×
10.12.2014
216.013.0f4d

Результат интеллектуальной деятельности: СПОСОБ ВИБРОДИАГНОСТИКИ УПРУГОЙ СИСТЕМЫ СТАНКА С ПРИМЕНЕНИЕМ ГЕНЕРАТОРА СИЛОВОГО ВОЗДЕЙСТВИЯ, ВХОДЯЩЕГО В СИСТЕМУ "СТАНОК-ПРИСПОСОБЛЕНИЕ-ИНСТРУМЕНТ-ДЕТАЛЬ"

Вид РИД

Изобретение

№ охранного документа
0002535334
Дата охранного документа
10.12.2014
Аннотация: Изобретение предназначено для проведения диагностики упругой системы металлорежущих станков. Способ вибродиагностики упругой системы станка с применением генератора силового воздействия, входящего в систему «станок-приспособление-инструмент-деталь», заключающийся в том, что осуществляют на входе гармоническое, импульсное или случайное возбуждение в упругой системе станка и замеряют отклик системы на выходе, при этом для получения динамических характеристик возбуждают исследуемую конструкцию с помощью замеряемой динамической силы, отличающийся тем, что гармоническое и случайное возбуждение обеспечивают с помощью пьезокерамического контактного вибратора, а для создания импульсного силового воздействия применяют генератор, после чего сигналы подают на двухканальный спектроанализатор, в котором получают с помощью спектрального анализа сложных сигналов, основу которого составляет быстрое преобразование Фурье, частотные характеристики, а поступающие на входы анализатора аналоговые сигналы фильтруют, отбирают и преобразуют с помощью аналого-цифрового преобразователя в цифровую форму для получения серий цифровых данных - реализации, а по скорости выборки и продолжительности реализации определяют частотный диапазон и разрешающую способность при анализе исследуемых характеристик, а подаваемое на исследуемый объект усилие при точении резцом оправки измеряют с помощью пьезоэлектрического динамометра. Технически достижимым результатом является повышение точности измерений, а также расширение технологических возможностей при проведении диагностики упругой системы станка. 1 з.п. ф-лы, 5 ил.

Изобретение предназначено для проведения диагностики упругой системы металлорежущих станков.

В настоящее время промышленность выпускает стенды и приборы для контроля параметров виброакустических сигналов, по которым можно судить о динамике упругой системы станка по состоянию подшипниковых узлов [Балицкий Ф.Я., Иванова М.А., Соколова А.Г., Хомяков Е.И. Виброакустическая диагностика зарождающихся дефектов. - М.: Наука, 1984. - с. 78-83]. Сборка высокоскоростных шпиндельных узлов проводится в термостатированных помещениях, по строго определенной методике, со строгим контролем отклонений отдельных деталей от заданной геометрии, а после сборки шпиндель подвергается многочасовой обкатке на специальном стенде с регистрацией температуры в нескольких точках узла и момента сопротивления вращению.

К недостаткам известных способов следует отнести то обстоятельство, что контролируя только температуру, нельзя проникнуть в сущность процессов, протекающих в шпиндельных узлах при холостом вращении шпинделя, при работе под нагрузкой и при повышении температуры. Сегодня назрела необходимость применения новых методик и способов виброакустической диагностики, позволяющих значительно глубже по сравнению с температурой проникать в сущность процессов, протекающих в шпиндельных узлах при холостом вращении шпинделя, при работе под нагрузкой и при повышении температуры.

Наиболее близким техническим решением по технической сущности и достигаемому результату является способ диагностики шпиндельного узла по патенту РФ №2124966, кл. B23B 25/06, G01M 13/02 (прототип). Согласно прототипу диагностика реализуется следующим образом. После выбора режима испытаний станок включается, и производится обработка средней части оправки резцом. Сигналы от датчиков перемещения, расположенных в двух поперечных сечениях оправки, поступают сначала в усилительно-преобразующую аппаратуру, а потом в компьютер, где производится построение траектории оси оправки в двух сечениях. В результате движения вершина резца описывает на поверхности оправки некоторую кривую, которая формирует "геометрический образ" обработанного сечения. Программное обеспечение позволяет производить построение на экране дисплея "геометрического образа" в трехмерном пространстве, по которому определяют целый комплект параметров точности обработанной оправки, т.е. осуществляют на входе гармоническое, импульсное возбуждение в упругой системе станка и замеряют отклик системы на выходе, при этом для получения динамических характеристик возбуждают исследуемую конструкцию с помощью замеряемой динамической силы.

