×
20.12.2014
216.013.123f

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ОБЪЕМНОГО САМОСТОЯТЕЛЬНОГО РАЗРЯДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к лазерной технике. Устройство для формирования объемного самостоятельного разряда содержит герметичный корпус, в котором вдоль оси установлены два протяженных профилированных электрода, гальванически связанных с импульсным источником питания. Один из электродов закреплен на диэлектрическом основании с развитой поверхностью, а второй - на обратных токопроводах так, что между электродами образован разрядный промежуток. Оба электрода являются сменными и имеют по периметру профильную поверхность, выполненную на основе профиля Степперча, при этом электрод, закрепленный на обратных токопроводах, имеет возможность перемещения относительно другого электрода для регулировки разрядного промежутка. Обратные токопроводы выполнены в виде изогнутых стержней и расположены таким образом, что расстояние от электрода, закрепленного на диэлектрическом основании, до обратных токопроводов по поверхности диэлектрического основания удовлетворяет соотношению L≥2,5D, где D - высота разрядного промежутка. Технический результат заключается в обеспечении возможности формирования однородного и устойчивого объемного самостоятельного разряда за время длительности импульса накачки (~350 нс). 5 з.п. ф-лы, 2 ил.

Область техники

Изобретение относится к квантовой электронике, а именно к устройствам для формирования объемного самостоятельного разряда (ОСР), и может быть использовано при разработке импульсных и импульсно-периодических газовых лазеров.

Уровень техники

Известно устройство для формирования объемного самостоятельного разряда в смесях SF6 с углеводородами (угледейтеридами) без специальных устройств предыонизации газа, содержащее электроразрядную стеклоэпоксидную камеру и электродную систему для получения ОСР из двух плоских электродов при разрядном промежутке 150 мм [1]. Катод с размером плоской части поверхности 150×750 мм был закруглен по периметру радиусом 1 мм, его поверхность подвергалась пескоструйной обработке. Размер анода составлял 300×900 мм. Разрядный объем составил ≈21 л. Давление смесей составляло 103 Торр. Генератор импульсов напряжения (ГИН) был выполнен по схеме десятикаскадного генератора Аркадьева-Маркса с емкостью в ударе 40 нФ и максимальным напряжением на выходе 550 кВ. Импульс генерации имел длительность на полувысоте ≈180 нс. Энергия генерации лазера достигала 144 Дж на HF и 115 Дж на DF при электрическом КПД, соответственно, 2,8 и 2,2%.

Недостатком данного устройства является высокая краевая неоднородность электрического поля в разрядном промежутке, а также то, что в данном устройстве все характеристики получены в режиме одиночных включений.

В данной установке в качестве обратных токопроводов используются шины, которые не позволяют обеспечить продувку газа в разрядном промежутке, что не позволяет использовать устройство в импульсно-периодическом режиме.

Известно устройство для формирования ОСР для использования в XeCl-лазере [2], содержащее герметичный корпус, в котором установлены два протяженных вдоль оптической оси лазера профилированных электрода, один из которых (анод) заземлен, а другой (катод) является высоковольтным и размещен на диэлектрической крышке с развитой поверхностью. Катод подключен к ГИН через обратные токопроводы, представляющие собой металлическую сетку. Предыонизация разрядного промежутка осуществляется УФ излучением искровых разрядов. Расчеты и эксперименты проводились для следующих параметров лазера: разрядный промежуток 50 мм, активная длина разряда 800 мм. Профиль электродов и геометрия обратных токопроводов оптимизировались с точки зрения получения максимальной однородности электрического поля в межэлектродном промежутке. В объеме активной среды около 1,5 л получена энергия генерации ≈3,6 Дж, эффективность лазера ≈3,6% при длительности импульса на его полувысоте ≈210 нс и частоте следования импульсов ≈100 Гц. Емкость формирующей линии 240 нФ.

