×
10.12.2014
216.013.0f4d

Результат интеллектуальной деятельности: СПОСОБ ВИБРОДИАГНОСТИКИ УПРУГОЙ СИСТЕМЫ СТАНКА С ПРИМЕНЕНИЕМ ГЕНЕРАТОРА СИЛОВОГО ВОЗДЕЙСТВИЯ, ВХОДЯЩЕГО В СИСТЕМУ "СТАНОК-ПРИСПОСОБЛЕНИЕ-ИНСТРУМЕНТ-ДЕТАЛЬ"

Вид РИД

Изобретение

№ охранного документа
0002535334
Дата охранного документа
10.12.2014
Аннотация: Изобретение предназначено для проведения диагностики упругой системы металлорежущих станков. Способ вибродиагностики упругой системы станка с применением генератора силового воздействия, входящего в систему «станок-приспособление-инструмент-деталь», заключающийся в том, что осуществляют на входе гармоническое, импульсное или случайное возбуждение в упругой системе станка и замеряют отклик системы на выходе, при этом для получения динамических характеристик возбуждают исследуемую конструкцию с помощью замеряемой динамической силы, отличающийся тем, что гармоническое и случайное возбуждение обеспечивают с помощью пьезокерамического контактного вибратора, а для создания импульсного силового воздействия применяют генератор, после чего сигналы подают на двухканальный спектроанализатор, в котором получают с помощью спектрального анализа сложных сигналов, основу которого составляет быстрое преобразование Фурье, частотные характеристики, а поступающие на входы анализатора аналоговые сигналы фильтруют, отбирают и преобразуют с помощью аналого-цифрового преобразователя в цифровую форму для получения серий цифровых данных - реализации, а по скорости выборки и продолжительности реализации определяют частотный диапазон и разрешающую способность при анализе исследуемых характеристик, а подаваемое на исследуемый объект усилие при точении резцом оправки измеряют с помощью пьезоэлектрического динамометра. Технически достижимым результатом является повышение точности измерений, а также расширение технологических возможностей при проведении диагностики упругой системы станка. 1 з.п. ф-лы, 5 ил.

Изобретение предназначено для проведения диагностики упругой системы металлорежущих станков.

В настоящее время промышленность выпускает стенды и приборы для контроля параметров виброакустических сигналов, по которым можно судить о динамике упругой системы станка по состоянию подшипниковых узлов [Балицкий Ф.Я., Иванова М.А., Соколова А.Г., Хомяков Е.И. Виброакустическая диагностика зарождающихся дефектов. - М.: Наука, 1984. - с. 78-83]. Сборка высокоскоростных шпиндельных узлов проводится в термостатированных помещениях, по строго определенной методике, со строгим контролем отклонений отдельных деталей от заданной геометрии, а после сборки шпиндель подвергается многочасовой обкатке на специальном стенде с регистрацией температуры в нескольких точках узла и момента сопротивления вращению.

К недостаткам известных способов следует отнести то обстоятельство, что контролируя только температуру, нельзя проникнуть в сущность процессов, протекающих в шпиндельных узлах при холостом вращении шпинделя, при работе под нагрузкой и при повышении температуры. Сегодня назрела необходимость применения новых методик и способов виброакустической диагностики, позволяющих значительно глубже по сравнению с температурой проникать в сущность процессов, протекающих в шпиндельных узлах при холостом вращении шпинделя, при работе под нагрузкой и при повышении температуры.

Наиболее близким техническим решением по технической сущности и достигаемому результату является способ диагностики шпиндельного узла по патенту РФ №2124966, кл. B23B 25/06, G01M 13/02 (прототип). Согласно прототипу диагностика реализуется следующим образом. После выбора режима испытаний станок включается, и производится обработка средней части оправки резцом. Сигналы от датчиков перемещения, расположенных в двух поперечных сечениях оправки, поступают сначала в усилительно-преобразующую аппаратуру, а потом в компьютер, где производится построение траектории оси оправки в двух сечениях. В результате движения вершина резца описывает на поверхности оправки некоторую кривую, которая формирует "геометрический образ" обработанного сечения. Программное обеспечение позволяет производить построение на экране дисплея "геометрического образа" в трехмерном пространстве, по которому определяют целый комплект параметров точности обработанной оправки, т.е. осуществляют на входе гармоническое, импульсное возбуждение в упругой системе станка и замеряют отклик системы на выходе, при этом для получения динамических характеристик возбуждают исследуемую конструкцию с помощью замеряемой динамической силы.

