×
20.12.2014
216.013.123f

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ОБЪЕМНОГО САМОСТОЯТЕЛЬНОГО РАЗРЯДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к лазерной технике. Устройство для формирования объемного самостоятельного разряда содержит герметичный корпус, в котором вдоль оси установлены два протяженных профилированных электрода, гальванически связанных с импульсным источником питания. Один из электродов закреплен на диэлектрическом основании с развитой поверхностью, а второй - на обратных токопроводах так, что между электродами образован разрядный промежуток. Оба электрода являются сменными и имеют по периметру профильную поверхность, выполненную на основе профиля Степперча, при этом электрод, закрепленный на обратных токопроводах, имеет возможность перемещения относительно другого электрода для регулировки разрядного промежутка. Обратные токопроводы выполнены в виде изогнутых стержней и расположены таким образом, что расстояние от электрода, закрепленного на диэлектрическом основании, до обратных токопроводов по поверхности диэлектрического основания удовлетворяет соотношению L≥2,5D, где D - высота разрядного промежутка. Технический результат заключается в обеспечении возможности формирования однородного и устойчивого объемного самостоятельного разряда за время длительности импульса накачки (~350 нс). 5 з.п. ф-лы, 2 ил.

Область техники

Изобретение относится к квантовой электронике, а именно к устройствам для формирования объемного самостоятельного разряда (ОСР), и может быть использовано при разработке импульсных и импульсно-периодических газовых лазеров.

Уровень техники

Известно устройство для формирования объемного самостоятельного разряда в смесях SF6 с углеводородами (угледейтеридами) без специальных устройств предыонизации газа, содержащее электроразрядную стеклоэпоксидную камеру и электродную систему для получения ОСР из двух плоских электродов при разрядном промежутке 150 мм [1]. Катод с размером плоской части поверхности 150×750 мм был закруглен по периметру радиусом 1 мм, его поверхность подвергалась пескоструйной обработке. Размер анода составлял 300×900 мм. Разрядный объем составил ≈21 л. Давление смесей составляло 103 Торр. Генератор импульсов напряжения (ГИН) был выполнен по схеме десятикаскадного генератора Аркадьева-Маркса с емкостью в ударе 40 нФ и максимальным напряжением на выходе 550 кВ. Импульс генерации имел длительность на полувысоте ≈180 нс. Энергия генерации лазера достигала 144 Дж на HF и 115 Дж на DF при электрическом КПД, соответственно, 2,8 и 2,2%.

Недостатком данного устройства является высокая краевая неоднородность электрического поля в разрядном промежутке, а также то, что в данном устройстве все характеристики получены в режиме одиночных включений.

В данной установке в качестве обратных токопроводов используются шины, которые не позволяют обеспечить продувку газа в разрядном промежутке, что не позволяет использовать устройство в импульсно-периодическом режиме.

Известно устройство для формирования ОСР для использования в XeCl-лазере [2], содержащее герметичный корпус, в котором установлены два протяженных вдоль оптической оси лазера профилированных электрода, один из которых (анод) заземлен, а другой (катод) является высоковольтным и размещен на диэлектрической крышке с развитой поверхностью. Катод подключен к ГИН через обратные токопроводы, представляющие собой металлическую сетку. Предыонизация разрядного промежутка осуществляется УФ излучением искровых разрядов. Расчеты и эксперименты проводились для следующих параметров лазера: разрядный промежуток 50 мм, активная длина разряда 800 мм. Профиль электродов и геометрия обратных токопроводов оптимизировались с точки зрения получения максимальной однородности электрического поля в межэлектродном промежутке. В объеме активной среды около 1,5 л получена энергия генерации ≈3,6 Дж, эффективность лазера ≈3,6% при длительности импульса на его полувысоте ≈210 нс и частоте следования импульсов ≈100 Гц. Емкость формирующей линии 240 нФ.

Однако данная конструкция непригодна для больших объемов активной среды. По мере увеличения разрядного промежутка из-за конструктивных ограничений камеры невозможно было увеличить апертуру разряда без снижения эффективности генерации. При увеличении расстояния от оси разряда до края обратного токопровода происходило возрастание напряженности электрического поля на краях электродов, что обуславливает неоднородность разряда и генерации.