Недостатком известного технического решения является сравнительно невысокая точность воспроизведения геометрического образа обработанного сечения эталонной заготовки и отсутствие возможности виброакустической диагностики, позволяющей значительно глубже по сравнению с температурой оценить сущность процессов, протекающих в шпиндельных узлах при холостом вращении шпинделя, при работе под нагрузкой и при повышении температуры.

Технически достижимым результатом является повышение точности измерений, а также расширение технологических возможностей при проведении диагностики упругой системы станка.

Это достигается тем, что в способе вибродиагностики упругой системы станка с применением генератора силового воздействия, входящего в систему «станок-приспособление-инструмент-деталь», заключающемся в том, что осуществляют на входе гармоническое, импульсное или случайное возбуждение в упругой системе станка и замеряют отклик системы на выходе, при этом для получения динамических характеристик возбуждают исследуемую конструкцию с помощью замеряемой динамической силы, при этом гармоническое и случайное возбуждение обеспечивают с помощью пьезокерамического контактного вибратора, при этом переменное усилие создают пьезокерамическими кольцами, на которые подают электрическое напряжение, и изменяют толщину пьезоэлемента, а для создания импульсного силового воздействия применяют генератор, представляющий собой цилиндрическую оправку, в которой выполнен продольный паз заданной глубины, реализующей амплитуду входного импульсного воздействия, и которую жестко закрепляют в шпиндельном узле станка, а частоту входного импульсного воздействия задают скоростью вращения шпинделя, при этом шириной паза меняют продолжительность импульса, а значит, и частотный диапазон спектра возбуждения, после чего сигналы подают на двухканальный спектроанализатор, в котором получают с помощью спектрального анализа сложных сигналов, основу которого составляет быстрое преобразование Фурье, частотные характеристики, а поступающие на входы анализатора аналоговые сигналы фильтруют, отбирают и преобразуют с помощью аналого-цифрового преобразователя в цифровую форму для получения серий цифровых данных - реализации, представляющих собой временную историю сигналов на протяжении соответствующих временных интервалов, а по скорости выборки и продолжительности реализации определяют частотный диапазон и разрешающую способность при анализе исследуемых характеристик.

На фиг.1 изображена блок-схема динамического возбуждения при вибродиагностике упругих систем станков, на фиг.2 представлена схема пьезоэлектрического вибратора для контактного нагружения упругой системы, на фиг.3 изображена схема генератора импульсного воздействия, входящего в систему «станок-приспособление-инструмент-деталь», на фиг.4 изображена схема установки пьезоэлектрического динамометра, на фиг.5 изображена блок-схема двухканального спектроанализатора.

Устройство для реализации способа вибродиагностики упругой системы станка с применением генератора силового воздействия, входящего в систему «станок-приспособление-инструмент-деталь», (фиг.1) включает в себя станину 1, на которой установлен шпиндельный узел 2 и генератор 3 соответственно для получения сигналов: 4 - простейшее синусоидальное колебание, 5 - совокупность колебаний, 6 - сложение синусоидальных колебаний, 7 - возбуждение в виде импульсного сигнала. Для получения гармонического синусоидального сигнала используется вибратор, а для импульсного цилиндрическая оправка с продольным пазом. Для получения динамических характеристик необходимо возбуждать исследуемую конструкцию с помощью замеряемой динамической силы. На фиг.1 изображена блок-схема динамического возбуждения при диагностике упругих систем станков. Блок 8 реализует синусоидальный сигнал, а блок 9 служит для генерации импульсных сигналов. Блок 10 предназначен для обработки полученных сигналов динамического воздействия на упругую систему станка и их обработки, а также построения графиков. При случайном и импульсном возбуждении частотные характеристики могут быть получены с помощью спектрального анализа сложных сигналов, основу которого составляет быстрое преобразование Фурье.

