системы. Датчик давления предназначен для использования при воздействии повышенных виброускорений и широкого диапазона нестационарных температур окружающей и измеряемой среды. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002517798
Дата охранного документа: 27.05.2014
20.07.2014
№216.012.de98

Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов...
Тип: Изобретение
Номер охранного документа: 0002522770
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dfd9

Пьезоэлектрический датчик давления

Изобретение относится к точному приборостроению, в частности к датчикам, предназначенным для использования в различных областях науки и техники, связанных с измерением динамических давлений. Пьезоэлектрический датчик давления содержит корпус с мембраной, в котором расположен чувствительный...
Тип: Изобретение
Номер охранного документа: 0002523091
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e024

Способ формирования импульсов из сигналов индукционных датчиков частоты вращения

Изобретение относится к измерительной технике и может быть использовано в системах автоматического измерения, управления и аварийной защиты, в состав которых входят датчики, вырабатывающие двухполярные сигналы, в частности индукционные датчики частоты вращения и расхода. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002523166
Дата охранного документа: 20.07.2014
+ добавить свой РИД