×
20.12.2014
216.013.123f

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ОБЪЕМНОГО САМОСТОЯТЕЛЬНОГО РАЗРЯДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к лазерной технике. Устройство для формирования объемного самостоятельного разряда содержит герметичный корпус, в котором вдоль оси установлены два протяженных профилированных электрода, гальванически связанных с импульсным источником питания. Один из электродов закреплен на диэлектрическом основании с развитой поверхностью, а второй - на обратных токопроводах так, что между электродами образован разрядный промежуток. Оба электрода являются сменными и имеют по периметру профильную поверхность, выполненную на основе профиля Степперча, при этом электрод, закрепленный на обратных токопроводах, имеет возможность перемещения относительно другого электрода для регулировки разрядного промежутка. Обратные токопроводы выполнены в виде изогнутых стержней и расположены таким образом, что расстояние от электрода, закрепленного на диэлектрическом основании, до обратных токопроводов по поверхности диэлектрического основания удовлетворяет соотношению L≥2,5D, где D - высота разрядного промежутка. Технический результат заключается в обеспечении возможности формирования однородного и устойчивого объемного самостоятельного разряда за время длительности импульса накачки (~350 нс). 5 з.п. ф-лы, 2 ил.

Область техники

Изобретение относится к квантовой электронике, а именно к устройствам для формирования объемного самостоятельного разряда (ОСР), и может быть использовано при разработке импульсных и импульсно-периодических газовых лазеров.

Уровень техники

Известно устройство для формирования объемного самостоятельного разряда в смесях SF6 с углеводородами (угледейтеридами) без специальных устройств предыонизации газа, содержащее электроразрядную стеклоэпоксидную камеру и электродную систему для получения ОСР из двух плоских электродов при разрядном промежутке 150 мм [1]. Катод с размером плоской части поверхности 150×750 мм был закруглен по периметру радиусом 1 мм, его поверхность подвергалась пескоструйной обработке. Размер анода составлял 300×900 мм. Разрядный объем составил ≈21 л. Давление смесей составляло 103 Торр. Генератор импульсов напряжения (ГИН) был выполнен по схеме десятикаскадного генератора Аркадьева-Маркса с емкостью в ударе 40 нФ и максимальным напряжением на выходе 550 кВ. Импульс генерации имел длительность на полувысоте ≈180 нс. Энергия генерации лазера достигала 144 Дж на HF и 115 Дж на DF при электрическом КПД, соответственно, 2,8 и 2,2%.

Недостатком данного устройства является высокая краевая неоднородность электрического поля в разрядном промежутке, а также то, что в данном устройстве все характеристики получены в режиме одиночных включений.

В данной установке в качестве обратных токопроводов используются шины, которые не позволяют обеспечить продувку газа в разрядном промежутке, что не позволяет использовать устройство в импульсно-периодическом режиме.

Известно устройство для формирования ОСР для использования в XeCl-лазере [2], содержащее герметичный корпус, в котором установлены два протяженных вдоль оптической оси лазера профилированных электрода, один из которых (анод) заземлен, а другой (катод) является высоковольтным и размещен на диэлектрической крышке с развитой поверхностью. Катод подключен к ГИН через обратные токопроводы, представляющие собой металлическую сетку. Предыонизация разрядного промежутка осуществляется УФ излучением искровых разрядов. Расчеты и эксперименты проводились для следующих параметров лазера: разрядный промежуток 50 мм, активная длина разряда 800 мм. Профиль электродов и геометрия обратных токопроводов оптимизировались с точки зрения получения максимальной однородности электрического поля в межэлектродном промежутке. В объеме активной среды около 1,5 л получена энергия генерации ≈3,6 Дж, эффективность лазера ≈3,6% при длительности импульса на его полувысоте ≈210 нс и частоте следования импульсов ≈100 Гц. Емкость формирующей линии 240 нФ.

Однако данная конструкция непригодна для больших объемов активной среды. По мере увеличения разрядного промежутка из-за конструктивных ограничений камеры невозможно было увеличить апертуру разряда без снижения эффективности генерации. При увеличении расстояния от оси разряда до края обратного токопровода происходило возрастание напряженности электрического поля на краях электродов, что обуславливает неоднородность разряда и генерации.