Гармоническое или случайное возбуждение обеспечивают с помощью электромагнитного бесконтактного вибратора (на чертеже не показано), который располагают на станке так, чтобы развиваемая им сила совпадала с силой резания. При контактном возбуждении используют пьезоэлектрический вибратор (фиг.2), при этом переменное усилие создается пьезокерамическими кольцами 13, на которые подается электрическое напряжение через разъем 17. Из-за этого напряжения изменяется толщина пьезоэлемента. Изменение линейного размера столбика пьезоэлементов через оправку 14, измерительные пьезоэлементы 16, наконечник 15 передается на деталь станка, на которую требуется подать силовое воздействие. Величина статического усилия контролируется с помощью тензодатчиков 18, наклеенных на деформирующуюся часть основания 11. Токонепроводящий корпус 12 защищает исследователя от высокого напряжения, подаваемого на пьезоэлементы.

Для создания импульсного силового воздействия применяют генератор импульсного воздействия, входящий в систему «станок-приспособление-инструмент-деталь», схема которого представлена на фиг.3. Генератор представляет собой цилиндрическую оправку 19, в которой выполнен продольный паз 20 заданной глубины, реализующей амплитуду входного импульсного воздействия, и которая жестко закрепляется в шпиндельном узле станка. Частота входного импульсного воздействия задается скоростью вращения шпинделя. В сечении, перпендикулярном оси шпиндельного узла станка (фиг.3), паз 20 выполнен с наклонными боковыми поверхностями, лежащими в плоскостях, пересекающихся по линии, совпадающей с осью оправки 19, и в плоскости, перпендикулярной оси шпинделя, совпадающей с центром окружности. При этом поверхность, соединяющая боковые плоскости, представляет собой часть цилиндрической поверхности, эквидистантной внешней цилиндрической поверхности оправки 19.

Подаваемое на исследуемый объект усилие при точении резцом 21 оправки 19 измеряют с помощью пьезоэлектрического динамометра 22 (фиг.4), установленного между опорными поверхностями суппорта и резца.

Способ вибродиагностики упругой системы станка с применением генератора импульсного воздействия, входящего в систему «станок приспособление-инструмент-деталь», осуществляют следующим образом.

Способ вибродиагностики упругой системы станка заключается в том, что на входе осуществляют гармоническое, импульсное или случайное возбуждение в упругой системе станка и замеряют отклик системы на выходе. Для получения динамических характеристик необходимо возбуждать исследуемую конструкцию с помощью замеряемой динамической силы. Для создания импульсного силового воздействия применяют генератор, представляющий собой цилиндрическую оправку 19, в которой выполнен продольный паз 20 заданной глубины, реализующей амплитуду входного импульсного воздействия, и которая жестко закрепляется в шпиндельном узле станка. Частота входного импульсного воздействия задается скоростью вращения шпинделя (фиг.3), шириной паза 20 меняют продолжительность импульса, а значит, и частотный диапазон спектра возбуждения.

Гармоническое или случайное возбуждение обеспечивают с помощью электромагнитного бесконтактного вибратора (фиг.2), при этом переменное усилие создают пьезокерамическими кольцами 13, на которые подается электрическое напряжение, из-за чего изменяется толщина пьезоэлемента. Изменение линейного размера столбика пьезоэлементов через оправку 14, измерительные пьезоэлементы 16, наконечник 15 передается на деталь станка, на которую требуется подать силовое воздействие. Величину статического усилия контролируют с помощью тензодатчиков 18, наклеенных на деформирующуюся часть основания 11.

На фиг.4 представлена блок-схема двухканального спектроанализатора. При случайном и импульсном возбуждении частотные характеристики получают с помощью спектрального анализа сложных сигналов, основу которого составляет быстрое преобразование Фурье. Принципы спектрального анализа рассмотрены (фиг.4) на примере двухканального анализатора, выполняющего быстрое преобразование Фурье. Анализатор можно применять в качестве "черного ящика", измеряющего сигналы возбуждения и реакций и определяющего частотные характеристики на основе этих измерений. Поступающие на входы анализатора аналоговые сигналы фильтруют, отбирают и преобразуют с помощью аналого-цифрового преобразователя в цифровую форму для получения серий цифровых данных, называемых реализациями. Эти реализации представляют временную историю сигналов на протяжении соответствующих временных интервалов. Скоростью выборки и продолжительностью реализации определяют частотный диапазон и разрешающую способность при анализе.

