×
10.12.2014
216.013.0ef3

Результат интеллектуальной деятельности: ИМПЛАНТИРОВАННАЯ ИОНАМИ ОЛОВА ПЛЕНКА ОКСИДА КРЕМНИЯ НА КРЕМНИЕВОЙ ПОДЛОЖКЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к материаловедению. Пленка оксида кремния на кремниевой подложке, имплантированная ионами олова, включает нанокластеры альфа-олова. