×
10.12.2014
216.013.0f4d

Результат интеллектуальной деятельности: СПОСОБ ВИБРОДИАГНОСТИКИ УПРУГОЙ СИСТЕМЫ СТАНКА С ПРИМЕНЕНИЕМ ГЕНЕРАТОРА СИЛОВОГО ВОЗДЕЙСТВИЯ, ВХОДЯЩЕГО В СИСТЕМУ "СТАНОК-ПРИСПОСОБЛЕНИЕ-ИНСТРУМЕНТ-ДЕТАЛЬ"

Вид РИД

Изобретение

№ охранного документа
0002535334
Дата охранного документа
10.12.2014
Аннотация: Изобретение предназначено для проведения диагностики упругой системы металлорежущих станков. Способ вибродиагностики упругой системы станка с применением генератора силового воздействия, входящего в систему «станок-приспособление-инструмент-деталь», заключающийся в том, что осуществляют на входе гармоническое, импульсное или случайное возбуждение в упругой системе станка и замеряют отклик системы на выходе, при этом для получения динамических характеристик возбуждают исследуемую конструкцию с помощью замеряемой динамической силы, отличающийся тем, что гармоническое и случайное возбуждение обеспечивают с помощью пьезокерамического контактного вибратора, а для создания импульсного силового воздействия применяют генератор, после чего сигналы подают на двухканальный спектроанализатор, в котором получают с помощью спектрального анализа сложных сигналов, основу которого составляет быстрое преобразование Фурье, частотные характеристики, а поступающие на входы анализатора аналоговые сигналы фильтруют, отбирают и преобразуют с помощью аналого-цифрового преобразователя в цифровую форму для получения серий цифровых данных - реализации, а по скорости выборки и продолжительности реализации определяют частотный диапазон и разрешающую способность при анализе исследуемых характеристик, а подаваемое на исследуемый объект усилие при точении резцом оправки измеряют с помощью пьезоэлектрического динамометра. Технически достижимым результатом является повышение точности измерений, а также расширение технологических возможностей при проведении диагностики упругой системы станка. 1 з.п. ф-лы, 5 ил.

Изобретение предназначено для проведения диагностики упругой системы металлорежущих станков.

В настоящее время промышленность выпускает стенды и приборы для контроля параметров виброакустических сигналов, по которым можно судить о динамике упругой системы станка по состоянию подшипниковых узлов [Балицкий Ф.Я., Иванова М.А., Соколова А.Г., Хомяков Е.И. Виброакустическая диагностика зарождающихся дефектов. - М.: Наука, 1984. - с. 78-83]. Сборка высокоскоростных шпиндельных узлов проводится в термостатированных помещениях, по строго определенной методике, со строгим контролем отклонений отдельных деталей от заданной геометрии, а после сборки шпиндель подвергается многочасовой обкатке на специальном стенде с регистрацией температуры в нескольких точках узла и момента сопротивления вращению.

К недостаткам известных способов следует отнести то обстоятельство, что контролируя только температуру, нельзя проникнуть в сущность процессов, протекающих в шпиндельных узлах при холостом вращении шпинделя, при работе под нагрузкой и при повышении температуры. Сегодня назрела необходимость применения новых методик и способов виброакустической диагностики, позволяющих значительно глубже по сравнению с температурой проникать в сущность процессов, протекающих в шпиндельных узлах при холостом вращении шпинделя, при работе под нагрузкой и при повышении температуры.

Наиболее близким техническим решением по технической сущности и достигаемому результату является способ диагностики шпиндельного узла по патенту РФ №2124966, кл. B23B 25/06, G01M 13/02 (прототип). Согласно прототипу диагностика реализуется следующим образом. После выбора режима испытаний станок включается, и производится обработка средней части оправки резцом. Сигналы от датчиков перемещения, расположенных в двух поперечных сечениях оправки, поступают сначала в усилительно-преобразующую аппаратуру, а потом в компьютер, где производится построение траектории оси оправки в двух сечениях. В результате движения вершина резца описывает на поверхности оправки некоторую кривую, которая формирует "геометрический образ" обработанного сечения. Программное обеспечение позволяет производить построение на экране дисплея "геометрического образа" в трехмерном пространстве, по которому определяют целый комплект параметров точности обработанной оправки, т.е. осуществляют на входе гармоническое, импульсное возбуждение в упругой системе станка и замеряют отклик системы на выходе, при этом для получения динамических характеристик возбуждают исследуемую конструкцию с помощью замеряемой динамической силы.