На фиг.5 представлены этапы преобразования сигнала и спектров в спектроанализаторе. Зарегистрированные реализации могут быть умножены на весовую функцию. Тем самым проводится сужение данных в начале и конце реализации, что делает их более удобными для блочного анализа. Взвешенные реализации преобразуются в частотную область в виде комплексных спектров с помощью дискретного преобразования Фурье.

Оценочная функция W1, равная отношению взаимного спектра реакции и силы к собственному спектру силы, используется для минимизации шума на выходе системы; случайный шум на выходе удаляется в процессе усреднения взаимного спектра. При увеличении числа усреднений W1 стремится к истинной частотной характеристике W(ω).

Оценочная функция W2, равная

где Gyy(ω) передаточная функция по перемещению, GyF(ω) передаточная функция по перемещению и передаваемому усилию при лезвийной обработке, используется для минимизации влияния шума на входе, поскольку он удаляется из взаимного спектра в процессе усреднения.

При увеличении числа циклов усреднения W2 стремится к истинной частотной характеристике W(ω). При случайном возбуждении и исследовании резонансов лучшей оценкой частотной характеристики является W2, так как она компенсирует шум на входе и менее чувствительна к рассеянию. При исследовании антирезонансных зон лучшей оценкой частотной характеристики считается W1, так как главным в этом случае является ее малая чувствительность к шуму на выходе. Когда шум имеется на выходе и на входе, функции W1 и W2 можно считать пределами доверительного интервала для истинной частотной характеристики W(ω). Однако это не относится к нелинейным системам и к случаям с когерентными шумами на входе и выходе.

Функция когерентности дает средство для оценки степени линейности связи входных и выходных сигналов:

, где 0≤γ2(ω)≤1,

где GFF(ω) передаточная функция по передаваемому усилию при лезвийной обработке. Граничными значениями функции когерентности являются 1 при отсутствии шума и 0 при наличии чистых шумов. В качестве интерпретации функции когерентности можно сказать, что для каждой частоты она указывает степень линейной зависимости между сигналами на входе и выходе системы. Функция когерентности аналогична квадрату коэффициента корреляции, используемому в статистике. При динамических исследованиях это важное свойство функции когерентности используется для выявления целого ряда возможных ошибок.

По полученным тем или иным способом частотным характеристикам можно оценить виброустойчивость динамической системы станка. Например, при лезвийной обработке предельная ширина срезаемого слоя:

где K - коэффициент резания (удельная сила резания): - отрезок, отсекаемый годографом упругой системы станка на отрицательной части вещественной оси. Чем больше отрезок , тем меньше предельная ширина срезаемого слоя и ниже виброустойчивость динамической системы станка.


СПОСОБ ВИБРОДИАГНОСТИКИ УПРУГОЙ СИСТЕМЫ СТАНКА С ПРИМЕНЕНИЕМ ГЕНЕРАТОРА СИЛОВОГО ВОЗДЕЙСТВИЯ, ВХОДЯЩЕГО В СИСТЕМУ
СПОСОБ ВИБРОДИАГНОСТИКИ УПРУГОЙ СИСТЕМЫ СТАНКА С ПРИМЕНЕНИЕМ ГЕНЕРАТОРА СИЛОВОГО ВОЗДЕЙСТВИЯ, ВХОДЯЩЕГО В СИСТЕМУ
СПОСОБ ВИБРОДИАГНОСТИКИ УПРУГОЙ СИСТЕМЫ СТАНКА С ПРИМЕНЕНИЕМ ГЕНЕРАТОРА СИЛОВОГО ВОЗДЕЙСТВИЯ, ВХОДЯЩЕГО В СИСТЕМУ
СПОСОБ ВИБРОДИАГНОСТИКИ УПРУГОЙ СИСТЕМЫ СТАНКА С ПРИМЕНЕНИЕМ ГЕНЕРАТОРА СИЛОВОГО ВОЗДЕЙСТВИЯ, ВХОДЯЩЕГО В СИСТЕМУ
СПОСОБ ВИБРОДИАГНОСТИКИ УПРУГОЙ СИСТЕМЫ СТАНКА С ПРИМЕНЕНИЕМ ГЕНЕРАТОРА СИЛОВОГО ВОЗДЕЙСТВИЯ, ВХОДЯЩЕГО В СИСТЕМУ
Источник поступления информации: Роспатент

