×
10.12.2014
216.013.0f4d

Результат интеллектуальной деятельности: СПОСОБ ВИБРОДИАГНОСТИКИ УПРУГОЙ СИСТЕМЫ СТАНКА С ПРИМЕНЕНИЕМ ГЕНЕРАТОРА СИЛОВОГО ВОЗДЕЙСТВИЯ, ВХОДЯЩЕГО В СИСТЕМУ "СТАНОК-ПРИСПОСОБЛЕНИЕ-ИНСТРУМЕНТ-ДЕТАЛЬ"

Вид РИД

Изобретение

№ охранного документа
0002535334
Дата охранного документа
10.12.2014
Аннотация: Изобретение предназначено для проведения диагностики упругой системы металлорежущих станков. Способ вибродиагностики упругой системы станка с применением генератора силового воздействия, входящего в систему «станок-приспособление-инструмент-деталь», заключающийся в том, что осуществляют на входе гармоническое, импульсное или случайное возбуждение в упругой системе станка и замеряют отклик системы на выходе, при этом для получения динамических характеристик возбуждают исследуемую конструкцию с помощью замеряемой динамической силы, отличающийся тем, что гармоническое и случайное возбуждение обеспечивают с помощью пьезокерамического контактного вибратора, а для создания импульсного силового воздействия применяют генератор, после чего сигналы подают на двухканальный спектроанализатор, в котором получают с помощью спектрального анализа сложных сигналов, основу которого составляет быстрое преобразование Фурье, частотные характеристики, а поступающие на входы анализатора аналоговые сигналы фильтруют, отбирают и преобразуют с помощью аналого-цифрового преобразователя в цифровую форму для получения серий цифровых данных - реализации, а по скорости выборки и продолжительности реализации определяют частотный диапазон и разрешающую способность при анализе исследуемых характеристик, а подаваемое на исследуемый объект усилие при точении резцом оправки измеряют с помощью пьезоэлектрического динамометра. Технически достижимым результатом является повышение точности измерений, а также расширение технологических возможностей при проведении диагностики упругой системы станка. 1 з.п. ф-лы, 5 ил.

Изобретение предназначено для проведения диагностики упругой системы металлорежущих станков.

В настоящее время промышленность выпускает стенды и приборы для контроля параметров виброакустических сигналов, по которым можно судить о динамике упругой системы станка по состоянию подшипниковых узлов [Балицкий Ф.Я., Иванова М.А., Соколова А.Г., Хомяков Е.И. Виброакустическая диагностика зарождающихся дефектов. - М.: Наука, 1984. - с. 78-83]. Сборка высокоскоростных шпиндельных узлов проводится в термостатированных помещениях, по строго определенной методике, со строгим контролем отклонений отдельных деталей от заданной геометрии, а после сборки шпиндель подвергается многочасовой обкатке на специальном стенде с регистрацией температуры в нескольких точках узла и момента сопротивления вращению.

К недостаткам известных способов следует отнести то обстоятельство, что контролируя только температуру, нельзя проникнуть в сущность процессов, протекающих в шпиндельных узлах при холостом вращении шпинделя, при работе под нагрузкой и при повышении температуры. Сегодня назрела необходимость применения новых методик и способов виброакустической диагностики, позволяющих значительно глубже по сравнению с температурой проникать в сущность процессов, протекающих в шпиндельных узлах при холостом вращении шпинделя, при работе под нагрузкой и при повышении температуры.

Наиболее близким техническим решением по технической сущности и достигаемому результату является способ диагностики шпиндельного узла по патенту РФ №2124966, кл. B23B 25/06, G01M 13/02 (прототип). Согласно прототипу диагностика реализуется следующим образом. После выбора режима испытаний станок включается, и производится обработка средней части оправки резцом. Сигналы от датчиков перемещения, расположенных в двух поперечных сечениях оправки, поступают сначала в усилительно-преобразующую аппаратуру, а потом в компьютер, где производится построение траектории оси оправки в двух сечениях. В результате движения вершина резца описывает на поверхности оправки некоторую кривую, которая формирует "геометрический образ" обработанного сечения. Программное обеспечение позволяет производить построение на экране дисплея "геометрического образа" в трехмерном пространстве, по которому определяют целый комплект параметров точности обработанной оправки, т.е. осуществляют на входе гармоническое, импульсное возбуждение в упругой системе станка и замеряют отклик системы на выходе, при этом для получения динамических характеристик возбуждают исследуемую конструкцию с помощью замеряемой динамической силы.

Недостатком известного технического решения является сравнительно невысокая точность воспроизведения геометрического образа обработанного сечения эталонной заготовки и отсутствие возможности виброакустической диагностики, позволяющей значительно глубже по сравнению с температурой оценить сущность процессов, протекающих в шпиндельных узлах при холостом вращении шпинделя, при работе под нагрузкой и при повышении температуры.

Технически достижимым результатом является повышение точности измерений, а также расширение технологических возможностей при проведении диагностики упругой системы станка.

Это достигается тем, что в способе вибродиагностики упругой системы станка с применением генератора силового воздействия, входящего в систему «станок-приспособление-инструмент-деталь», заключающемся в том, что осуществляют на входе гармоническое, импульсное или случайное возбуждение в упругой системе станка и замеряют отклик системы на выходе, при этом для получения динамических характеристик возбуждают исследуемую конструкцию с помощью замеряемой динамической силы, при этом гармоническое и случайное возбуждение обеспечивают с помощью пьезокерамического контактного вибратора, при этом переменное усилие создают пьезокерамическими кольцами, на которые подают электрическое напряжение, и изменяют толщину пьезоэлемента, а для создания импульсного силового воздействия применяют генератор, представляющий собой цилиндрическую оправку, в которой выполнен продольный паз заданной глубины, реализующей амплитуду входного импульсного воздействия, и которую жестко закрепляют в шпиндельном узле станка, а частоту входного импульсного воздействия задают скоростью вращения шпинделя, при этом шириной паза меняют продолжительность импульса, а значит, и частотный диапазон спектра возбуждения, после чего сигналы подают на двухканальный спектроанализатор, в котором получают с помощью спектрального анализа сложных сигналов, основу которого составляет быстрое преобразование Фурье, частотные характеристики, а поступающие на входы анализатора аналоговые сигналы фильтруют, отбирают и преобразуют с помощью аналого-цифрового преобразователя в цифровую форму для получения серий цифровых данных - реализации, представляющих собой временную историю сигналов на протяжении соответствующих временных интервалов, а по скорости выборки и продолжительности реализации определяют частотный диапазон и разрешающую способность при анализе исследуемых характеристик.

На фиг.1 изображена блок-схема динамического возбуждения при вибродиагностике упругих систем станков, на фиг.2 представлена схема пьезоэлектрического вибратора для контактного нагружения упругой системы, на фиг.3 изображена схема генератора импульсного воздействия, входящего в систему «станок-приспособление-инструмент-деталь», на фиг.4 изображена схема установки пьезоэлектрического динамометра, на фиг.5 изображена блок-схема двухканального спектроанализатора.

Устройство для реализации способа вибродиагностики упругой системы станка с применением генератора силового воздействия, входящего в систему «станок-приспособление-инструмент-деталь», (фиг.1) включает в себя станину 1, на которой установлен шпиндельный узел 2 и генератор 3 соответственно для получения сигналов: 4 - простейшее синусоидальное колебание, 5 - совокупность колебаний, 6 - сложение синусоидальных колебаний, 7 - возбуждение в виде импульсного сигнала. Для получения гармонического синусоидального сигнала используется вибратор, а для импульсного цилиндрическая оправка с продольным пазом. Для получения динамических характеристик необходимо возбуждать исследуемую конструкцию с помощью замеряемой динамической силы. На фиг.1 изображена блок-схема динамического возбуждения при диагностике упругих систем станков. Блок 8 реализует синусоидальный сигнал, а блок 9 служит для генерации импульсных сигналов. Блок 10 предназначен для обработки полученных сигналов динамического воздействия на упругую систему станка и их обработки, а также построения графиков. При случайном и импульсном возбуждении частотные характеристики могут быть получены с помощью спектрального анализа сложных сигналов, основу которого составляет быстрое преобразование Фурье.