Недостатком данной конструкции также является использование сетки в качестве обратных токопроводов. При больших токах возрастает вероятность прогорания сетки. Для работы с большими токами необходимо увеличивать толщину сетки, что из-за снижения скорости потока газа приведет к уменьшению частоты следования импульсов. В результате этого снизится мощность лазера.

Кроме того, в данном устройстве в качестве рабочей среды (PC) используются слабо электроотрицательные газы. Для инициирования ОСР в таких газах для получения первичных электронов необходима предыонизация. При использовании данной системы необходима дополнительная система электропитания для предыонизации, система синхронизации с основной системой электропитания, что приводит к усложнению конструкции.

В качестве прототипа выбран лазер [2] как наиболее близкий по технической и физической сущности.

Раскрытие изобретения

В заявляемом устройстве используются PC на основе сильно электроотрицательных газов (например, SF6, фториды, иодиды, хлориды), применяемых в нецепных электроразрядных импульсных лазерах.

Задачей настоящего изобретения является повышение выходной мощности и удельного энергосъема лазера с большим объемом PC с замкнутым циклом прокачки среды, работающего в импульсном и импульсно-периодическом режимах с высокой частотой следования импульсов.

Техническим результатом является формирование однородного и устойчивого ОСР за время длительности импульса накачки (≈350 нс).

Технический результат достигается тем, что в устройстве для формирования ОСР, содержащем герметичный корпус, в котором вдоль оси установлены два протяженных профилированных электрода, гальванически связанных с ГИН, причем один из электродов закреплен на диэлектрическом основании с развитой поверхностью, а второй - на обратных токопроводах так, что между электродами образован разрядный промежуток, новым является то, что оба электрода являются сменными и имеют по периметру профильную поверхность, выполненную на основе профиля Степперча, а электрод, закрепленный на обратных токопроводах, имеет возможность перемещения относительно другого электрода для регулировки разрядного промежутка и точной установки электродов относительно друг друга, при этом обратные токопроводы выполнены в виде изогнутых стержней и расположены таким образом, что расстояние от электрода, закрепленного на диэлектрическом основании, до обратных токопроводов по поверхности диэлектрического основания удовлетворяет соотношению Lпов≥2,5D, где D - высота разрядного промежутка.

По всей рабочей поверхности электродов, формирующей ОСР требуемого сечения, выполнены мелкомасштабные неоднородности высотой 40-50 мкм, а остальная профильная поверхность электродов выполнена полированной.

Регулировка разрядного промежутка и точная установка электродов относительно друг друга осуществляется с помощью котировочных механизмов, выполненных по типу шаровой опоры, при этом обратные токопроводы имеют возможность изгиба.

Обратные токопроводы покрыты слоем изоляции.

Расстояние от электрода, закрепленного на диэлектрическом основании, до обратных токопроводов в газе удовлетворяет соотношению Lгаз≥1,5D, где D - высота разрядного промежутка.

Выполнение электродов по периметру с профилем, выполненным на основе профиля Степперча, позволяет снизить неоднородность напряженности электрического поля в разрядном промежутке, что приводит к однородности энерговклада в PC и однородности распределения плотности энергии генерации по сечению активного объема.

Для выполнения условия Lпов≥2,5D, где D - высота разрядного промежутка, на диэлектрическом основании выполнена развитая поверхность, образованная канавками треугольной или трапециевидной, или синусоидальной формы, которая обеспечивает электрическую прочность по поверхности диэлектрика.

Наличие развитой поверхности диэлектрического основания, образованной канавками треугольной, трапециевидной или синусоидальной формы, приводит к уменьшению объема камеры, а дополнительная изоляция обратных токопроводов позволяет расположить обратные токопроводы как можно ближе к электроду, это в совокупности приводит к снижению индуктивности разрядного контура, а следовательно, и к укорочению импульса накачки, что позволяет работать с сильно электроотрицательными PC без возникновения стримеров (пробоя) в разрядном промежутке.