Показаны записи 701-710 из 2 438.
20.10.2015
№216.013.83a4

Виброизолятор для фундаментов зданий, работающих в сейсмически опасных районах

Изобретение относится к средствам защиты зданий и сооружений от сейсмической нагрузки. Виброизолятор для фундаментов зданий, работающих в сейсмически опасных районах, содержит корпус, основание, упругий элемент, нижний и верхний ограничители хода упругого элемента, выполненные из эластомера, и...
Тип: Изобретение
Номер охранного документа: 0002565303
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.83a5

Защитное устройство для взрывоопасных объектов

Изобретение относится к защитным устройствам, применяющимся во взрывоопасных и радиоактивных объектах. Защитное устройство - металлический бронированной каркас с бронированной металлической обшивкой и наполнителем, который выполнен в виде дисперсной системы воздух-свинец. Свинец выполнен по...
Тип: Изобретение
Номер охранного документа: 0002565304
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.848b

Защитный костюм спасателя для работы в условиях низких температур и радиоактивного излучения

Изобретение относится к средствам индивидуальной защиты человека для проведения аварийно-спасательных и ремонтных работ в чрезвычайных условиях. Защитный костюм спасателя состоит из брюк с защитными чулками, рубахи с капюшоном, двупалых перчаток и подшлемника, причем брюки сшиты вместе с...
Тип: Изобретение
Номер охранного документа: 0002565534
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.84a7

Костюм боевой одежды спасателей, действующих в условиях горящих объектов при наличии летящих и падающих предметов разрушающегося объекта

Изобретение относится к снаряжению спасателей в сфере чрезвычайных ситуаций. Технически достижимый результат - повышение эффективности и надежности конструкции одежды спасателей, действующих в условиях горящих объектов при наличии летящих и падающих предметов разрушающегося объекта, а также при...
Тип: Изобретение
Номер охранного документа: 0002565562
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.84a8

Экипировка спасателя для работы в чрезвычайных условиях

Изобретение относится к снаряжению спасателей в сфере чрезвычайных ситуаций, в частности для экипировки спасателей при проведении аварийно-спасательных работ в условиях природных и техногенных ЧС, вызывающих разрушение объектов, а также в условиях дорожно-транспортных происшествий. Технически...
Тип: Изобретение
Номер охранного документа: 0002565563
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.84b3

Одежда спасателей для защиты от радиоактивного излучения в сейсмически-опасных зонах

Изобретение относится к средствам индивидуальной защиты спасателей при работе с радиоактивными веществами в сейсмически опасных зонах. Технически достижимый результат - повышение надежности радиационной защиты при работе спасателей в сейсмически опасных зонах. Это достигается тем, что в одежде...
Тип: Изобретение
Номер охранного документа: 0002565574
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.858c

Равночастотный упругий элемент кольцевого типа

Изобретение относится к машиностроению. Равночастотный упругий элемент содержит два упругих коаксиально расположенных кольца: внешнее и внутреннее. Кольца жестко соединены между собой посредством шести плоских упругих элементов с образованием выемок между ними. Четыре упругих элемента...
Тип: Изобретение
Номер охранного документа: 0002565791
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.858e

Упругий элемент тарельчатого типа

Изобретение относится к машиностроению. Упругий элемент тарельчатого типа содержит два оппозитно расположенных относительно вертикальной оси разделительного элемента упругих элемента. Каждый упругий элемент содержит тарельчатую упругую поверхность в виде усеченного конуса, на которой в...
Тип: Изобретение
Номер охранного документа: 0002565793
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.86d9

Вертикальный адсорбер кочетова

Изобретение откосится к оборудованию для проведения адсорбционных процессов в системе газ (пар) - адсорбент. Вертикальный адсорбер, содержащий цилиндрический корпус с коническими крышкой и днищем, в крышке смонтированы загрузочный люк, штуцер для подачи исходной смеси с распределительной...
Тип: Изобретение
Номер охранного документа: 0002566124
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.8899