Недостатком данной конструкции также является использование сетки в качестве обратных токопроводов. При больших токах возрастает вероятность прогорания сетки. Для работы с большими токами необходимо увеличивать толщину сетки, что из-за снижения скорости потока газа приведет к уменьшению частоты следования импульсов. В результате этого снизится мощность лазера.

Кроме того, в данном устройстве в качестве рабочей среды (PC) используются слабо электроотрицательные газы. Для инициирования ОСР в таких газах для получения первичных электронов необходима предыонизация. При использовании данной системы необходима дополнительная система электропитания для предыонизации, система синхронизации с основной системой электропитания, что приводит к усложнению конструкции.

В качестве прототипа выбран лазер [2] как наиболее близкий по технической и физической сущности.

Раскрытие изобретения

В заявляемом устройстве используются PC на основе сильно электроотрицательных газов (например, SF6, фториды, иодиды, хлориды), применяемых в нецепных электроразрядных импульсных лазерах.

Задачей настоящего изобретения является повышение выходной мощности и удельного энергосъема лазера с большим объемом PC с замкнутым циклом прокачки среды, работающего в импульсном и импульсно-периодическом режимах с высокой частотой следования импульсов.

Техническим результатом является формирование однородного и устойчивого ОСР за время длительности импульса накачки (≈350 нс).

Технический результат достигается тем, что в устройстве для формирования ОСР, содержащем герметичный корпус, в котором вдоль оси установлены два протяженных профилированных электрода, гальванически связанных с ГИН, причем один из электродов закреплен на диэлектрическом основании с развитой поверхностью, а второй - на обратных токопроводах так, что между электродами образован разрядный промежуток, новым является то, что оба электрода являются сменными и имеют по периметру профильную поверхность, выполненную на основе профиля Степперча, а электрод, закрепленный на обратных токопроводах, имеет возможность перемещения относительно другого электрода для регулировки разрядного промежутка и точной установки электродов относительно друг друга, при этом обратные токопроводы выполнены в виде изогнутых стержней и расположены таким образом, что расстояние от электрода, закрепленного на диэлектрическом основании, до обратных токопроводов по поверхности диэлектрического основания удовлетворяет соотношению Lпов≥2,5D, где D - высота разрядного промежутка.

По всей рабочей поверхности электродов, формирующей ОСР требуемого сечения, выполнены мелкомасштабные неоднородности высотой 40-50 мкм, а остальная профильная поверхность электродов выполнена полированной.

Регулировка разрядного промежутка и точная установка электродов относительно друг друга осуществляется с помощью котировочных механизмов, выполненных по типу шаровой опоры, при этом обратные токопроводы имеют возможность изгиба.

Обратные токопроводы покрыты слоем изоляции.

Расстояние от электрода, закрепленного на диэлектрическом основании, до обратных токопроводов в газе удовлетворяет соотношению Lгаз≥1,5D, где D - высота разрядного промежутка.

Выполнение электродов по периметру с профилем, выполненным на основе профиля Степперча, позволяет снизить неоднородность напряженности электрического поля в разрядном промежутке, что приводит к однородности энерговклада в PC и однородности распределения плотности энергии генерации по сечению активного объема.

Для выполнения условия Lпов≥2,5D, где D - высота разрядного промежутка, на диэлектрическом основании выполнена развитая поверхность, образованная канавками треугольной или трапециевидной, или синусоидальной формы, которая обеспечивает электрическую прочность по поверхности диэлектрика.

Наличие развитой поверхности диэлектрического основания, образованной канавками треугольной, трапециевидной или синусоидальной формы, приводит к уменьшению объема камеры, а дополнительная изоляция обратных токопроводов позволяет расположить обратные токопроводы как можно ближе к электроду, это в совокупности приводит к снижению индуктивности разрядного контура, а следовательно, и к укорочению импульса накачки, что позволяет работать с сильно электроотрицательными PC без возникновения стримеров (пробоя) в разрядном промежутке.

Регулировка разрядного промежутка осуществляется с помощью котировочных механизмов, выполненных по типу шаровой опоры, при этом обратные токопроводы имеют возможность изгиба. Данные юстировочные механизмы позволяют использовать электроды с различным профилем на основе профиля Степперча при различной высоте разрядного промежутка. Использование разъемных соединений дает возможность осуществлять периодическую смену электродов с целью обновления качества их поверхности и обеспечения устойчивого разряда. Возможность точной установки электродов относительно друг друга позволяет сформировать равномерное объемное электрическое поле по всей длине разрядного промежутка.