Однако данная конструкция непригодна для больших объемов активной среды. По мере увеличения разрядного промежутка из-за конструктивных ограничений камеры невозможно было увеличить апертуру разряда без снижения эффективности генерации. При увеличении расстояния от оси разряда до края обратного токопровода происходило возрастание напряженности электрического поля на краях электродов, что обуславливает неоднородность разряда и генерации.

Недостатком данной конструкции также является использование сетки в качестве обратных токопроводов. При больших токах возрастает вероятность прогорания сетки. Для работы с большими токами необходимо увеличивать толщину сетки, что из-за снижения скорости потока газа приведет к уменьшению частоты следования импульсов. В результате этого снизится мощность лазера.

Кроме того, в данном устройстве в качестве рабочей среды (PC) используются слабо электроотрицательные газы. Для инициирования ОСР в таких газах для получения первичных электронов необходима предыонизация. При использовании данной системы необходима дополнительная система электропитания для предыонизации, система синхронизации с основной системой электропитания, что приводит к усложнению конструкции.

В качестве прототипа выбран лазер [2] как наиболее близкий по технической и физической сущности.

Раскрытие изобретения

В заявляемом устройстве используются PC на основе сильно электроотрицательных газов (например, SF6, фториды, иодиды, хлориды), применяемых в нецепных электроразрядных импульсных лазерах.

Задачей настоящего изобретения является повышение выходной мощности и удельного энергосъема лазера с большим объемом PC с замкнутым циклом прокачки среды, работающего в импульсном и импульсно-периодическом режимах с высокой частотой следования импульсов.

Техническим результатом является формирование однородного и устойчивого ОСР за время длительности импульса накачки (≈350 нс).

Технический результат достигается тем, что в устройстве для формирования ОСР, содержащем герметичный корпус, в котором вдоль оси установлены два протяженных профилированных электрода, гальванически связанных с ГИН, причем один из электродов закреплен на диэлектрическом основании с развитой поверхностью, а второй - на обратных токопроводах так, что между электродами образован разрядный промежуток, новым является то, что оба электрода являются сменными и имеют по периметру профильную поверхность, выполненную на основе профиля Степперча, а электрод, закрепленный на обратных токопроводах, имеет возможность перемещения относительно другого электрода для регулировки разрядного промежутка и точной установки электродов относительно друг друга, при этом обратные токопроводы выполнены в виде изогнутых стержней и расположены таким образом, что расстояние от электрода, закрепленного на диэлектрическом основании, до обратных токопроводов по поверхности диэлектрического основания удовлетворяет соотношению Lпов≥2,5D, где D - высота разрядного промежутка.

По всей рабочей поверхности электродов, формирующей ОСР требуемого сечения, выполнены мелкомасштабные неоднородности высотой 40-50 мкм, а остальная профильная поверхность электродов выполнена полированной.

Регулировка разрядного промежутка и точная установка электродов относительно друг друга осуществляется с помощью котировочных механизмов, выполненных по типу шаровой опоры, при этом обратные токопроводы имеют возможность изгиба.

Обратные токопроводы покрыты слоем изоляции.

Расстояние от электрода, закрепленного на диэлектрическом основании, до обратных токопроводов в газе удовлетворяет соотношению Lгаз≥1,5D, где D - высота разрядного промежутка.

Выполнение электродов по периметру с профилем, выполненным на основе профиля Степперча, позволяет снизить неоднородность напряженности электрического поля в разрядном промежутке, что приводит к однородности энерговклада в PC и однородности распределения плотности энергии генерации по сечению активного объема.

Для выполнения условия Lпов≥2,5D, где D - высота разрядного промежутка, на диэлектрическом основании выполнена развитая поверхность, образованная канавками треугольной или трапециевидной, или синусоидальной формы, которая обеспечивает электрическую прочность по поверхности диэлектрика.

