×
20.12.2014
216.013.1133

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА ПУТЕМ ПАРОВОЙ КОНВЕРСИИ УГЛЕВОДОРОДОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к химической промышленности. Технологический углеводородный газ после сероочистки в смеси с водяным паром подают в обогреваемые жаропрочные трубы, внутри которых размещают никельсодержащий катализатор в виде слоя гранул в форме шара или цилиндра с поверхностью 400÷700 м/м и порозностью 0,5-0,7 м/м. Гранулы содержат параллельные цилиндрические каналы с отношением диаметра гранулы к диаметру канала цилиндра или шара от 4,0 до 6,0. Отношение внутреннего диаметра обогреваемой трубы реактора к диаметру цилиндра или шара катализатора от 4,0 до 12,5. Изобретение позволяет снизить перепад давления по катализаторному слою и остаточное содержание метана в получаемом синтез-газе. 1 з.п. ф-лы, 1 табл., 4 пр.

Настоящее изобретение относится к способам получения синтез-газа, обогащенного водородом и монооксидом углерода, путем каталитического риформинга углеводородсодержащего сырья в трубчатых реакторах с использованием катализаторов определенной конструктивной формы и может найти применение на крупнотоннажных производствах аммиака, метанола, уксусной кислоты и водорода.

Широко известно, что в промышленных условиях синтез-газ получают из углеводородов (метана) путем парового риформинга в соответствии со следующими реакциями (Справочник азотчика. М.: Химия, 1986, стр.48; патент RU №2220901, С01В 3/38, 2004):

Паровой риформинг осуществляют в присутствии никельсодержащего катализатора в виде гранул различных размеров и форм, которыми заполняют трубы реактора. В контактных аппаратах указанного типа (печах риформинга) необходимая для протекания химического процесса теплота передается из зоны сжигания топлива путем ее конвективного и излучательного переноса на внешние поверхности реакционных труб. Благодаря высокой теплопроводности металла труб тепло аккумулируется газовой фазой и гранулами катализатора. Температура последних, как правило, на 100°C ниже (особенно в центральной части слоя катализатора), чем температура внутренней стенки трубы (Справочник азотчика. М.: Химия, 1986, стр.83; патент RU №2234458, С01С 1/04, 2004).

Указанный способ производства синтез-газа имеет следующие характерные недостатки:

- необходимость поддержания более высокой температуры наружных стенок труб по сравнению с температурой слоя катализатора, что приводит к повышенному расходу энергоносителей и сокращению срока эксплуатации реакционных труб;

-выбор оптимальных размеров гранул катализатора зачастую не согласуется с диаметром трубы, вследствие чего могут возникать неоднородности полей температур и скоростей газа по сечению труб.

Наиболее близким по технической сущности и достигаемому результату является способ получения синтез-газа, обогащенного водородом и монооксидом углерода, путем каталитического риформинга углеводородсодержащего сырья, подаваемого в смеси с водяным паром в обогреваемые трубы реактора с загруженным катализатором [RU 2357919, МПК С01В 3/38, B01J 35/08].

В известном способе катализатор риформинга представляет собой гранулы сферической формы с отношением их диаметра к высоте загруженного слоя 1,0·10-3 - 2,0·10-3, в которых имеются цилиндрические каналы размером в 2-10 раз меньше, чем диаметр шаров. Содержание никеля в катализаторе составляет 9-25 мас.% в пересчете на монооксид никеля, а в качестве материала для изготовления шаров используют глинозем определенной марки.

Для данного процесса получения синтез-газа характерны ранее отмеченные недостатки, не позволяющие существенно повысить выработку агрегатов аммиака и метанола.

Технической задачей предлагаемого изобретения является оптимизация процесса паровой конверсии углеводородов в реакционных трубах с пониженной толщиной стенок, которая может быть достигнута повышением активности катализатора, снижением газодинамического сопротивления, улучшением эксплуатационного ресурса реакционных труб и снижением расхода топливного газа.