Недостатком известного технического решения является сравнительно невысокая точность воспроизведения геометрического образа обработанного сечения эталонной заготовки и отсутствие возможности виброакустической диагностики, позволяющей значительно глубже по сравнению с температурой оценить сущность процессов, протекающих в шпиндельных узлах при холостом вращении шпинделя, при работе под нагрузкой и при повышении температуры.

Технически достижимым результатом является повышение точности измерений, а также расширение технологических возможностей при проведении диагностики упругой системы станка.

Это достигается тем, что в способе вибродиагностики упругой системы станка с применением генератора силового воздействия, входящего в систему «станок-приспособление-инструмент-деталь», заключающемся в том, что осуществляют на входе гармоническое, импульсное или случайное возбуждение в упругой системе станка и замеряют отклик системы на выходе, при этом для получения динамических характеристик возбуждают исследуемую конструкцию с помощью замеряемой динамической силы, при этом гармоническое и случайное возбуждение обеспечивают с помощью пьезокерамического контактного вибратора, при этом переменное усилие создают пьезокерамическими кольцами, на которые подают электрическое напряжение, и изменяют толщину пьезоэлемента, а для создания импульсного силового воздействия применяют генератор, представляющий собой цилиндрическую оправку, в которой выполнен продольный паз заданной глубины, реализующей амплитуду входного импульсного воздействия, и которую жестко закрепляют в шпиндельном узле станка, а частоту входного импульсного воздействия задают скоростью вращения шпинделя, при этом шириной паза меняют продолжительность импульса, а значит, и частотный диапазон спектра возбуждения, после чего сигналы подают на двухканальный спектроанализатор, в котором получают с помощью спектрального анализа сложных сигналов, основу которого составляет быстрое преобразование Фурье, частотные характеристики, а поступающие на входы анализатора аналоговые сигналы фильтруют, отбирают и преобразуют с помощью аналого-цифрового преобразователя в цифровую форму для получения серий цифровых данных - реализации, представляющих собой временную историю сигналов на протяжении соответствующих временных интервалов, а по скорости выборки и продолжительности реализации определяют частотный диапазон и разрешающую способность при анализе исследуемых характеристик.

На фиг.1 изображена блок-схема динамического возбуждения при вибродиагностике упругих систем станков, на фиг.2 представлена схема пьезоэлектрического вибратора для контактного нагружения упругой системы, на фиг.3 изображена схема генератора импульсного воздействия, входящего в систему «станок-приспособление-инструмент-деталь», на фиг.4 изображена схема установки пьезоэлектрического динамометра, на фиг.5 изображена блок-схема двухканального спектроанализатора.

Устройство для реализации способа вибродиагностики упругой системы станка с применением генератора силового воздействия, входящего в систему «станок-приспособление-инструмент-деталь», (фиг.1) включает в себя станину 1, на которой установлен шпиндельный узел 2 и генератор 3 соответственно для получения сигналов: 4 - простейшее синусоидальное колебание, 5 - совокупность колебаний, 6 - сложение синусоидальных колебаний, 7 - возбуждение в виде импульсного сигнала. Для получения гармонического синусоидального сигнала используется вибратор, а для импульсного цилиндрическая оправка с продольным пазом. Для получения динамических характеристик необходимо возбуждать исследуемую конструкцию с помощью замеряемой динамической силы. На фиг.1 изображена блок-схема динамического возбуждения при диагностике упругих систем станков. Блок 8 реализует синусоидальный сигнал, а блок 9 служит для генерации импульсных сигналов. Блок 10 предназначен для обработки полученных сигналов динамического воздействия на упругую систему станка и их обработки, а также построения графиков. При случайном и импульсном возбуждении частотные характеристики могут быть получены с помощью спектрального анализа сложных сигналов, основу которого составляет быстрое преобразование Фурье.

Гармоническое или случайное возбуждение обеспечивают с помощью электромагнитного бесконтактного вибратора (на чертеже не показано), который располагают на станке так, чтобы развиваемая им сила совпадала с силой резания. При контактном возбуждении используют пьезоэлектрический вибратор (фиг.2), при этом переменное усилие создается пьезокерамическими кольцами 13, на которые подается электрическое напряжение через разъем 17. Из-за этого напряжения изменяется толщина пьезоэлемента. Изменение линейного размера столбика пьезоэлементов через оправку 14, измерительные пьезоэлементы 16, наконечник 15 передается на деталь станка, на которую требуется подать силовое воздействие. Величина статического усилия контролируется с помощью тензодатчиков 18, наклеенных на деформирующуюся часть основания 11. Токонепроводящий корпус 12 защищает исследователя от высокого напряжения, подаваемого на пьезоэлементы.