Регулировка разрядного промежутка осуществляется с помощью котировочных механизмов, выполненных по типу шаровой опоры, при этом обратные токопроводы имеют возможность изгиба. Данные юстировочные механизмы позволяют использовать электроды с различным профилем на основе профиля Степперча при различной высоте разрядного промежутка. Использование разъемных соединений дает возможность осуществлять периодическую смену электродов с целью обновления качества их поверхности и обеспечения устойчивого разряда. Возможность точной установки электродов относительно друг друга позволяет сформировать равномерное объемное электрическое поле по всей длине разрядного промежутка.

На рабочей поверхности электродов выполнены мелкомасштабные неоднородности высотой 40-50 мкм, которые улучшают развитие ОСР и позволяют обеспечить более равномерный и устойчивый объемный разряд в разрядном промежутке без предыонизации. При этом под рабочей поверхностью понимается плоская и часть профилированной поверхности, которые формируют необходимый объем ОСР. Для гарантированного формирования необходимого объема ОСР остальная профильная поверхность электрода полируется (Ra1,25).

На Фиг.1 показана конструкция устройства для формирования ОСР, где: 1 - корпус; 2 - анод; 3 - диэлектрическое основание; 4 - катод; 5 - обратный токопровод; 6 - диэлектрическая пластина; 7 - переходник; 8 - втулка резьбовая; 9 - фланец прижимной; 10 - вкладыш; 11 - палец.

На Фиг.2 приведен автограф ОСР, где 2 - анод; 4 - катод. Из данного чертежа видно, что размеры поперечного сечения ОСР соответствуют требуемым значениям. Устройство работает следующим образом.

Высоковольтный импульс напряжения от ГИН подается на электрод 2. В разрядном промежутке образуется ОСР, который инициирует химическую реакцию в PC, что приводит к генерации лазерного излучения.

С целью подтверждения осуществимости заявленного устройства и достижения технического результата был изготовлен и испытан лабораторный макет. Внутри газоразрядного корпуса 1 располагались сплошные электроды 2 и 4 из алюминиевого сплава АМг6. Электроды, установленные в корпусе, по своим размерам аналогичны электродам, установленным в полномасштабном макете лазера. Длина электродов составляла 640 мм, высота разрядного промежутка составляла 130 мм. В экспериментах использовались электроды с размерами в плане - 650×180 мм с закруглением на концах радиусом R50 мм. Толщина электродов - 30 мм. По периметру, включая радиусные части, электроды выполняются с профилем Степперча, рассчитанным для различных параметров Y0 (0,4-0,45) и d4 (0,7-0,8) [3]. Под рабочей поверхностью электрода, формирующей необходимый активный объем ОСР, в данном случае, понимается плоская и часть профилированной поверхности, ограниченные контуром с размерами 600×130 мм. Обратные токопроводы 5 в количестве 26 штук, размещенные на расстоянии 50 мм друг от друга, выполнены в виде изогнутых стержней из латуни с изоляцией из фторопласта. Разрядный промежуток мог варьироваться с помощью трех котировочных механизмов в диапазоне 100-130 мм. При вращении пальцев 11 происходит прямолинейное перемещение электрода 4 по вертикали, за счет сферы, выполненной на конце пальца, электрод также может заклоняться. При D=130 мм расстояние Lпов=420 мм, а Lгаз=220 мм. Давление газа внутри корпуса было 0,15 атм, при этом происходила принудительная прокачка газовой среды. В качестве рабочей смеси использовалась смесь SF6 с Н2. Рабочее импульсное напряжение было 300 кВ.

Источник питания содержал ГИН, выполненный по схеме Аркадьева-Маркса, с обострительной емкостью, предназначенной для укорочения высоковольтного импульса. Описанная электрическая схема позволяла работать как в однократном, так и в частотном режимах. Частота следования импульсов 25 Гц.

Проведенные эксперименты показали, что в данном устройстве реализуется однородный и достаточно устойчивый ОСР в заданном объеме, что позволяет достигнуть высокие параметры лазерной генерации.

Источники информации

1. Аполлонов В.В., Казанцев С.Ю., Орешкин В.Ф., Фирсов К.Н. «Нецепной электроразрядный HF (DF)-лазер с высокой энергией излучения». Квантовая электроника, Т.25, №2, 1998, с.123-125.

2. Борисов В.М., Демьянов А.В., Кирюхин Ю.Б. «Теоретическое и экспериментальное исследование развития крупномасштабной неустойчивости в разряде XeCl-лазера с УФ предыонизацией». Квантовая электроника Т.24, №1 (1997), с.25-30.