Гармоническое или случайное возбуждение обеспечивают с помощью электромагнитного бесконтактного вибратора (на чертеже не показано), который располагают на станке так, чтобы развиваемая им сила совпадала с силой резания. При контактном возбуждении используют пьезоэлектрический вибратор (фиг.2), при этом переменное усилие создается пьезокерамическими кольцами 13, на которые подается электрическое напряжение через разъем 17. Из-за этого напряжения изменяется толщина пьезоэлемента. Изменение линейного размера столбика пьезоэлементов через оправку 14, измерительные пьезоэлементы 16, наконечник 15 передается на деталь станка, на которую требуется подать силовое воздействие. Величина статического усилия контролируется с помощью тензодатчиков 18, наклеенных на деформирующуюся часть основания 11. Токонепроводящий корпус 12 защищает исследователя от высокого напряжения, подаваемого на пьезоэлементы.

Для создания импульсного силового воздействия применяют генератор импульсного воздействия, входящий в систему «станок-приспособление-инструмент-деталь», схема которого представлена на фиг.3. Генератор представляет собой цилиндрическую оправку 19, в которой выполнен продольный паз 20 заданной глубины, реализующей амплитуду входного импульсного воздействия, и которая жестко закрепляется в шпиндельном узле станка. Частота входного импульсного воздействия задается скоростью вращения шпинделя. В сечении, перпендикулярном оси шпиндельного узла станка (фиг.3), паз 20 выполнен с наклонными боковыми поверхностями, лежащими в плоскостях, пересекающихся по линии, совпадающей с осью оправки 19, и в плоскости, перпендикулярной оси шпинделя, совпадающей с центром окружности. При этом поверхность, соединяющая боковые плоскости, представляет собой часть цилиндрической поверхности, эквидистантной внешней цилиндрической поверхности оправки 19.

Подаваемое на исследуемый объект усилие при точении резцом 21 оправки 19 измеряют с помощью пьезоэлектрического динамометра 22 (фиг.4), установленного между опорными поверхностями суппорта и резца.

Способ вибродиагностики упругой системы станка с применением генератора импульсного воздействия, входящего в систему «станок приспособление-инструмент-деталь», осуществляют следующим образом.

Способ вибродиагностики упругой системы станка заключается в том, что на входе осуществляют гармоническое, импульсное или случайное возбуждение в упругой системе станка и замеряют отклик системы на выходе. Для получения динамических характеристик необходимо возбуждать исследуемую конструкцию с помощью замеряемой динамической силы. Для создания импульсного силового воздействия применяют генератор, представляющий собой цилиндрическую оправку 19, в которой выполнен продольный паз 20 заданной глубины, реализующей амплитуду входного импульсного воздействия, и которая жестко закрепляется в шпиндельном узле станка. Частота входного импульсного воздействия задается скоростью вращения шпинделя (фиг.3), шириной паза 20 меняют продолжительность импульса, а значит, и частотный диапазон спектра возбуждения.

Гармоническое или случайное возбуждение обеспечивают с помощью электромагнитного бесконтактного вибратора (фиг.2), при этом переменное усилие создают пьезокерамическими кольцами 13, на которые подается электрическое напряжение, из-за чего изменяется толщина пьезоэлемента. Изменение линейного размера столбика пьезоэлементов через оправку 14, измерительные пьезоэлементы 16, наконечник 15 передается на деталь станка, на которую требуется подать силовое воздействие. Величину статического усилия контролируют с помощью тензодатчиков 18, наклеенных на деформирующуюся часть основания 11.

На фиг.4 представлена блок-схема двухканального спектроанализатора. При случайном и импульсном возбуждении частотные характеристики получают с помощью спектрального анализа сложных сигналов, основу которого составляет быстрое преобразование Фурье. Принципы спектрального анализа рассмотрены (фиг.4) на примере двухканального анализатора, выполняющего быстрое преобразование Фурье. Анализатор можно применять в качестве "черного ящика", измеряющего сигналы возбуждения и реакций и определяющего частотные характеристики на основе этих измерений. Поступающие на входы анализатора аналоговые сигналы фильтруют, отбирают и преобразуют с помощью аналого-цифрового преобразователя в цифровую форму для получения серий цифровых данных, называемых реализациями. Эти реализации представляют временную историю сигналов на протяжении соответствующих временных интервалов. Скоростью выборки и продолжительностью реализации определяют частотный диапазон и разрешающую способность при анализе.