Для создания импульсного силового воздействия применяют генератор импульсного воздействия, входящий в систему «станок-приспособление-инструмент-деталь», схема которого представлена на фиг.3. Генератор представляет собой цилиндрическую оправку 19, в которой выполнен продольный паз 20 заданной глубины, реализующей амплитуду входного импульсного воздействия, и которая жестко закрепляется в шпиндельном узле станка. Частота входного импульсного воздействия задается скоростью вращения шпинделя. В сечении, перпендикулярном оси шпиндельного узла станка (фиг.3), паз 20 выполнен с наклонными боковыми поверхностями, лежащими в плоскостях, пересекающихся по линии, совпадающей с осью оправки 19, и в плоскости, перпендикулярной оси шпинделя, совпадающей с центром окружности. При этом поверхность, соединяющая боковые плоскости, представляет собой часть цилиндрической поверхности, эквидистантной внешней цилиндрической поверхности оправки 19.

Подаваемое на исследуемый объект усилие при точении резцом 21 оправки 19 измеряют с помощью пьезоэлектрического динамометра 22 (фиг.4), установленного между опорными поверхностями суппорта и резца.

Способ вибродиагностики упругой системы станка с применением генератора импульсного воздействия, входящего в систему «станок приспособление-инструмент-деталь», осуществляют следующим образом.

Способ вибродиагностики упругой системы станка заключается в том, что на входе осуществляют гармоническое, импульсное или случайное возбуждение в упругой системе станка и замеряют отклик системы на выходе. Для получения динамических характеристик необходимо возбуждать исследуемую конструкцию с помощью замеряемой динамической силы. Для создания импульсного силового воздействия применяют генератор, представляющий собой цилиндрическую оправку 19, в которой выполнен продольный паз 20 заданной глубины, реализующей амплитуду входного импульсного воздействия, и которая жестко закрепляется в шпиндельном узле станка. Частота входного импульсного воздействия задается скоростью вращения шпинделя (фиг.3), шириной паза 20 меняют продолжительность импульса, а значит, и частотный диапазон спектра возбуждения.

Гармоническое или случайное возбуждение обеспечивают с помощью электромагнитного бесконтактного вибратора (фиг.2), при этом переменное усилие создают пьезокерамическими кольцами 13, на которые подается электрическое напряжение, из-за чего изменяется толщина пьезоэлемента. Изменение линейного размера столбика пьезоэлементов через оправку 14, измерительные пьезоэлементы 16, наконечник 15 передается на деталь станка, на которую требуется подать силовое воздействие. Величину статического усилия контролируют с помощью тензодатчиков 18, наклеенных на деформирующуюся часть основания 11.

На фиг.4 представлена блок-схема двухканального спектроанализатора. При случайном и импульсном возбуждении частотные характеристики получают с помощью спектрального анализа сложных сигналов, основу которого составляет быстрое преобразование Фурье. Принципы спектрального анализа рассмотрены (фиг.4) на примере двухканального анализатора, выполняющего быстрое преобразование Фурье. Анализатор можно применять в качестве "черного ящика", измеряющего сигналы возбуждения и реакций и определяющего частотные характеристики на основе этих измерений. Поступающие на входы анализатора аналоговые сигналы фильтруют, отбирают и преобразуют с помощью аналого-цифрового преобразователя в цифровую форму для получения серий цифровых данных, называемых реализациями. Эти реализации представляют временную историю сигналов на протяжении соответствующих временных интервалов. Скоростью выборки и продолжительностью реализации определяют частотный диапазон и разрешающую способность при анализе.

На фиг.5 представлены этапы преобразования сигнала и спектров в спектроанализаторе. Зарегистрированные реализации могут быть умножены на весовую функцию. Тем самым проводится сужение данных в начале и конце реализации, что делает их более удобными для блочного анализа. Взвешенные реализации преобразуются в частотную область в виде комплексных спектров с помощью дискретного преобразования Фурье.

Оценочная функция W1, равная отношению взаимного спектра реакции и силы к собственному спектру силы, используется для минимизации шума на выходе системы; случайный шум на выходе удаляется в процессе усреднения взаимного спектра. При увеличении числа усреднений W1 стремится к истинной частотной характеристике W(ω).