Недостатком известного технического решения является сравнительно невысокая точность воспроизведения геометрического образа обработанного сечения эталонной заготовки и отсутствие возможности виброакустической диагностики, позволяющей значительно глубже по сравнению с температурой оценить сущность процессов, протекающих в шпиндельных узлах при холостом вращении шпинделя, при работе под нагрузкой и при повышении температуры.

Технически достижимым результатом является повышение точности измерений, а также расширение технологических возможностей при проведении диагностики упругой системы станка.

Это достигается тем, что в способе вибродиагностики упругой системы станка с применением генератора силового воздействия, входящего в систему «станок-приспособление-инструмент-деталь», заключающемся в том, что осуществляют на входе гармоническое, импульсное или случайное возбуждение в упругой системе станка и замеряют отклик системы на выходе, при этом для получения динамических характеристик возбуждают исследуемую конструкцию с помощью замеряемой динамической силы, при этом гармоническое и случайное возбуждение обеспечивают с помощью пьезокерамического контактного вибратора, при этом переменное усилие создают пьезокерамическими кольцами, на которые подают электрическое напряжение, и изменяют толщину пьезоэлемента, а для создания импульсного силового воздействия применяют генератор, представляющий собой цилиндрическую оправку, в которой выполнен продольный паз заданной глубины, реализующей амплитуду входного импульсного воздействия, и которую жестко закрепляют в шпиндельном узле станка, а частоту входного импульсного воздействия задают скоростью вращения шпинделя, при этом шириной паза меняют продолжительность импульса, а значит, и частотный диапазон спектра возбуждения, после чего сигналы подают на двухканальный спектроанализатор, в котором получают с помощью спектрального анализа сложных сигналов, основу которого составляет быстрое преобразование Фурье, частотные характеристики, а поступающие на входы анализатора аналоговые сигналы фильтруют, отбирают и преобразуют с помощью аналого-цифрового преобразователя в цифровую форму для получения серий цифровых данных - реализации, представляющих собой временную историю сигналов на протяжении соответствующих временных интервалов, а по скорости выборки и продолжительности реализации определяют частотный диапазон и разрешающую способность при анализе исследуемых характеристик.

На фиг.1 изображена блок-схема динамического возбуждения при вибродиагностике упругих систем станков, на фиг.2 представлена схема пьезоэлектрического вибратора для контактного нагружения упругой системы, на фиг.3 изображена схема генератора импульсного воздействия, входящего в систему «станок-приспособление-инструмент-деталь», на фиг.4 изображена схема установки пьезоэлектрического динамометра, на фиг.5 изображена блок-схема двухканального спектроанализатора.

Устройство для реализации способа вибродиагностики упругой системы станка с применением генератора силового воздействия, входящего в систему «станок-приспособление-инструмент-деталь», (фиг.1) включает в себя станину 1, на которой установлен шпиндельный узел 2 и генератор 3 соответственно для получения сигналов: 4 - простейшее синусоидальное колебание, 5 - совокупность колебаний, 6 - сложение синусоидальных колебаний, 7 - возбуждение в виде импульсного сигнала. Для получения гармонического синусоидального сигнала используется вибратор, а для импульсного цилиндрическая оправка с продольным пазом. Для получения динамических характеристик необходимо возбуждать исследуемую конструкцию с помощью замеряемой динамической силы. На фиг.1 изображена блок-схема динамического возбуждения при диагностике упругих систем станков. Блок 8 реализует синусоидальный сигнал, а блок 9 служит для генерации импульсных сигналов. Блок 10 предназначен для обработки полученных сигналов динамического воздействия на упругую систему станка и их обработки, а также построения графиков. При случайном и импульсном возбуждении частотные характеристики могут быть получены с помощью спектрального анализа сложных сигналов, основу которого составляет быстрое преобразование Фурье.

Гармоническое или случайное возбуждение обеспечивают с помощью электромагнитного бесконтактного вибратора (на чертеже не показано), который располагают на станке так, чтобы развиваемая им сила совпадала с силой резания. При контактном возбуждении используют пьезоэлектрический вибратор (фиг.2), при этом переменное усилие создается пьезокерамическими кольцами 13, на которые подается электрическое напряжение через разъем 17. Из-за этого напряжения изменяется толщина пьезоэлемента. Изменение линейного размера столбика пьезоэлементов через оправку 14, измерительные пьезоэлементы 16, наконечник 15 передается на деталь станка, на которую требуется подать силовое воздействие. Величина статического усилия контролируется с помощью тензодатчиков 18, наклеенных на деформирующуюся часть основания 11. Токонепроводящий корпус 12 защищает исследователя от высокого напряжения, подаваемого на пьезоэлементы.

Для создания импульсного силового воздействия применяют генератор импульсного воздействия, входящий в систему «станок-приспособление-инструмент-деталь», схема которого представлена на фиг.3. Генератор представляет собой цилиндрическую оправку 19, в которой выполнен продольный паз 20 заданной глубины, реализующей амплитуду входного импульсного воздействия, и которая жестко закрепляется в шпиндельном узле станка. Частота входного импульсного воздействия задается скоростью вращения шпинделя. В сечении, перпендикулярном оси шпиндельного узла станка (фиг.3), паз 20 выполнен с наклонными боковыми поверхностями, лежащими в плоскостях, пересекающихся по линии, совпадающей с осью оправки 19, и в плоскости, перпендикулярной оси шпинделя, совпадающей с центром окружности. При этом поверхность, соединяющая боковые плоскости, представляет собой часть цилиндрической поверхности, эквидистантной внешней цилиндрической поверхности оправки 19.

Подаваемое на исследуемый объект усилие при точении резцом 21 оправки 19 измеряют с помощью пьезоэлектрического динамометра 22 (фиг.4), установленного между опорными поверхностями суппорта и резца.

Способ вибродиагностики упругой системы станка с применением генератора импульсного воздействия, входящего в систему «станок приспособление-инструмент-деталь», осуществляют следующим образом.

Способ вибродиагностики упругой системы станка заключается в том, что на входе осуществляют гармоническое, импульсное или случайное возбуждение в упругой системе станка и замеряют отклик системы на выходе. Для получения динамических характеристик необходимо возбуждать исследуемую конструкцию с помощью замеряемой динамической силы. Для создания импульсного силового воздействия применяют генератор, представляющий собой цилиндрическую оправку 19, в которой выполнен продольный паз 20 заданной глубины, реализующей амплитуду входного импульсного воздействия, и которая жестко закрепляется в шпиндельном узле станка. Частота входного импульсного воздействия задается скоростью вращения шпинделя (фиг.3), шириной паза 20 меняют продолжительность импульса, а значит, и частотный диапазон спектра возбуждения.

Гармоническое или случайное возбуждение обеспечивают с помощью электромагнитного бесконтактного вибратора (фиг.2), при этом переменное усилие создают пьезокерамическими кольцами 13, на которые подается электрическое напряжение, из-за чего изменяется толщина пьезоэлемента. Изменение линейного размера столбика пьезоэлементов через оправку 14, измерительные пьезоэлементы 16, наконечник 15 передается на деталь станка, на которую требуется подать силовое воздействие. Величину статического усилия контролируют с помощью тензодатчиков 18, наклеенных на деформирующуюся часть основания 11.

На фиг.4 представлена блок-схема двухканального спектроанализатора. При случайном и импульсном возбуждении частотные характеристики получают с помощью спектрального анализа сложных сигналов, основу которого составляет быстрое преобразование Фурье. Принципы спектрального анализа рассмотрены (фиг.4) на примере двухканального анализатора, выполняющего быстрое преобразование Фурье. Анализатор можно применять в качестве "черного ящика", измеряющего сигналы возбуждения и реакций и определяющего частотные характеристики на основе этих измерений. Поступающие на входы анализатора аналоговые сигналы фильтруют, отбирают и преобразуют с помощью аналого-цифрового преобразователя в цифровую форму для получения серий цифровых данных, называемых реализациями. Эти реализации представляют временную историю сигналов на протяжении соответствующих временных интервалов. Скоростью выборки и продолжительностью реализации определяют частотный диапазон и разрешающую способность при анализе.

На фиг.5 представлены этапы преобразования сигнала и спектров в спектроанализаторе. Зарегистрированные реализации могут быть умножены на весовую функцию. Тем самым проводится сужение данных в начале и конце реализации, что делает их более удобными для блочного анализа. Взвешенные реализации преобразуются в частотную область в виде комплексных спектров с помощью дискретного преобразования Фурье.

Оценочная функция W1, равная отношению взаимного спектра реакции и силы к собственному спектру силы, используется для минимизации шума на выходе системы; случайный шум на выходе удаляется в процессе усреднения взаимного спектра. При увеличении числа усреднений W1 стремится к истинной частотной характеристике W(ω).

Оценочная функция W2, равная

где Gyy(ω) передаточная функция по перемещению, GyF(ω) передаточная функция по перемещению и передаваемому усилию при лезвийной обработке, используется для минимизации влияния шума на входе, поскольку он удаляется из взаимного спектра в процессе усреднения.

При увеличении числа циклов усреднения W2 стремится к истинной частотной характеристике W(ω). При случайном возбуждении и исследовании резонансов лучшей оценкой частотной характеристики является W2, так как она компенсирует шум на входе и менее чувствительна к рассеянию. При исследовании антирезонансных зон лучшей оценкой частотной характеристики считается W1, так как главным в этом случае является ее малая чувствительность к шуму на выходе. Когда шум имеется на выходе и на входе, функции W1 и W2 можно считать пределами доверительного интервала для истинной частотной характеристики W(ω). Однако это не относится к нелинейным системам и к случаям с когерентными шумами на входе и выходе.

Функция когерентности дает средство для оценки степени линейности связи входных и выходных сигналов:

, где 0≤γ2(ω)≤1,

где GFF(ω) передаточная функция по передаваемому усилию при лезвийной обработке. Граничными значениями функции когерентности являются 1 при отсутствии шума и 0 при наличии чистых шумов. В качестве интерпретации функции когерентности можно сказать, что для каждой частоты она указывает степень линейной зависимости между сигналами на входе и выходе системы. Функция когерентности аналогична квадрату коэффициента корреляции, используемому в статистике. При динамических исследованиях это важное свойство функции когерентности используется для выявления целого ряда возможных ошибок.

По полученным тем или иным способом частотным характеристикам можно оценить виброустойчивость динамической системы станка. Например, при лезвийной обработке предельная ширина срезаемого слоя:

где K - коэффициент резания (удельная сила резания): - отрезок, отсекаемый годографом упругой системы станка на отрицательной части вещественной оси. Чем больше отрезок , тем меньше предельная ширина срезаемого слоя и ниже виброустойчивость динамической системы станка.


СПОСОБ ВИБРОДИАГНОСТИКИ УПРУГОЙ СИСТЕМЫ СТАНКА С ПРИМЕНЕНИЕМ ГЕНЕРАТОРА СИЛОВОГО ВОЗДЕЙСТВИЯ, ВХОДЯЩЕГО В СИСТЕМУ
СПОСОБ ВИБРОДИАГНОСТИКИ УПРУГОЙ СИСТЕМЫ СТАНКА С ПРИМЕНЕНИЕМ ГЕНЕРАТОРА СИЛОВОГО ВОЗДЕЙСТВИЯ, ВХОДЯЩЕГО В СИСТЕМУ
СПОСОБ ВИБРОДИАГНОСТИКИ УПРУГОЙ СИСТЕМЫ СТАНКА С ПРИМЕНЕНИЕМ ГЕНЕРАТОРА СИЛОВОГО ВОЗДЕЙСТВИЯ, ВХОДЯЩЕГО В СИСТЕМУ
СПОСОБ ВИБРОДИАГНОСТИКИ УПРУГОЙ СИСТЕМЫ СТАНКА С ПРИМЕНЕНИЕМ ГЕНЕРАТОРА СИЛОВОГО ВОЗДЕЙСТВИЯ, ВХОДЯЩЕГО В СИСТЕМУ
СПОСОБ ВИБРОДИАГНОСТИКИ УПРУГОЙ СИСТЕМЫ СТАНКА С ПРИМЕНЕНИЕМ ГЕНЕРАТОРА СИЛОВОГО ВОЗДЕЙСТВИЯ, ВХОДЯЩЕГО В СИСТЕМУ
Источник поступления информации: Роспатент

Показаны записи 771-780 из 2 438.
27.02.2016
№216.014.c0b6

Вихревой пеногенератор кочетова

Изобретение относится к технологии генерации газокапельных струй повышенной дальнобойности и может использоваться в противопожарной технике, в сельском хозяйстве при орошении земель и других отраслях, связанных с необходимостью создания дальнобойных газожидкостных струй. В устройстве для...
Тип: Изобретение
Номер охранного документа: 0002576296
Дата охранного документа: 27.02.2016
10.03.2016
№216.014.c0ff

Звукопоглотитель сферический

Изобретение относится к средствам снижения шума на промышленных и транспортных объектах. Технический результат - повышение эффективности шумоглушения на высоких частотах путем введения в штучный звукопоглотитель объемных полостей для резонаторов Гельмгольца, которые повышают эффективность на...
Тип: Изобретение
Номер охранного документа: 0002576688
Дата охранного документа: 10.03.2016
27.02.2016
№216.014.c106

Спасательное судно на воздушной подушке

Изобретение относится к спасательным средствам для ликвидации последствий чрезвычайных ситуаций, в частности к объектам спасательного судостроения, и может быть использовано в надстроечных конструкциях судов на воздушной подушке. Спасательное судно на воздушной подушке, представляющее собой...
Тип: Изобретение
Номер охранного документа: 0002576199
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c108

Спасательное судно кочетова на воздушной подушке

Изобретение относится к спасательным средствам для ликвидации последствий чрезвычайных ситуаций и может быть использовано в надстроечных конструкциях судов на воздушной подушке. Спасательное судно на воздушной подушке содержит виброизоляторы. При этом виброизоляторы нижнего подвеса каюты...
Тип: Изобретение
Номер охранного документа: 0002576220
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c120

Стенд кочетова для испытаний разрушающихся элементов конструкций зданий и сооружений

Изобретение относится к системам безопасности в чрезвычайных ситуациях и может быть использовано для взрывозащиты зданий, сооружений, а также технологического оборудования. Стенд содержит взрывную камеру, в верхнем основании которой имеется отверстие, перекрываемое легкосбрасываемым...
Тип: Изобретение
Номер охранного документа: 0002576332
Дата охранного документа: 27.02.2016
10.03.2016
№216.014.c132

Виброизолятор для фундаментов зданий, работающих в сейсмически опасных районах

Изобретение относится к средствам защиты зданий и сооружений от сейсмической нагрузки. Виброизолятор содержит корпус, основание в виде круглого подпятника, пружину и резьбовую втулку, соединяющую пружину с виброизолируемым объектом. Нижний и верхний ограничители хода пружины выполнены из...
Тип: Изобретение
Номер охранного документа: 0002576801
Дата охранного документа: 10.03.2016
27.02.2016
№216.014.c13c

Малошумное сейсмостойкое здание

Изобретение относится к промышленной акустике. Технический результат - повышение эффективности шумоглушения и сейсмостойкости здания. Это достигается тем, что в малошумном сейсмостойком производственном здании, содержащем каркас здания с основанием, несущие стены с ограждениями в виде пола и...
Тип: Изобретение
Номер охранного документа: 0002576258
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c142

Штучный звукопоглотитель кочетова со звукоотражающим элементом

Изобретение относится к промышленной акустике. Технический результат - повышение эффективности шумоглушения на высоких частотах путем введения в звукопоглощающий элемент, расположенный внутри обечаек перфорированной цилиндрической втулки звукоотражающих слоев, которые выполняют функцию...
Тип: Изобретение
Номер охранного документа: 0002576263
Дата охранного документа: 27.02.2016
10.03.2016
№216.014.c16a

Конденсационная паротурбинная электростанция кочетова

Изобретение относится к энергетике. Конденсационная паротурбинная электростанция, содержащая котельную установку, производящую пар высоких параметров, паротурбинную установку, преобразующую теплоту пара в механическую энергию, и электрические устройства, обеспечивающие выработку электроэнергии...
Тип: Изобретение
Номер охранного документа: 0002576698
Дата охранного документа: 10.03.2016
27.02.2016
№216.014.c182

Звукопоглощающая конструкция кочетова для производственного здания

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению, и может быть использовано при шумоглушении производственного оборудования методом звукопоглощения. Технический результат - повышение эффективности шумопоглощения за счет расширения частотного диапазона и...
Тип: Изобретение
Номер охранного документа: 0002576259
Дата охранного документа: 27.02.2016
Показаны записи 771-780 из 2 436.
10.03.2016
№216.014.c16a