На фиг.5 представлены этапы преобразования сигнала и спектров в спектроанализаторе. Зарегистрированные реализации могут быть умножены на весовую функцию. Тем самым проводится сужение данных в начале и конце реализации, что делает их более удобными для блочного анализа. Взвешенные реализации преобразуются в частотную область в виде комплексных спектров с помощью дискретного преобразования Фурье.

Оценочная функция W1, равная отношению взаимного спектра реакции и силы к собственному спектру силы, используется для минимизации шума на выходе системы; случайный шум на выходе удаляется в процессе усреднения взаимного спектра. При увеличении числа усреднений W1 стремится к истинной частотной характеристике W(ω).

Оценочная функция W2, равная

где Gyy(ω) передаточная функция по перемещению, GyF(ω) передаточная функция по перемещению и передаваемому усилию при лезвийной обработке, используется для минимизации влияния шума на входе, поскольку он удаляется из взаимного спектра в процессе усреднения.

При увеличении числа циклов усреднения W2 стремится к истинной частотной характеристике W(ω). При случайном возбуждении и исследовании резонансов лучшей оценкой частотной характеристики является W2, так как она компенсирует шум на входе и менее чувствительна к рассеянию. При исследовании антирезонансных зон лучшей оценкой частотной характеристики считается W1, так как главным в этом случае является ее малая чувствительность к шуму на выходе. Когда шум имеется на выходе и на входе, функции W1 и W2 можно считать пределами доверительного интервала для истинной частотной характеристики W(ω). Однако это не относится к нелинейным системам и к случаям с когерентными шумами на входе и выходе.

Функция когерентности дает средство для оценки степени линейности связи входных и выходных сигналов:

, где 0≤γ2(ω)≤1,

где GFF(ω) передаточная функция по передаваемому усилию при лезвийной обработке. Граничными значениями функции когерентности являются 1 при отсутствии шума и 0 при наличии чистых шумов. В качестве интерпретации функции когерентности можно сказать, что для каждой частоты она указывает степень линейной зависимости между сигналами на входе и выходе системы. Функция когерентности аналогична квадрату коэффициента корреляции, используемому в статистике. При динамических исследованиях это важное свойство функции когерентности используется для выявления целого ряда возможных ошибок.

По полученным тем или иным способом частотным характеристикам можно оценить виброустойчивость динамической системы станка. Например, при лезвийной обработке предельная ширина срезаемого слоя:

где K - коэффициент резания (удельная сила резания): - отрезок, отсекаемый годографом упругой системы станка на отрицательной части вещественной оси. Чем больше отрезок , тем меньше предельная ширина срезаемого слоя и ниже виброустойчивость динамической системы станка.


СПОСОБ ВИБРОДИАГНОСТИКИ УПРУГОЙ СИСТЕМЫ СТАНКА С ПРИМЕНЕНИЕМ ГЕНЕРАТОРА СИЛОВОГО ВОЗДЕЙСТВИЯ, ВХОДЯЩЕГО В СИСТЕМУ
СПОСОБ ВИБРОДИАГНОСТИКИ УПРУГОЙ СИСТЕМЫ СТАНКА С ПРИМЕНЕНИЕМ ГЕНЕРАТОРА СИЛОВОГО ВОЗДЕЙСТВИЯ, ВХОДЯЩЕГО В СИСТЕМУ
СПОСОБ ВИБРОДИАГНОСТИКИ УПРУГОЙ СИСТЕМЫ СТАНКА С ПРИМЕНЕНИЕМ ГЕНЕРАТОРА СИЛОВОГО ВОЗДЕЙСТВИЯ, ВХОДЯЩЕГО В СИСТЕМУ
СПОСОБ ВИБРОДИАГНОСТИКИ УПРУГОЙ СИСТЕМЫ СТАНКА С ПРИМЕНЕНИЕМ ГЕНЕРАТОРА СИЛОВОГО ВОЗДЕЙСТВИЯ, ВХОДЯЩЕГО В СИСТЕМУ
СПОСОБ ВИБРОДИАГНОСТИКИ УПРУГОЙ СИСТЕМЫ СТАНКА С ПРИМЕНЕНИЕМ ГЕНЕРАТОРА СИЛОВОГО ВОЗДЕЙСТВИЯ, ВХОДЯЩЕГО В СИСТЕМУ
Источник поступления информации: Роспатент