Тарельчатый упругий элемент

Изобретение относится к машиностроению. Тарельчатый упругий элемент содержит каркас, в котором установлен упругий элемент. Нижняя часть каркаса состоит из основания, выполненного в виде диска с кольцевой внутренней проточкой. Упругий элемент содержит два плоских упругих соосно расположенных...
Тип: Изобретение
Номер охранного документа: 0002566572
Дата охранного документа: 27.10.2015
Показаны записи 701-710 из 2 436.
20.10.2015
№216.013.858e

Упругий элемент тарельчатого типа

Изобретение относится к машиностроению. Упругий элемент тарельчатого типа содержит два оппозитно расположенных относительно вертикальной оси разделительного элемента упругих элемента. Каждый упругий элемент содержит тарельчатую упругую поверхность в виде усеченного конуса, на которой в...
Тип: Изобретение
Номер охранного документа: 0002565793
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.86d9

Вертикальный адсорбер кочетова

Изобретение откосится к оборудованию для проведения адсорбционных процессов в системе газ (пар) - адсорбент. Вертикальный адсорбер, содержащий цилиндрический корпус с коническими крышкой и днищем, в крышке смонтированы загрузочный люк, штуцер для подачи исходной смеси с распределительной...
Тип: Изобретение
Номер охранного документа: 0002566124
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.8899

Тарельчатый упругий элемент

Изобретение относится к машиностроению. Тарельчатый упругий элемент содержит каркас, в котором установлен упругий элемент. Нижняя часть каркаса состоит из основания, выполненного в виде диска с кольцевой внутренней проточкой. Упругий элемент содержит два плоских упругих соосно расположенных...
Тип: Изобретение
Номер охранного документа: 0002566572
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.889a

Установка для исследования взрывозащитных мембран

Изобретение относится к машиностроению. Установка содержит взрывной сосуд, в котором производится взрыв горючей смеси. Узел крепления мембраны установлен в гнезде взрывного сосуда. В торцевой части сосуда, закрытой предохранительным экраном, имеется механический индикатор давления с тумблером...
Тип: Изобретение
Номер охранного документа: 0002566573
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.889b

Упругий элемент тарельчатого типа

Изобретение относится к машиностроению. Упругий элемент тарельчатого типа содержит два оппозитно расположенных относительно вертикальной оси разделительного элемента упругих элемента. Каждый упругий элемент содержит тарельчатую упругую поверхность в виде усеченного конуса, на которой в...
Тип: Изобретение
Номер охранного документа: 0002566574
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.889c

Упругий элемент кочетова тарельчатого типа

Изобретение относится к машиностроению. Упругий элемент тарельчатого типа содержит два оппозитно расположенных относительно вертикальной оси разделительного элемента упругих элемента. Каждый упругий элемент содержит тарельчатую упругую поверхность в виде усеченного конуса, на которой в...
Тип: Изобретение
Номер охранного документа: 0002566575
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8abd

Быстросборная мойка для проведения дезинфекции в полевых условиях

Изобретение относится к устройствам для проведения мойки и обеззараживания техники в полевых условиях. Быстросборная мойка содержит три гидравлически связанные между собой моечные рамки, каждая из которых выполнена в виде прямоугольника и состоит из гаек и колен соединения, разборного...
Тип: Изобретение
Номер охранного документа: 0002567124
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8c98

Тонкослойный отстойник, выполненный по противоточной схеме

Изобретение относится к очистным сооружениям. Тонкослойный отстойник выполнен по противоточной схеме, содержит корпус и илосборник. Корпус состоит из двух частей. Первая часть 2 корпуса соединена с водосливом 1 и выполнена в виде пескоулавливающей камеры с пескосборником 6 в нижней части....
Тип: Изобретение
Номер охранного документа: 0002567599
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8ee7

Сейсмостойкое здание

Изобретение относится к области строительства, а именно к реконструкции, восстановлению или возведению сейсмостойких зданий и сооружений. Технический результат - усиление конструкций зданий или сооружений, снижение их уязвимости при воздействии ветровых нагрузок и землетрясений, повышение их...
Тип: Изобретение
Номер охранного документа: 0002568192
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8efa

Насадка кочетова для скруббера

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов. Насадка для скруббера содержит корпус с патрубками для запыленного и очищенного газа, оросительное устройство,...
Тип: Изобретение
Номер охранного документа: 0002568211
Дата охранного документа: 10.11.2015
+ добавить свой РИД