Оценочная функция W2, равная

где Gyy(ω) передаточная функция по перемещению, GyF(ω) передаточная функция по перемещению и передаваемому усилию при лезвийной обработке, используется для минимизации влияния шума на входе, поскольку он удаляется из взаимного спектра в процессе усреднения.

При увеличении числа циклов усреднения W2 стремится к истинной частотной характеристике W(ω). При случайном возбуждении и исследовании резонансов лучшей оценкой частотной характеристики является W2, так как она компенсирует шум на входе и менее чувствительна к рассеянию. При исследовании антирезонансных зон лучшей оценкой частотной характеристики считается W1, так как главным в этом случае является ее малая чувствительность к шуму на выходе. Когда шум имеется на выходе и на входе, функции W1 и W2 можно считать пределами доверительного интервала для истинной частотной характеристики W(ω). Однако это не относится к нелинейным системам и к случаям с когерентными шумами на входе и выходе.

Функция когерентности дает средство для оценки степени линейности связи входных и выходных сигналов:

, где 0≤γ2(ω)≤1,

где GFF(ω) передаточная функция по передаваемому усилию при лезвийной обработке. Граничными значениями функции когерентности являются 1 при отсутствии шума и 0 при наличии чистых шумов. В качестве интерпретации функции когерентности можно сказать, что для каждой частоты она указывает степень линейной зависимости между сигналами на входе и выходе системы. Функция когерентности аналогична квадрату коэффициента корреляции, используемому в статистике. При динамических исследованиях это важное свойство функции когерентности используется для выявления целого ряда возможных ошибок.

По полученным тем или иным способом частотным характеристикам можно оценить виброустойчивость динамической системы станка. Например, при лезвийной обработке предельная ширина срезаемого слоя:

где K - коэффициент резания (удельная сила резания): - отрезок, отсекаемый годографом упругой системы станка на отрицательной части вещественной оси. Чем больше отрезок , тем меньше предельная ширина срезаемого слоя и ниже виброустойчивость динамической системы станка.


СПОСОБ ВИБРОДИАГНОСТИКИ УПРУГОЙ СИСТЕМЫ СТАНКА С ПРИМЕНЕНИЕМ ГЕНЕРАТОРА СИЛОВОГО ВОЗДЕЙСТВИЯ, ВХОДЯЩЕГО В СИСТЕМУ
СПОСОБ ВИБРОДИАГНОСТИКИ УПРУГОЙ СИСТЕМЫ СТАНКА С ПРИМЕНЕНИЕМ ГЕНЕРАТОРА СИЛОВОГО ВОЗДЕЙСТВИЯ, ВХОДЯЩЕГО В СИСТЕМУ
СПОСОБ ВИБРОДИАГНОСТИКИ УПРУГОЙ СИСТЕМЫ СТАНКА С ПРИМЕНЕНИЕМ ГЕНЕРАТОРА СИЛОВОГО ВОЗДЕЙСТВИЯ, ВХОДЯЩЕГО В СИСТЕМУ
СПОСОБ ВИБРОДИАГНОСТИКИ УПРУГОЙ СИСТЕМЫ СТАНКА С ПРИМЕНЕНИЕМ ГЕНЕРАТОРА СИЛОВОГО ВОЗДЕЙСТВИЯ, ВХОДЯЩЕГО В СИСТЕМУ
СПОСОБ ВИБРОДИАГНОСТИКИ УПРУГОЙ СИСТЕМЫ СТАНКА С ПРИМЕНЕНИЕМ ГЕНЕРАТОРА СИЛОВОГО ВОЗДЕЙСТВИЯ, ВХОДЯЩЕГО В СИСТЕМУ
Источник поступления информации: Роспатент

Показаны записи 1 341-1 350 из 2 438.
29.12.2017
№217.015.f089

Стенд для виброакустических испытаний образцов и моделей

Изобретение относится к испытательному оборудованию. Стенд для виброакустических испытаний образцов и моделей содержит основание, на котором посредством по крайней мере трех виброизоляторов закреплена переборка, представляющая собой одномассовую колебательную систему массой и жесткостью...
Тип: Изобретение
Номер охранного документа: 0002639044
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.f173

Комбинированная форсунка кочетова для распыливания жидкостей

Изобретение относится к технике распыления жидкости и может быть использовано в противопожарной технике. Комбинированная форсунка для распыливания жидкостей содержит полый корпус с соплом и центральным сердечником. Корпус выполнен с каналом для подвода жидкости и содержит жестко связанную с ним...
Тип: Изобретение
Номер охранного документа: 0002636888
Дата охранного документа: 28.11.2017
29.12.2017
№217.015.f1e6