На рабочей поверхности электродов выполнены мелкомасштабные неоднородности высотой 40-50 мкм, которые улучшают развитие ОСР и позволяют обеспечить более равномерный и устойчивый объемный разряд в разрядном промежутке без предыонизации. При этом под рабочей поверхностью понимается плоская и часть профилированной поверхности, которые формируют необходимый объем ОСР. Для гарантированного формирования необходимого объема ОСР остальная профильная поверхность электрода полируется (Ra1,25).

На Фиг.1 показана конструкция устройства для формирования ОСР, где: 1 - корпус; 2 - анод; 3 - диэлектрическое основание; 4 - катод; 5 - обратный токопровод; 6 - диэлектрическая пластина; 7 - переходник; 8 - втулка резьбовая; 9 - фланец прижимной; 10 - вкладыш; 11 - палец.

На Фиг.2 приведен автограф ОСР, где 2 - анод; 4 - катод. Из данного чертежа видно, что размеры поперечного сечения ОСР соответствуют требуемым значениям. Устройство работает следующим образом.

Высоковольтный импульс напряжения от ГИН подается на электрод 2. В разрядном промежутке образуется ОСР, который инициирует химическую реакцию в PC, что приводит к генерации лазерного излучения.

С целью подтверждения осуществимости заявленного устройства и достижения технического результата был изготовлен и испытан лабораторный макет. Внутри газоразрядного корпуса 1 располагались сплошные электроды 2 и 4 из алюминиевого сплава АМг6. Электроды, установленные в корпусе, по своим размерам аналогичны электродам, установленным в полномасштабном макете лазера. Длина электродов составляла 640 мм, высота разрядного промежутка составляла 130 мм. В экспериментах использовались электроды с размерами в плане - 650×180 мм с закруглением на концах радиусом R50 мм. Толщина электродов - 30 мм. По периметру, включая радиусные части, электроды выполняются с профилем Степперча, рассчитанным для различных параметров Y0 (0,4-0,45) и d4 (0,7-0,8) [3]. Под рабочей поверхностью электрода, формирующей необходимый активный объем ОСР, в данном случае, понимается плоская и часть профилированной поверхности, ограниченные контуром с размерами 600×130 мм. Обратные токопроводы 5 в количестве 26 штук, размещенные на расстоянии 50 мм друг от друга, выполнены в виде изогнутых стержней из латуни с изоляцией из фторопласта. Разрядный промежуток мог варьироваться с помощью трех котировочных механизмов в диапазоне 100-130 мм. При вращении пальцев 11 происходит прямолинейное перемещение электрода 4 по вертикали, за счет сферы, выполненной на конце пальца, электрод также может заклоняться. При D=130 мм расстояние Lпов=420 мм, а Lгаз=220 мм. Давление газа внутри корпуса было 0,15 атм, при этом происходила принудительная прокачка газовой среды. В качестве рабочей смеси использовалась смесь SF6 с Н2. Рабочее импульсное напряжение было 300 кВ.

Источник питания содержал ГИН, выполненный по схеме Аркадьева-Маркса, с обострительной емкостью, предназначенной для укорочения высоковольтного импульса. Описанная электрическая схема позволяла работать как в однократном, так и в частотном режимах. Частота следования импульсов 25 Гц.

Проведенные эксперименты показали, что в данном устройстве реализуется однородный и достаточно устойчивый ОСР в заданном объеме, что позволяет достигнуть высокие параметры лазерной генерации.

Источники информации

1. Аполлонов В.В., Казанцев С.Ю., Орешкин В.Ф., Фирсов К.Н. «Нецепной электроразрядный HF (DF)-лазер с высокой энергией излучения». Квантовая электроника, Т.25, №2, 1998, с.123-125.

2. Борисов В.М., Демьянов А.В., Кирюхин Ю.Б. «Теоретическое и экспериментальное исследование развития крупномасштабной неустойчивости в разряде XeCl-лазера с УФ предыонизацией». Квантовая электроника Т.24, №1 (1997), с.25-30.

3. Е.А. Stappaerts, «A novel analytical design method for discharge laser electrode profiles», Appl. Phys. Lett, 40 (12), p.1018.


УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ОБЪЕМНОГО САМОСТОЯТЕЛЬНОГО РАЗРЯДА
УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ОБЪЕМНОГО САМОСТОЯТЕЛЬНОГО РАЗРЯДА
Источник поступления информации: Роспатент

Показаны записи 91-100 из 565.
27.05.2014
№216.012.cb3a

Оптическая система формирования лазерного излучения для газового лазера

Изобретение относится к лазерной технике и может быть использовано в конструкциях газовых лазеров. Оптическая система формирования лазерного излучения для газового лазера на основе неустойчивого оптического резонатора телескопического типа содержит заключенные в герметичный газовый объем глухое...
Тип: Изобретение
Номер охранного документа: 0002517792
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.cb3c

Устройство для удержания и сброса объекта

Изобретение относится к испытательной технике, в частности к ударным испытательным стендам. Устройство содержит корпус, выполненный в виде двух соединенных между собой щек, поворотный захват, закрепленный на корпусе, фиксатор, предназначенный для удержания захвата в рабочем положении,...
Тип: Изобретение
Номер охранного документа: 0002517794
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.cb3e

Устройство для формирования объемного самостоятельного разряда

Изобретение относится к квантовой электронике. Устройство для формирования объемного самостоятельного разряда (ОСР) содержит разрядную камеру, в которой установлены подключенные к источнику накачки три электродные пары, каждая из которых состоит из пластинчатых профилированных электродов....
Тип: Изобретение
Номер охранного документа: 0002517796
Дата охранного документа: 27.05.2014
20.07.2014
№216.012.ddf9

Светочувствительный взрывчатый состав

Изобретение относится к взрывчатым веществам, возбуждаемым когерентным и некогерентным импульсным световым излучением, и может быть использовано в средствах инициирования, в качестве генератора плоских ударных волн, а также в устройствах для обработки металлов энергией взрыва и оптических...
Тип: Изобретение
Номер охранного документа: 0002522611
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de0b

Способ приготовления многокомпонентных газовых смесей

Изобретение относится к приготовлению многокомпонентных газовых смесей и может быть использовано в лазерной технике, химической промышленности, в частности для приготовления смеси из перфторалкилиодида и буферных газов и последующего заполнения различных рабочих емкостей. Способ включает напуск...
Тип: Изобретение
Номер охранного документа: 0002522629
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de31

Способ определения элементного состава и толщины поверхностной пленки твердого тела при внешнем воздействии на поверхность

Использование: для определения элементного состава и толщины поверхностной пленки твердого тела. Сущность: заключается в том, что выполняют измерение энергетических спектров ионов, отраженных и выбитых из поверхности твердого тела, при этом измеряют энергетические спектры непосредственно в...
Тип: Изобретение
Номер охранного документа: 0002522667
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de4a

Радиоприемное устройство с автокорреляционным разделением посылок частотно-манипулированного сигнала с непрерывной фазой

Изобретение относится к технике радиосвязи. Техническим результатом изобретения является упрощение радиоприемного устройства с автокорреляционным разделением посылок частотно-манипулированного сигнала с непрерывной фазой. В радиоприемное устройство, содержащее последовательно соединенные...
Тип: Изобретение
Номер охранного документа: 0002522692
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de7a

Способ определения характеристик фугасности (варианты)

Группа изобретений относится к области испытаний боеприпасов. При испытании производят выстрел объекта испытания в виде фрагмента или уменьшенной модели боеприпаса из баллистической установки, подрывают в заданной точке его заряд, регистрируют характеристики проходящей воздушной ударной волны,...
Тип: Изобретение
Номер охранного документа: 0002522740
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de81

Поглощающий нейтроны материал на основе гафната диспрозия

Изобретение относится к поглощающему нейтроны материалу на основе гафната диспрозия, содержащему оксиды диспрозия и гафния. Материал дополнительно содержит триоксид молибдена, имеет следующие соотношение компонентов, мас.%: и его получают путем твердофазного синтеза при температуре 1500-1700°C...
Тип: Изобретение
Номер охранного документа: 0002522747
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de88

Способ определения влагоемкости твердых гигроскопичных объектов

Изобретение относится к области методов проведения оперативного контроля и регулирования влажности в герметичных контейнерах с электронными приборами для обеспечения надежности их функционирования. Способ определения влагоемкости твердых гигроскопичных объектов включает помещение анализируемых...
Тип: Изобретение
Номер охранного документа: 0002522754
Дата охранного документа: 20.07.2014
Показаны записи 91-100 из 424.
27.05.2014
№216.012.cb3a