Наличие развитой поверхности диэлектрического основания, образованной канавками треугольной, трапециевидной или синусоидальной формы, приводит к уменьшению объема камеры, а дополнительная изоляция обратных токопроводов позволяет расположить обратные токопроводы как можно ближе к электроду, это в совокупности приводит к снижению индуктивности разрядного контура, а следовательно, и к укорочению импульса накачки, что позволяет работать с сильно электроотрицательными PC без возникновения стримеров (пробоя) в разрядном промежутке.

Регулировка разрядного промежутка осуществляется с помощью котировочных механизмов, выполненных по типу шаровой опоры, при этом обратные токопроводы имеют возможность изгиба. Данные юстировочные механизмы позволяют использовать электроды с различным профилем на основе профиля Степперча при различной высоте разрядного промежутка. Использование разъемных соединений дает возможность осуществлять периодическую смену электродов с целью обновления качества их поверхности и обеспечения устойчивого разряда. Возможность точной установки электродов относительно друг друга позволяет сформировать равномерное объемное электрическое поле по всей длине разрядного промежутка.

На рабочей поверхности электродов выполнены мелкомасштабные неоднородности высотой 40-50 мкм, которые улучшают развитие ОСР и позволяют обеспечить более равномерный и устойчивый объемный разряд в разрядном промежутке без предыонизации. При этом под рабочей поверхностью понимается плоская и часть профилированной поверхности, которые формируют необходимый объем ОСР. Для гарантированного формирования необходимого объема ОСР остальная профильная поверхность электрода полируется (Ra1,25).

На Фиг.1 показана конструкция устройства для формирования ОСР, где: 1 - корпус; 2 - анод; 3 - диэлектрическое основание; 4 - катод; 5 - обратный токопровод; 6 - диэлектрическая пластина; 7 - переходник; 8 - втулка резьбовая; 9 - фланец прижимной; 10 - вкладыш; 11 - палец.

На Фиг.2 приведен автограф ОСР, где 2 - анод; 4 - катод. Из данного чертежа видно, что размеры поперечного сечения ОСР соответствуют требуемым значениям. Устройство работает следующим образом.

Высоковольтный импульс напряжения от ГИН подается на электрод 2. В разрядном промежутке образуется ОСР, который инициирует химическую реакцию в PC, что приводит к генерации лазерного излучения.

С целью подтверждения осуществимости заявленного устройства и достижения технического результата был изготовлен и испытан лабораторный макет. Внутри газоразрядного корпуса 1 располагались сплошные электроды 2 и 4 из алюминиевого сплава АМг6. Электроды, установленные в корпусе, по своим размерам аналогичны электродам, установленным в полномасштабном макете лазера. Длина электродов составляла 640 мм, высота разрядного промежутка составляла 130 мм. В экспериментах использовались электроды с размерами в плане - 650×180 мм с закруглением на концах радиусом R50 мм. Толщина электродов - 30 мм. По периметру, включая радиусные части, электроды выполняются с профилем Степперча, рассчитанным для различных параметров Y0 (0,4-0,45) и d4 (0,7-0,8) [3]. Под рабочей поверхностью электрода, формирующей необходимый активный объем ОСР, в данном случае, понимается плоская и часть профилированной поверхности, ограниченные контуром с размерами 600×130 мм. Обратные токопроводы 5 в количестве 26 штук, размещенные на расстоянии 50 мм друг от друга, выполнены в виде изогнутых стержней из латуни с изоляцией из фторопласта. Разрядный промежуток мог варьироваться с помощью трех котировочных механизмов в диапазоне 100-130 мм. При вращении пальцев 11 происходит прямолинейное перемещение электрода 4 по вертикали, за счет сферы, выполненной на конце пальца, электрод также может заклоняться. При D=130 мм расстояние Lпов=420 мм, а Lгаз=220 мм. Давление газа внутри корпуса было 0,15 атм, при этом происходила принудительная прокачка газовой среды. В качестве рабочей смеси использовалась смесь SF6 с Н2. Рабочее импульсное напряжение было 300 кВ.