Показаны записи 1 041-1 050 из 2 438.
25.08.2017
№217.015.9d64

Виброизолятор симметричный шайбовый сетчатый кочетова

Изобретение относится к машиностроению. Виброизолятор содержит демпфирующий шайбовый сетчатый пакет из упругих сетчатых элементов, взаимодействующих с основанием. Плотность сетчатой структуры внешних слоев упругих сетчатых элементов в 1,5 раза больше плотности внутренних слоев. Упругие сетчатые...
Тип: Изобретение
Номер охранного документа: 0002610728
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9d65

Вентиляторная градирня

Изобретение относится к контактным охладителям, в частности к градирням, и может быть использовано на тепловых электрических станциях для охлаждения оборотной воды. Вентиляторная градирня содержит корпус, разбрызгивающее устройство, бак для сбора жидкости и вентилятор, корпус состоит из двух...
Тип: Изобретение
Номер охранного документа: 0002610630
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.9d75

Спасательное судно на воздушной подушке

Изобретение относится к спасательным судам на воздушной подушке и касается конструкции корпусов спасательных судов. Спасательное судно на воздушной подушке содержит звукопоглощающий элемент металлического штампосварного каркаса малошумной судовой каюты, в котором установлены пакеты...
Тип: Изобретение
Номер охранного документа: 0002610724
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9d92

Вихревая испарительно-сушильная камера с инертной насадкой

Изобретение относится к технике сушки растворов, плавов, суспензий и получения гранул различных веществ и может быть использовано в микробиологической, пищевой, химической и других отраслях промышленности. Вихревая испарительно-сушильная камера с инертной насадкой содержит размещенные в общем...
Тип: Изобретение
Номер охранного документа: 0002610632
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.9db1

Вихревая распылительная сушилка с инертной насадкой

Изобретение относится к распылительной сушилке дисперсных материалов в металлургической, химической, пищевой и других отраслях промышленности. Вихревая распылительная сушилка содержит сушильную камеру цилиндрической формы с хордально размещенными соплами для подачи теплоносителя, оси которых...
Тип: Изобретение
Номер охранного документа: 0002610633
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.9dbc

Комбинированная градирня с рациональной системой оборотного водоснабжения

Изобретение относится к теплоэнергетике, в частности к теплообменным аппаратам, и может быть использовано в системах оборотного водоснабжения тепловых электростанций и промышленных предприятий, где применяются башенные и/или вентиляторные градирни. Комбинированная градирня содержит корпус, в...
Тип: Изобретение
Номер охранного документа: 0002610629
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.9dbd

Быстровозводимое укрытие кочетова

Изобретение относится к технике предотвращения последствий землетрясений. Быстровозводимое укрытие содержит каркас, шлюз, места для размещения эвакуируемых, фильтровентиляционное устройство, туалет и запасы воды и продуктов питания, оно оснащено блочной быстровозводимой сейсмостойкой...
Тип: Изобретение
Номер охранного документа: 0002610817
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9e03

Распылительная сушилка кипящего слоя с инертной насадкой

Изобретение относится к технике сушки дисперсных материалов в кипящем слое и может быть применено в анилино-красочной, пищевой, фармацевтической, микробиологической, пищевой, химической и других отраслях промышленности. Распылительная сушилка кипящего слоя с инертной насадкой содержит корпус с...
Тип: Изобретение
Номер охранного документа: 0002610628
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.9e66

Глушитель шума эжекционного типа

Изобретение относится к технике глушения шума. Глушитель содержит корпус, сопло и приемную камеру, сопло выполнено коническим со срезом диаметром D и жестко соединено посредством акустически прозрачного жесткого элемента с корпусом с образованием зазора Z, причем корпус изнутри облицован...
Тип: Изобретение
Номер охранного документа: 0002605992
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.9ebe

Аэродинамический глушитель выпуска типа "клш"

Изобретение относится к средствам глушения аэродинамического шума пневматического оборудования и систем выпуска сжатого газа или воздуха. Глушитель содержит впускной патрубок и жестко связанный с ним корпус из пористого материала. Корпус содержит патрубок, выполненный в виде одной из боковых...
Тип: Изобретение
Номер охранного документа: 0002606028
Дата охранного документа: 10.01.2017
Показаны записи 1 041-1 050 из 2 436.
25.08.2017
№217.015.9fc9