Поставленная задача решается в способе получения синтез-газа, обогащенного водородом и монооксидом углерода, путем каталитического риформинга углеводородного газа. Процесс включает подачу технологического углеводородного газа после сероочистки в смеси с водяным паром в обогреваемые жаропрочные трубы повышенного внутреннего диаметра, внутри которых размещают катализатор с определенной поверхностью и порозностью в виде слоя гранул, содержащих никель, причем периферийные гранулы находятся в непосредственном контакте с внутренними поверхностями стенок труб.

Основные отличительные признаки предлагаемого способа состоят в том, что катализатор загружают в виде слоя перфорированных гранул в форме шара или цилиндра с поверхностью слоя 400÷700 м23 и порозностью 0,5-0,7 м33, имеющих параллельные цилиндрические каналы с отношением диаметра цилиндра или шара к диаметру канала цилиндра или шара от 4,0 до 6,0, а отношение внутреннего диаметра обогреваемой трубы реактора к диаметру цилиндра или шара катализатора составляет от 4,0 до 12,5.

Дополнительные отличительные признаки предлагаемого способа состоят в том, что в качестве обогреваемых реакционных труб используют трубы с толщиной стенок 9-14 мм, изготовленные методом центробежного литья из жаропрочного сплава, включающего углерод, хром, никель, ниобий, церий, кремний, марганец, ванадий, титан, алюминий, вольфрам и железо при следующем соотношении компонентов, мас.%: углерод - 0,30-0,40; хром - 20-23; никель - 30-33; ниобий - 1,0-1,7; церий - 0,07-0,11; кремний - 0,45-0,95; марганец - 0,8-1,45; ванадий - 0,0005-0,15; титан - 0,0005-0,15; алюминий - 0,005-0,10; вольфрам - 0,05-0,5; железо и примеси - остальное. Такой сплав аустенитной структуры характеризуется улучшенными физико-механическими показателями при высоких температурах, что позволяет уменьшить толщину стенки трубы и улучшить процесс теплопередачи. С другой стороны это делает возможным ведение процесса в более мягком температурном режиме, способствуя тем самым лучшему использованию углеводородного сырья и продлению прогнозируемого срока эксплуатации реакционных труб с 12,5 до 15 лет.

Настоящее изобретение подтверждается нижеследующими примерами.

Пример 1 (по предлагаемому способу).

В трубы реактора первичного риформинга опытно-промышленной установки по производству аммиака, содержащего 7 труб с наружным диаметром 125 мм, толщиной стенки 12 мм и длиной 14 м, непрерывно поступает смесь водяного пара с природным газом при расходе 588 нм3/час и абсолютном давлении 3,1 МПа. Температуру смеси на входе в реактор поддерживают на уровне 460°C, соотношение пар: газ равно 3,5. В межтрубное пространство печи риформинга на горелки подается топливный природный газ, при сжигании которого тепло конвекцией и излучением нагревает наружную поверхность труб и находящийся в них слой катализатора высотой 12 м.

В роли катализатора используют серийно выпускаемый продукт марки НИАП-03-01 по ТУ №2171-006-00209510-2007 с поверхностью 450 м23 и порозностью 0,535 м33 в форме цилиндров с параллельными каналами с отношением диаметра цилиндра к диаметру цилиндрического канала, равным 5. Отношение внутреннего диаметра обогреваемой трубы реактора к диаметру цилиндра катализатора составило 6,5.

Температуру наружных стенок реакционных труб поддерживали на уровне 850°C.

На выходе из реакционных труб получают синтез-газ с температурой 780°C с остаточным содержанием метана 7,2% в пересчете на сухой газ. Перепад давления в трубах не превышает 0,15 МПа. Удельный расход топливного газа на конверсию 1 м3 природного газа составил 0,75 м3.

Пример 2 (по прототипу)

Условия получения синтез-газа аналогичны примеру 1. В качестве катализатора выбран НИАП-03-01Ш шаровой формы, отвечающий требованиям ТУ №2171-007-83940154-2011, с площадью поверхности 390 м23 и порозностью 0,485 м33, загруженный в реакционные трубы с наружным диаметром 125 мм и толщиной стенки 16 мм. Отношение диаметра шара к диаметру цилиндрического канала составило 5, а внутреннего диаметра обогреваемой трубы к диаметру шара катализатора - 6.

Температуру стенок реакционных труб поддерживали на уровне 850°C.

На выходе из реактора получают синтез-газ с температурой 770°C, с остаточным содержанием метана 8,7% в пересчете на сухой газ. Перепад давления в трубах составил 0,18 МПа.

Удельный расход топливного газа в расчете на конверсию 1 м3 природного газа оказался равным 0,88 м3.

Пример 3 (по предлагаемому способу).

Способ осуществления по примеру 2. Катализатор в форме шара с площадью поверхности 470 м23 и порозностью 0,605 м33 загружен в реакционные трубы толщиной стенки 9 мм и наружным диаметром 125 мм. Отношение внутреннего диаметра обогреваемой трубы к диаметру шара катализатора составило 7.

Температуру наружной стороны реакционных труб поддерживали на уровне 830°C. На выходе из них получают синтез-газ с температурой 765°C и остаточным содержанием метана 6,5% в пересчете на сухой газ.

Удельный расход топливного газа в расчете на конверсию 1 м3 природного газа составил 0,70 м3.

Пример 4 (по предлагаемому способу).

Условия осуществления по примеру 1. В реакторе первичного риформинга опытно-промышленной установки использовали трубы толщиной стенки 14 мм. Отношение внутреннего диаметра обогреваемой трубы реактора к диаметру цилиндра катализатора составило 6,0.

Температуру стенок реакционных труб поддерживали на уровне 830°C.

На выходе из реакционных труб получают синтез-газ с температурой 760°C и остаточным содержанием метана 8,0% в пересчете на сухой газ.

Удельный расход топливного газа в расчете на конверсию 1 м3 природного газа составил 0,80 м3.

Из приведенных примеров видно, что по сравнению с прототипом наблюдается снижение содержания метана в вырабатываемом синтез-газе, что указывает на повышение активности катализатора.

Это подтверждается и данными таблицы. Использование предлагаемого технического решения позволяет улучшить теплоперенос через стенку труб и, как результат, снизить разность температур между их наружной поверхностью и выходящим синтез-газом. Одновременно с этим удается уменьшить перепад давления по катализаторному слою, сократить расход топливного газа на проведение конверсии.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 30.
10.04.2019
№219.017.03c5

Способ получения синтез-газа, обогащенного водородом и монооксидом углерода, путем каталитического риформинга углеводородсодержащего сырья

Изобретение относится к области химии и может быть использовано при получении синтез-газа. Углеводородное сырье в смеси с водяным паром пропускают через обогреваемые трубы реактора, внутри которых размещают катализатор в виде слоя гранул, включающих никель, причем участки поверхностей...
Тип: Изобретение
Номер охранного документа: 0002357919
Дата охранного документа: 10.06.2009
21.04.2019
№219.017.3647

Способ получения карбамидоформальдегидного концентрата

Изобретение относится к способу получения карбамидоформальдегидного концентрата. Способ включает хемосорбцию формальдегида, образующегося при окислительном дегидрировании метанола на железомолибденовом катализаторе в реакторе трубчатого или полочного типа, 50-65%-ным водным раствором карбамида...
Тип: Изобретение
Номер охранного документа: 0002685503
Дата охранного документа: 19.04.2019
05.07.2019
№219.017.a66f

Жаропрочный сплав аустенитной структуры с интерметаллидным упрочнением

Изобретение относится к металлургии, в частности к жаропрочным сплавам аустенитного класса с интерметаллидным упрочнением, и может найти применение в производстве реакционных труб для агрегатов аммиака и метанола с рабочими температурами 850-950°С и давлением 2,5-5 МПа и...
Тип: Изобретение
Номер охранного документа: 0002693417
Дата охранного документа: 02.07.2019
03.08.2019
№219.017.bc0d

Совмещённый способ получения гидрокарбоната натрия и азотного удобрения смешанного типа

Изобретение относится к технологии получения гидрокарбоната натрия и азотных удобрений смешанного типа конверсией раствора солей углекислым аммонием или смесью аммиака и диоксида углерода и может найти применение на крупнотоннажных агрегатах нефтехимии, имеющих в своем составе цеха...
Тип: Изобретение
Номер охранного документа: 0002696450
Дата охранного документа: 01.08.2019
24.08.2019
№219.017.c390

Способ получения метанола

Настоящее изобретение относится к области основого органического синтеза, в частности к способу получения метанола. Способ заключается в подаче синтез-газа с циркуляционным газом на компримирование и контактирование в реакторе с медно-цинковым катализатором при температуре 220-290°С, с...
Тип: Изобретение
Номер охранного документа: 0002698200
Дата охранного документа: 23.08.2019
02.10.2019
№219.017.cc32

Тренажёр для скрининг - мониторинга вестибулярной устойчивости

Изобретение относится к области медицины, а именно оториноларингологии и лечебно-физической культуре, и может быть рекомендовано для тренировки и укрепления вестибулярного аппарата у спортсменов, отдыхающих в санаториях лиц и специалистов, занятых работой на высоте, для которых важна...
Тип: Изобретение
Номер охранного документа: 0002701410
Дата охранного документа: 26.09.2019
02.10.2019
№219.017.cde7

Жаропрочный сплав

Изобретение относится к металлургии, в частности к жаропрочным хромоникелевым сплавам аустенитного класса с интерметаллидным упрочнением, и может найти применение в производстве реакционных труб для агрегатов аммиака и метанола с рабочими температурами 800-950°С и давлением 2,5-5 МПа и...
Тип: Изобретение
Номер охранного документа: 0002700346
Дата охранного документа: 16.09.2019
02.10.2019
№219.017.d10f

Жаропрочный сплав

Изобретение относится к области металлургии, а именно к жаропрочным хромоникелевым сплавам аустенитного класса и может быть использовано при изготовлении коллекторов реакционных труб высокотемпературных установок водорода, метанола и аммиака. Жаропрочный сплав содержит, мас.%: углерод...
Тип: Изобретение
Номер охранного документа: 0002700347
Дата охранного документа: 16.09.2019
22.05.2023
№223.018.6b47

Способ защиты бетонных строительных конструкций от коррозионного воздействия карбамида

Изобретение относится к способам защиты бетонных строительных конструкций от коррозионного воздействия карбамида. Технический результат - увеличение срока эксплуатации нанесенных противокоррозионных покрытий, а также исключение выбросов в атмосферу высокотоксичного формальдегида при нанесении...
Тип: Изобретение
Номер охранного документа: 0002795779
Дата охранного документа: 11.05.2023
17.06.2023
№223.018.80c3

Жаропрочный сплав

Изобретение относится к металлургии, в частности к жаропрочным хромоникелевым сплавам аустенитного класса с интерметаллидным упрочнением, и может найти применение в производстве реакционных труб для агрегатов аммиака и метанола с рабочими температурами 800-950°С и давлением 2,5-5 МПа и...
Тип: Изобретение
Номер охранного документа: 0002765806
Дата охранного документа: 03.02.2022
Показаны записи 31-40 из 45.
18.05.2019
№219.017.581c

Способ получения метанола

Изобретение относится к способу получения метанола контактированием газовой смеси, содержащей оксиды углерода и водород, с медно-цинковым катализатором при температуре 200-290°С, давлении 5-15 МПа и объемной скорости 3000-10000 ч. При этом конвертированный газ состава, об.%: Н - 64,0-75,5; Ar -...
Тип: Изобретение
Номер охранного документа: 0002331625
Дата охранного документа: 20.08.2008
18.05.2019
№219.017.5821