Источник питания содержал ГИН, выполненный по схеме Аркадьева-Маркса, с обострительной емкостью, предназначенной для укорочения высоковольтного импульса. Описанная электрическая схема позволяла работать как в однократном, так и в частотном режимах. Частота следования импульсов 25 Гц.

Проведенные эксперименты показали, что в данном устройстве реализуется однородный и достаточно устойчивый ОСР в заданном объеме, что позволяет достигнуть высокие параметры лазерной генерации.

Источники информации

1. Аполлонов В.В., Казанцев С.Ю., Орешкин В.Ф., Фирсов К.Н. «Нецепной электроразрядный HF (DF)-лазер с высокой энергией излучения». Квантовая электроника, Т.25, №2, 1998, с.123-125.

2. Борисов В.М., Демьянов А.В., Кирюхин Ю.Б. «Теоретическое и экспериментальное исследование развития крупномасштабной неустойчивости в разряде XeCl-лазера с УФ предыонизацией». Квантовая электроника Т.24, №1 (1997), с.25-30.

3. Е.А. Stappaerts, «A novel analytical design method for discharge laser electrode profiles», Appl. Phys. Lett, 40 (12), p.1018.


УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ОБЪЕМНОГО САМОСТОЯТЕЛЬНОГО РАЗРЯДА
УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ОБЪЕМНОГО САМОСТОЯТЕЛЬНОГО РАЗРЯДА
Источник поступления информации: Роспатент

Показаны записи 421-430 из 565.
29.05.2018
№218.016.5644

Бесчехловая регулирующая тепловыделяющая сборка жидкометаллического ядерного реактора

Изобретение относится к области ядерной техники и может быть применено в бесчехловых регулирующих тепловыделяющих сборках жидкометаллического ядерного реактора. Бесчехловая тепловыделяющая сборка жидкометаллического ядерного реактора содержит тепловыделяющие элементы, установленные в...
Тип: Изобретение
Номер охранного документа: 0002654530
Дата охранного документа: 21.05.2018
29.05.2018
№218.016.5648

Электромагнитный привод

Изобретение относится к области электротехники, в частности к электромагнитным приводам постоянного тока для передачи угловых перемещений, и может быть использовано для создания двухпозиционных электромагнитных реле или устройств с поворотом подвижного элемента на некоторый ограниченный угол и...
Тип: Изобретение
Номер охранного документа: 0002654498
Дата охранного документа: 21.05.2018
29.05.2018
№218.016.5662

Вакуумный искровой разрядник

Изобретение относится к электротехнике и сильноточной электронике, представляет собой вакуумный искровой разрядник и может использоваться для коммутации сильноточных высоковольтных электрических систем. Вакуумный искровой разрядник включает герметичную диэлектрическую оболочку, содержащую...
Тип: Изобретение
Номер охранного документа: 0002654494
Дата охранного документа: 21.05.2018
29.05.2018
№218.016.56bb

Вакуумный разрядник

Изобретение относится к электротехнике и сильноточной электронике, в частности к средствам коммутации, представляет собой вакуумный разрядник, управляемый сфокусированным оптическим излучением, и может использоваться для коммутации сильноточных высоковольтных электрических систем. В герметичной...
Тип: Изобретение
Номер охранного документа: 0002654493
Дата охранного документа: 21.05.2018
09.06.2018
№218.016.5a61

Способ автоматизированного измерения сопротивлений

Изобретение относится к измерительной технике, представляет собой способ автоматизированного измерения сопротивлений и может применяться для удаленного контроля сопротивлений в случае их соизмеримости с сопротивлением линий связи и коммутации. При реализации способа входы двухпроводного...
Тип: Изобретение
Номер охранного документа: 0002655470
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5b7e

Стенд для определения массоцентровочных характеристик изделий больших масс

Изобретение относится к области метрологии, приборам контроля действительного положения координат центра масс и массы изделий. Cтенд для определения массоцентровочных характеристик изделий больших масс состоит из устройства массоцентровочных характеристик (МЦХ), корзины балансировочной,...
Тип: Изобретение
Номер охранного документа: 0002655726
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5c0f

Способ определения скорости эрозии и осаждения тонких слоев на обращенных к плазме элементах плазменных установок (варианты)

Изобретение относится к способу определения толщины и контроля скорости эрозии и осаждения тонких слоев на обращенных к плазме элементах плазменных установок. В изобретении предусмотрено изготовление и помещение в плазменную установку мишеней из легкого и/или тяжелого элемента (например,...
Тип: Изобретение
Номер охранного документа: 0002655666
Дата охранного документа: 29.05.2018
11.06.2018
№218.016.607b

Самодиагностируемая бортовая вычислительная система с резервированием замещением

Изобретение относится к вычислительной технике и может быть использовано в системах различного назначения, где требуется высокая надежность и радиационная стойкость. Техническим результатом является сокращение времени задействования резервной системы, находящейся в выключенном состоянии, при...
Тип: Изобретение
Номер охранного документа: 0002657166
Дата охранного документа: 08.06.2018
25.06.2018
№218.016.6682

Формирователь кода

Изобретение относится к кодирующим устройствам помехоустойчивого кода, обеспечивающего восстановление передаваемой по каналу связи информации после ее искажений под действием помех. Технический результат – повышение помехоустойчивости и уменьшение времени передачи многобитных посылок....
Тип: Изобретение
Номер охранного документа: 0002658809
Дата охранного документа: 22.06.2018
21.07.2018
№218.016.72f7

Устройство контроля работы генератора

Изобретение относится к импульсной технике и может быть использовано для повышения надежности цифровых систем транспортных устройств в условиях воздействия механических ударов. Устройство контроля работы генератора содержит основной и резервный генераторы, первый и второй логические элементы,...
Тип: Изобретение
Номер охранного документа: 0002661354
Дата охранного документа: 16.07.2018
Показаны записи 421-424 из 424.
19.04.2019
№219.017.3118

Способ зарядки емкостного накопителя энергии

Изобретение относится к преобразовательной технике. Управление инвертором осуществляют в автоколебательном режиме с частотой, определяемой резонансным контуром, причем управляющие импульсы формируют с возможностью переключения инвертора при нулевом значении тока в резонансном контуре, а...
Тип: Изобретение
Номер охранного документа: 0002416143
Дата охранного документа: 10.04.2011
18.05.2019
№219.017.562f

Запорный клапан

Изобретение относится в области машиностроения, в частности к пневмоавтоматике, и предназначено для перекрытия потока газа в выходной канал при импульсной подаче давления во входной канал. Запорный клапан содержит корпус с проточной частью, входным и выходными каналами, седло и запорный орган,...
Тип: Изобретение
Номер охранного документа: 0002390683
Дата охранного документа: 27.05.2010
18.05.2019
№219.017.5a7b

Импульсно-периодический электроразрядный лазер замкнутого цикла (варианты)

Лазер включает корпус в виде двух установленных одна в другую оболочек с разрядной камерой между ними, источник питания, резонатор на торцах камеры, размещенные между оболочками теплообменник, средства очистки газов и их прокачки. Резонатором служат выполненные на одной стороне...
Тип: Изобретение
Номер охранного документа: 0002405233
Дата охранного документа: 27.11.2010
09.06.2019
№219.017.7996

Съемник кольцевой прокладки из трубы

Изобретение относится к ручным устройствам и предназначено для монтажно-ремонтных работ. Съемник кольцевой прокладки из трубы с резьбой содержит корпус с полостью и резьбой для совместного свинчивания его с трубой, силовой элемент, захватный элемент, установленный с возможностью осевого...
Тип: Изобретение
Номер охранного документа: 0002393080
Дата охранного документа: 27.06.2010
+ добавить свой РИД