3. Е.А. Stappaerts, «A novel analytical design method for discharge laser electrode profiles», Appl. Phys. Lett, 40 (12), p.1018.


УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ОБЪЕМНОГО САМОСТОЯТЕЛЬНОГО РАЗРЯДА
УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ОБЪЕМНОГО САМОСТОЯТЕЛЬНОГО РАЗРЯДА
Источник поступления информации: Роспатент

Показаны записи 101-110 из 565.
20.07.2014
№216.012.de8b

Способ определения коэффициента диффузии в порошковых материалах и способ определения толщины и показателя целостности покрытия на частицах порошковых материалов

Изобретения относятся к области определения значений параметров, характеризующих физико-химические свойства материалов, например коэффициентов диффузии, по величине электропроводности, и могут найти применение в порошковой металлургии, в изучении процессов самораспространяющегося...
Тип: Изобретение
Номер охранного документа: 0002522757
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.deb1

Способ определения концентрации изотопного состава молекулярного йода в газах

Изобретение относится к области измерительной техники и может быть использовано в атомной энергетике и для охраны окружающей среды. Осуществляют прокачку анализируемой смеси газов через исследуемую ячейку, возбуждают в ней флуоресцентное излучение перестраиваемыми полупроводниковыми лазерами с...
Тип: Изобретение
Номер охранного документа: 0002522795
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.deb3

Устройство для формирования ударно-волнового импульса

Изобретение относится к области испытательной техники, в частности испытаний объектов на воздействия воздушных ударных волн. Устройство содержит ударную трубу, источник ударной волны, размещенный на одном торце ударной трубы, и заглушку, размещенную на другом торце ударной трубы. Заглушка...
Тип: Изобретение
Номер охранного документа: 0002522797
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.def2

Устройство для одновременной трансляции сигналов в оптическом и радиочастотном диапазонах излучения

Изобретение относится к области измерений кинематических параметров движущейся поверхности в быстропротекающих процессах. Технический результат - обеспечение возможности производить измерения кинематических параметров фиксированного участка (точки) движущейся поверхности. Для этого устройство...
Тип: Изобретение
Номер охранного документа: 0002522860
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df0c

Многоканальная отражательная линия задержки на поверхностных акустических волнах

Изобретение относится к устройствам акустоэлектроники, предназначенным для формирования кодированного информационного сигнала в системах радиочастотной идентификации объектов. Технический результат - повышение достоверности приема и обработки информационного сигнала, повышение технологичности...
Тип: Изобретение
Номер охранного документа: 0002522886
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df11

Магнитное пороговое устройство

Изобретение относится к приборостроению, к исполнительным магнитным механизмам. Магнитное пороговое устройство содержит постоянный магнит, магнитопроводы, примыкающие к его полюсам и образующие рабочий зазор для размещения в нем якоря, упор исходного положения якоря и стержень из магнитомягкого...
Тип: Изобретение
Номер охранного документа: 0002522891
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df12

Способ получения активной фармацевтической субстанции для синтеза препаратов галлия-68

Изобретение относится к способу получения активной фармацевтической субстанции для синтеза препаратов галлия-68, применяемых в позитронно-эмиссионной томографии. Способ включает следующие стадии: взаимодействие элюата генератора Ge/Ga с катионообменной смолой, промывку катионообменной смолы...
Тип: Изобретение
Номер охранного документа: 0002522892
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df13

Устройство контроля волоконно-оптических линий

Изобретение относится к устройствам контроля потерь в волоконно-оптических линиях и может быть использовано в качестве универсального технического средства защиты информации ограниченного доступа, передаваемой по неконтролируемой территории. Техническим результатом является создание устройства...
Тип: Изобретение
Номер охранного документа: 0002522893
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df15

Инерционный датчик

Изобретение относится к области приборостроения, а именно к инерционным датчикам порогового действия, и предназначено для контроля за достижением ускорениями, действующими на объект при столкновении с другими объектами, например, при транспортных авариях, пороговых уровней. Инерционный датчик...
Тип: Изобретение
Номер охранного документа: 0002522895
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df27