Аэродинамический глушитель шума кочетовых

Изобретение относится к средствам глушения аэродинамического шума пневматического оборудования и систем выпуска сжатого газа или воздуха. Глушитель содержит впускной патрубок и жестко связанный с ним корпус из пористого материала, корпус содержит основание, выполненное в виде стакана с буртиком...
Тип: Изобретение
Номер охранного документа: 0002606031
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.9fd5

Аэродинамический глушитель выпуска

Изобретение относится к средствам глушения аэродинамического шума пневматического оборудования и систем выпуска сжатого газа или воздуха. Глушитель содержит впускной патрубок и жестко связанный с ним корпус из пористого материала, корпус содержит патрубок, выполненный в виде одной из боковых...
Тип: Изобретение
Номер охранного документа: 0002606027
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a00b

Взрывозащитная разрушающаяся конструкция ограждения зданий

Изобретение относится к защитным устройствам, применяющимся во взрывоопасных и радиоактивных объектах, таких как легкосбрасываемые и противовзрывные панели и кровли, противовзрывные экраны. Взрывозащитная разрушающаяся конструкция ограждения зданий содержит железобетонные панели размером...
Тип: Изобретение
Номер охранного документа: 0002606469
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a190

Сейсмостойкое здание

Изобретение относится к области строительства, а именно к реконструкции, восстановлению или возведению сейсмостойких зданий и сооружений. Технический результат - усиление конструкций зданий или сооружений, снижение их уязвимости при воздействии ветровых нагрузок и землетрясений, повышение их...
Тип: Изобретение
Номер охранного документа: 0002606884
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a1a5

Кольцевая конусная пружина кочетова

Изобретение относится к машиностроению. Пружина состоит из последовательно чередующихся кольцевых упругих конусных дисков большего и меньшего диаметров, размещенных между основанием и крышкой. Края дисков отогнуты в противоположные стороны по радиусу, обеспечивающему сопряжение. Каждый диск...
Тип: Изобретение
Номер охранного документа: 0002606903
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a1b8

Виброизолятор симметричный сетчатый кочетова

Изобретение относится к машиностроению. Виброизолятор содержит основание, упругие сетчатые элементы, верхнюю и нижнюю нажимные шайбы. Основание расположено в средней части виброизолятора и выполнено в виде пластины с крепежными отверстиями. Сетчатые упругие элементы жестко соединены с...
Тип: Изобретение
Номер охранного документа: 0002606906
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a1fa

Кольцевая конусная пружина

Изобретение относится к машиностроению. Пружина состоит из последовательно чередующихся кольцевых упругих конусных дисков большего и меньшего диаметров, размещенных между основанием и крышкой. Края дисков отогнуты в противоположные стороны по радиусу, обеспечивающему сопряжение. Каждый диск...
Тип: Изобретение
Номер охранного документа: 0002606904
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a205

Малошумное сейсмостойкое производственное здание кочетова

Изобретение относится к промышленной акустике. Технический результат - повышение эффективности шумоглушения и сейсмостойкости здания. Это достигается тем, что в малошумном сейсмостойком производственном здании, содержащим каркас здания с основанием, несущие стены с ограждениями в виде пола и...
Тип: Изобретение
Номер охранного документа: 0002606887
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a212

Стержень для кирпичной стеновой панели кочетова

Изобретение относится к строительству в сейсмоопасных районах зданий и сооружений. Стержень для кирпичной стеновой панели, выполненный демпфирующим, представляет собой коаксиально расположенные цилиндрические обечайки, между которыми коаксиально расположены трубчатые демпфирующие элементы из...
Тип: Изобретение
Номер охранного документа: 0002606885
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a39f

Взрывозащитный клапан кочетова

Изобретение относится к машиностроению и предназначено для взврывозащиты технологического оборудования. Взрывозащитный клапан с системой демпфирования грузового затвора содержит корпус клапана, теплоизолирующий и разрывной элементы, футерованный грузовой затвор. Подвижное соединение...
Тип: Изобретение
Номер охранного документа: 0002607447
Дата охранного документа: 10.01.2017
+ добавить свой РИД