Способ получения карбамидоформальдегидного концентрата

Изобретение относится к способу получения карбамидоформальдегидного концентрата, применяемого в качестве сырья в производстве высококачественных малотоксичных смол, используемых для склеивания древесины, при получении ДСП, ДВП и МДФ класса эмиссии Е-1 по формальдегиду, а также как...
Тип: Изобретение
Номер охранного документа: 0002331654
Дата охранного документа: 20.08.2008
09.06.2019
№219.017.7ba1

Способ извлечения благородных металлов из фосфатной руды

Изобретение относится к способу извлечения благородных металлов из фосфатной руды. Способ включает обработку раствором кислоты и/или окислителя при облучении СВЧ-полем с переводом благородных металлов в раствор и суспензию. Перед обработкой раствором кислоты и/или окислителя руду предварительно...
Тип: Изобретение
Номер охранного документа: 0002333267
Дата охранного документа: 10.09.2008
05.07.2019
№219.017.a66f

Жаропрочный сплав аустенитной структуры с интерметаллидным упрочнением

Изобретение относится к металлургии, в частности к жаропрочным сплавам аустенитного класса с интерметаллидным упрочнением, и может найти применение в производстве реакционных труб для агрегатов аммиака и метанола с рабочими температурами 850-950°С и давлением 2,5-5 МПа и...
Тип: Изобретение
Номер охранного документа: 0002693417
Дата охранного документа: 02.07.2019
03.08.2019
№219.017.bc0d

Совмещённый способ получения гидрокарбоната натрия и азотного удобрения смешанного типа

Изобретение относится к технологии получения гидрокарбоната натрия и азотных удобрений смешанного типа конверсией раствора солей углекислым аммонием или смесью аммиака и диоксида углерода и может найти применение на крупнотоннажных агрегатах нефтехимии, имеющих в своем составе цеха...
Тип: Изобретение
Номер охранного документа: 0002696450
Дата охранного документа: 01.08.2019
24.08.2019
№219.017.c390

Способ получения метанола

Настоящее изобретение относится к области основого органического синтеза, в частности к способу получения метанола. Способ заключается в подаче синтез-газа с циркуляционным газом на компримирование и контактирование в реакторе с медно-цинковым катализатором при температуре 220-290°С, с...
Тип: Изобретение
Номер охранного документа: 0002698200
Дата охранного документа: 23.08.2019
02.10.2019
№219.017.cc32

Тренажёр для скрининг - мониторинга вестибулярной устойчивости

Изобретение относится к области медицины, а именно оториноларингологии и лечебно-физической культуре, и может быть рекомендовано для тренировки и укрепления вестибулярного аппарата у спортсменов, отдыхающих в санаториях лиц и специалистов, занятых работой на высоте, для которых важна...
Тип: Изобретение
Номер охранного документа: 0002701410
Дата охранного документа: 26.09.2019
02.10.2019
№219.017.cde7

Жаропрочный сплав

Изобретение относится к металлургии, в частности к жаропрочным хромоникелевым сплавам аустенитного класса с интерметаллидным упрочнением, и может найти применение в производстве реакционных труб для агрегатов аммиака и метанола с рабочими температурами 800-950°С и давлением 2,5-5 МПа и...
Тип: Изобретение
Номер охранного документа: 0002700346
Дата охранного документа: 16.09.2019
02.10.2019
№219.017.d10f

Жаропрочный сплав

Изобретение относится к области металлургии, а именно к жаропрочным хромоникелевым сплавам аустенитного класса и может быть использовано при изготовлении коллекторов реакционных труб высокотемпературных установок водорода, метанола и аммиака. Жаропрочный сплав содержит, мас.%: углерод...
Тип: Изобретение
Номер охранного документа: 0002700347
Дата охранного документа: 16.09.2019
14.12.2019
№219.017.eddf

Устройство для измерения параметров кинетики кристаллизации

Изобретение относится к исследованию фазовых изменений вещества и предназначено для измерения скорости роста кристаллов и скорости образования центров кристаллизации в процессе кристаллизации расплава или в процессе образования кристаллов из раствора. Заявлено устройство для измерения...
Тип: Изобретение
Номер охранного документа: 0002708934
Дата охранного документа: 12.12.2019
+ добавить свой РИД