Конденсационная паротурбинная электростанция кочетова

Изобретение относится к энергетике. Конденсационная паротурбинная электростанция, содержащая котельную установку, производящую пар высоких параметров, паротурбинную установку, преобразующую теплоту пара в механическую энергию, и электрические устройства, обеспечивающие выработку электроэнергии...
Тип: Изобретение
Номер охранного документа: 0002576698
Дата охранного документа: 10.03.2016
27.02.2016
№216.014.c182

Звукопоглощающая конструкция кочетова для производственного здания

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению, и может быть использовано при шумоглушении производственного оборудования методом звукопоглощения. Технический результат - повышение эффективности шумопоглощения за счет расширения частотного диапазона и...
Тип: Изобретение
Номер охранного документа: 0002576259
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c183

Помещение в амфибийном транспортном аппарате для размещения пострадавших в чрезвычайных ситуациях регионального масштаба

Изобретение относится к транспортным средствам на воздушной подушке. Помещение в амфибийном транспортном аппарате для эвакуации пострадавших в ЧС регионального масштаба содержит акустический потолок, к которому прикреплены штучные звукопоглотители, каждый из которых содержит звукопоглотители...
Тип: Изобретение
Номер охранного документа: 0002576207
Дата охранного документа: 27.02.2016
10.03.2016
№216.014.c186

Резонансный звукопоглотитель кочетова

Изобретение относится к средствам снижения шума на промышленных и транспортных объектах. Технический результат - повышение эффективности шумоглушения на высоких частотах путем введения в штучный звукопоглотитель объемных полостей для резонаторов Гельмгольца, которые повышают эффективность на...
Тип: Изобретение
Номер охранного документа: 0002576709
Дата охранного документа: 10.03.2016
10.02.2016
№216.014.c34e

Одиночный звукопоглотитель кочетова

Изобретение относится к технике глушения шума компрессорных станций и испытательных боксов для газотурбинных двигателей. Звукопоглотитель содержит цилиндрический каркас в виде перфорированной втулки и крышек, заполненный звукопоглотителем, а снаружи втулки расположен слой акустически прозрачной...
Тип: Изобретение
Номер охранного документа: 0002574196
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c64c

Акустический экран кочетова

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению, и может быть использовано во всех отраслях народного хозяйства в качестве средства защиты от шума. Акустический экран содержит каркас с откосами из металлических листов с расположенными в нем секциями...
Тип: Изобретение
Номер охранного документа: 0002578223
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c67a

Звукопоглощающий элемент

Изобретение относится к промышленной акустике и может быть использовано для снижения шума привода машин, облицовки производственных помещений и других звукопоглощающих конструкций. Звукопоглощающий элемент содержит гладкую и перфорированную поверхности, между которыми размещена многослойная...
Тип: Изобретение
Номер охранного документа: 0002578227
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c6bd

Амфибийный транспортный аппарат для эвакуации пострадавших в чрезвычайных ситуациях регионального масштаба

Изобретение относится к транспортным средствам на воздушной подушке. Амфибийный транспортный аппарат для эвакуации пострадавших в ЧС, содержащий фюзеляж, грузовую кабину с транспортно-такелажным оборудованием, помещение для размещения эвакуированных в ЧС, в верхней части которого размещен...
Тип: Изобретение
Номер охранного документа: 0002578450
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c6f1

Способ определения эффективности взрывозащиты и устройство для его осуществления

Изобретение относится к машиностроению и может быть использовано для взрывозащиты технологического оборудования. Систему мониторинга с обработкой полученной информации об опасной зоне используют в испытательном боксе. Устанавливают макет взрывоопасного объекта, а по его внутреннему и внешнему...
Тип: Изобретение
Номер охранного документа: 0002578219
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c807

Шумопоглощающая панель

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению. Шумопоглощающая панель содержит каркас и расположенную в его внутренней полости шумопоглощающую вставку. Каркас выполнен в виде параллелепипеда, образованного передней и задней стенками, каждая из которых...
Тип: Изобретение
Номер охранного документа: 0002578225
Дата охранного документа: 27.03.2016
+ добавить свой РИД