Устройство для гальванического разделения сигналов

Изобретение относится к информационно-измерительной технике и может быть использовано, например, для контроля напряжения гальванически развязанного аккумулятора. Технический результат заключается в расширении функциональных возможностей. Для этого заявленное устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002522913
Дата охранного документа: 20.07.2014
Показаны записи 101-110 из 424.
20.07.2014
№216.012.de8b

Способ определения коэффициента диффузии в порошковых материалах и способ определения толщины и показателя целостности покрытия на частицах порошковых материалов

Изобретения относятся к области определения значений параметров, характеризующих физико-химические свойства материалов, например коэффициентов диффузии, по величине электропроводности, и могут найти применение в порошковой металлургии, в изучении процессов самораспространяющегося...
Тип: Изобретение
Номер охранного документа: 0002522757
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.deb1

Способ определения концентрации изотопного состава молекулярного йода в газах

Изобретение относится к области измерительной техники и может быть использовано в атомной энергетике и для охраны окружающей среды. Осуществляют прокачку анализируемой смеси газов через исследуемую ячейку, возбуждают в ней флуоресцентное излучение перестраиваемыми полупроводниковыми лазерами с...
Тип: Изобретение
Номер охранного документа: 0002522795
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.deb3

Устройство для формирования ударно-волнового импульса

Изобретение относится к области испытательной техники, в частности испытаний объектов на воздействия воздушных ударных волн. Устройство содержит ударную трубу, источник ударной волны, размещенный на одном торце ударной трубы, и заглушку, размещенную на другом торце ударной трубы. Заглушка...
Тип: Изобретение
Номер охранного документа: 0002522797
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.def2

Устройство для одновременной трансляции сигналов в оптическом и радиочастотном диапазонах излучения

Изобретение относится к области измерений кинематических параметров движущейся поверхности в быстропротекающих процессах. Технический результат - обеспечение возможности производить измерения кинематических параметров фиксированного участка (точки) движущейся поверхности. Для этого устройство...
Тип: Изобретение
Номер охранного документа: 0002522860
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df0c

Многоканальная отражательная линия задержки на поверхностных акустических волнах

Изобретение относится к устройствам акустоэлектроники, предназначенным для формирования кодированного информационного сигнала в системах радиочастотной идентификации объектов. Технический результат - повышение достоверности приема и обработки информационного сигнала, повышение технологичности...
Тип: Изобретение
Номер охранного документа: 0002522886
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df11

Магнитное пороговое устройство

Изобретение относится к приборостроению, к исполнительным магнитным механизмам. Магнитное пороговое устройство содержит постоянный магнит, магнитопроводы, примыкающие к его полюсам и образующие рабочий зазор для размещения в нем якоря, упор исходного положения якоря и стержень из магнитомягкого...
Тип: Изобретение
Номер охранного документа: 0002522891
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df12

Способ получения активной фармацевтической субстанции для синтеза препаратов галлия-68

Изобретение относится к способу получения активной фармацевтической субстанции для синтеза препаратов галлия-68, применяемых в позитронно-эмиссионной томографии. Способ включает следующие стадии: взаимодействие элюата генератора Ge/Ga с катионообменной смолой, промывку катионообменной смолы...
Тип: Изобретение
Номер охранного документа: 0002522892
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df13

Устройство контроля волоконно-оптических линий

Изобретение относится к устройствам контроля потерь в волоконно-оптических линиях и может быть использовано в качестве универсального технического средства защиты информации ограниченного доступа, передаваемой по неконтролируемой территории. Техническим результатом является создание устройства...
Тип: Изобретение
Номер охранного документа: 0002522893
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df15

Инерционный датчик

Изобретение относится к области приборостроения, а именно к инерционным датчикам порогового действия, и предназначено для контроля за достижением ускорениями, действующими на объект при столкновении с другими объектами, например, при транспортных авариях, пороговых уровней. Инерционный датчик...
Тип: Изобретение
Номер охранного документа: 0002522895
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df27

Устройство для гальванического разделения сигналов

Изобретение относится к информационно-измерительной технике и может быть использовано, например, для контроля напряжения гальванически развязанного аккумулятора. Технический результат заключается в расширении функциональных возможностей. Для этого заявленное устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002522913
Дата охранного документа: 20.07.2014
+ добавить свой РИД