Оптическая система формирования лазерного излучения для газового лазера

Изобретение относится к лазерной технике и может быть использовано в конструкциях газовых лазеров. Оптическая система формирования лазерного излучения для газового лазера на основе неустойчивого оптического резонатора телескопического типа содержит заключенные в герметичный газовый объем глухое...
Тип: Изобретение
Номер охранного документа: 0002517792
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.cb3c

Устройство для удержания и сброса объекта

Изобретение относится к испытательной технике, в частности к ударным испытательным стендам. Устройство содержит корпус, выполненный в виде двух соединенных между собой щек, поворотный захват, закрепленный на корпусе, фиксатор, предназначенный для удержания захвата в рабочем положении,...
Тип: Изобретение
Номер охранного документа: 0002517794
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.cb3e

Устройство для формирования объемного самостоятельного разряда

Изобретение относится к квантовой электронике. Устройство для формирования объемного самостоятельного разряда (ОСР) содержит разрядную камеру, в которой установлены подключенные к источнику накачки три электродные пары, каждая из которых состоит из пластинчатых профилированных электродов....
Тип: Изобретение
Номер охранного документа: 0002517796
Дата охранного документа: 27.05.2014
20.07.2014
№216.012.ddf9

Светочувствительный взрывчатый состав

Изобретение относится к взрывчатым веществам, возбуждаемым когерентным и некогерентным импульсным световым излучением, и может быть использовано в средствах инициирования, в качестве генератора плоских ударных волн, а также в устройствах для обработки металлов энергией взрыва и оптических...
Тип: Изобретение
Номер охранного документа: 0002522611
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de0b

Способ приготовления многокомпонентных газовых смесей

Изобретение относится к приготовлению многокомпонентных газовых смесей и может быть использовано в лазерной технике, химической промышленности, в частности для приготовления смеси из перфторалкилиодида и буферных газов и последующего заполнения различных рабочих емкостей. Способ включает напуск...
Тип: Изобретение
Номер охранного документа: 0002522629
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de31

Способ определения элементного состава и толщины поверхностной пленки твердого тела при внешнем воздействии на поверхность

Использование: для определения элементного состава и толщины поверхностной пленки твердого тела. Сущность: заключается в том, что выполняют измерение энергетических спектров ионов, отраженных и выбитых из поверхности твердого тела, при этом измеряют энергетические спектры непосредственно в...
Тип: Изобретение
Номер охранного документа: 0002522667
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de4a

Радиоприемное устройство с автокорреляционным разделением посылок частотно-манипулированного сигнала с непрерывной фазой

Изобретение относится к технике радиосвязи. Техническим результатом изобретения является упрощение радиоприемного устройства с автокорреляционным разделением посылок частотно-манипулированного сигнала с непрерывной фазой. В радиоприемное устройство, содержащее последовательно соединенные...
Тип: Изобретение
Номер охранного документа: 0002522692
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de7a

Способ определения характеристик фугасности (варианты)

Группа изобретений относится к области испытаний боеприпасов. При испытании производят выстрел объекта испытания в виде фрагмента или уменьшенной модели боеприпаса из баллистической установки, подрывают в заданной точке его заряд, регистрируют характеристики проходящей воздушной ударной волны,...
Тип: Изобретение
Номер охранного документа: 0002522740
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de81

Поглощающий нейтроны материал на основе гафната диспрозия

Изобретение относится к поглощающему нейтроны материалу на основе гафната диспрозия, содержащему оксиды диспрозия и гафния. Материал дополнительно содержит триоксид молибдена, имеет следующие соотношение компонентов, мас.%: и его получают путем твердофазного синтеза при температуре 1500-1700°C...
Тип: Изобретение
Номер охранного документа: 0002522747
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de88

Способ определения влагоемкости твердых гигроскопичных объектов

Изобретение относится к области методов проведения оперативного контроля и регулирования влажности в герметичных контейнерах с электронными приборами для обеспечения надежности их функционирования. Способ определения влагоемкости твердых гигроскопичных объектов включает помещение анализируемых...
Тип: Изобретение
Номер охранного документа: 0002522754
Дата охранного документа: 20.07.2014
+ добавить свой РИД