Виброизолирующая система кочетова с повышенным демпфированием

Изобретение относится к машиностроению. Виброизолирующая система содержит корпус, выполненный из винтовой пустотелой упругой стальной трубки. Внутри корпуса коаксиально установлена с зазором дополнительная упругая стальная трубка. В зазорах между трубками расположен фрикционный элемент,...
Тип: Изобретение
Номер охранного документа: 0002636990
Дата охранного документа: 29.11.2017
29.12.2017
№217.015.f1f0

Виброизолятор для ткацких станков

Изобретение относится к машиностроению. Виброизолятор содержит корпус и упругие элементы, взаимодействующие с объектом. Корпус выполнен в виде шарнирно-рычажного механизма, который состоит из горизонтальных рычагов и вертикальных тяг. Одним концом рычаги жестко связаны с крышками, опирающимися...
Тип: Изобретение
Номер охранного документа: 0002636834
Дата охранного документа: 28.11.2017
29.12.2017
№217.015.f224

Система виброизоляции кочетова для технологического оборудования

Изобретение относится к машиностроению. Виброизолирующая система содержит основание и стойки. Две плоские рессоры расположены по боковым сторонам станка. Один из концов каждой рессоры жестко закреплен на передней опорной поверхности станка, а другой - в стойке, расположенной на основании. Два...
Тип: Изобретение
Номер охранного документа: 0002636846
Дата охранного документа: 28.11.2017
29.12.2017
№217.015.f254

Пневматическая форсунка кочетова с двухфазным потоком распыляемой жидкости

Изобретение относится к технике распыления жидкости и может быть использовано в противопожарной технике, в сельском хозяйстве, в устройствах химической технологии и в теплоэнергетике. Технический результат - повышение эффективности мелкодисперсного распыливания жидкости. Это достигается тем,...
Тип: Изобретение
Номер охранного документа: 0002636887
Дата охранного документа: 28.11.2017
29.12.2017
№217.015.f268

Пространственный пружинный виброизолятор кочетова

Изобретение относится к машиностроению. Виброизолятор содержит основание, вертикальную тягу, упругий элемент и шарнир для соединения тяти с упругим элементом или виброизолируемым объектом. Шарнир представляет собой промежуточный опорно-регулирующий элемент крестообразной формы. Упругий элемент...
Тип: Изобретение
Номер охранного документа: 0002636845
Дата охранного документа: 28.11.2017
29.12.2017
№217.015.f271

Форсунка пневматическая

Изобретение относится к технике распыления жидкости и может быть использовано в противопожарной технике, в сельском хозяйстве, в устройствах химической технологии и в теплоэнергетике. Технический результат - повышение эффективности мелкодисперсного распыливания жидкости. Это достигается тем,...
Тип: Изобретение
Номер охранного документа: 0002636889
Дата охранного документа: 28.11.2017
29.12.2017
№217.015.f279

Пневматическая форсунка с двухфазным потоком распыляемой жидкости

Изобретение относится к технике распыления жидкости и может быть использовано в противопожарной технике. Пневматическая форсунка для распыливания жидкостей содержит полый корпус с соплом и центральным сердечником. Корпус выполнен с каналом для подвода жидкости и содержит жестко связанную с ним...
Тип: Изобретение
Номер охранного документа: 0002636914
Дата охранного документа: 28.11.2017
29.12.2017
№217.015.f299

Виброизолятор шайбовый сетчатый

Изобретение относится к машиностроению. Виброизолятор содержит основание, упругий сетчатый элемент и шайбы, взаимодействующие со втулками. Основание выполнено в виде пластины с крепежными отверстиями. Основной сетчатый упругий элемент опирается на основание и фиксируется нижней шайбой и верхней...
Тип: Изобретение
Номер охранного документа: 0002637047
Дата охранного документа: 29.11.2017
Показаны записи 1 341-1 350 из 2 436.
29.12.2017
№217.015.f378

Пружинный виброизолятор для технологического оборудования с переменной массой

Изобретение относится к машиностроению. Виброизолятор содержит основание, опорную платформу и расположенный между ними упругий элемент в виде цилиндрической равночастотной пружины. Нижний фланец пружины закреплен на упругом основании, а верхний - на опорной пластине. На опорной платформе...
Тип: Изобретение
Номер охранного документа: 0002637569
Дата охранного документа: 05.12.2017
29.12.2017
№217.015.f3a7

Способ исследования двухмассовых систем виброизоляции

Изобретение относится к испытательному оборудованию и может быть использовано для испытания систем виброизоляции. Способ заключается в том, что на основании располагают дополнительные плиты с закрепленными на них виброизолируемыми объектами, и настраивают регистрирующую аппаратуру, а на...
Тип: Изобретение
Номер охранного документа: 0002637718
Дата охранного документа: 06.12.2017
29.12.2017
№217.015.f3af

Способ исследования развития чрезвычайной ситуации на взрывоопасном объекте

Изобретение относится к химическому и общему машиностроению, в частности к системам безопасности, предотвращающим развитие чрезвычайной ситуации. Технически достижимый результат - повышение эффективности защиты технологического оборудования и людских ресурсов от аварийных ситуаций путем...
Тип: Изобретение
Номер охранного документа: 0002637640
Дата охранного документа: 05.12.2017
29.12.2017
№217.015.f4ae

Способ взрывозащиты взрывоопасных объектов

Изобретение относится к защитным устройствам, применяющимся во взрывоопасных и радиоактивных объектах, таких как легкосбрасываемые панели и кровли, противовзрывные ограждения и заслонки, клапаны избыточного давления. Технический результат - повышение надежности срабатывания взрывозащитных...
Тип: Изобретение
Номер охранного документа: 0002637669
Дата охранного документа: 06.12.2017
29.12.2017
№217.015.f4b1

Скруббер с подвижной насадкой

Изобретение относится к технике мокрого пылеулавливания. Cкруббер с подвижной насадкой содержит корпус с патрубками для запыленного и очищенного газа, оросительное устройство, нижнюю опорно-распределительную тарелку и верхнюю ограничительную тарелку, между которыми расположен слой насадка,...
Тип: Изобретение
Номер охранного документа: 0002637000
Дата охранного документа: 29.11.2017
29.12.2017
№217.015.f4b7

Стенд для исследования ударных нагрузок систем виброизоляции

Изобретение относится к испытательному оборудованию. Стенд содержит основание, на котором расположены дополнительные плиты с закрепленными на них виброизолируемыми аппаратами, и регистрирующая аппаратура, на основании установлена аппаратура летательных аппаратов, например два одинаковых...
Тип: Изобретение
Номер охранного документа: 0002637719
Дата охранного документа: 06.12.2017
29.12.2017
№217.015.f50e

Пространственный пружинный виброизолятор кочетова со встроенным демпфером

Изобретение относится к машиностроению. Виброизолятор содержит основание, вертикальную тягу, упругий элемент и шарнир для соединения тяги с упругим элементом или виброизолируемым объектом. Шарнир представляет собой промежуточный опорно-регулирующий элемент крестообразной формы. Упругий элемент...
Тип: Изобретение
Номер охранного документа: 0002637571
Дата охранного документа: 05.12.2017
29.12.2017
№217.015.f552

Звукопоглощающее акустическое ограждение

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению. Ограждение содержит профилированную и перфорированную стенки, между которыми размещен слой звукопоглощающего материала, причем одна из стенок выполнена гладкой, а звукопоглощающий материал расположен в...
Тип: Изобретение
Номер охранного документа: 0002637593
Дата охранного документа: 05.12.2017
29.12.2017
№217.015.f57d

Система виброизоляции с автоматической настройкой и поддержанием резонансных режимов колебаний вибрационной машины

Изобретение относится к вибрационной технике. Система виброизоляции содержит платформу, установленную на неподвижном основании с помощью упруговязких опор, блок управления, частотный преобразователь электроэнергии, два датчика положения дебаланса и датчик колебаний. Блок управления состоит из...
Тип: Изобретение
Номер охранного документа: 0002637578
Дата охранного документа: 05.12.2017
29.12.2017
№217.015.f5a6

Виброизолятор комбинированный с шайбовым сетчатым демпфером

Изобретение относится к машиностроению. Пружина выполнена цилиндрической винтовой и состоит из двух частей со встречно направленными концами. На опорных витках пружины выполнены опорные кольца. Первая часть пружины имеет витки прямоугольного сечения с закругленными кромками, а вторая часть...
Тип: Изобретение
Номер охранного документа: 0002637570
Дата охранного документа: 05.12.2017
+ добавить свой РИД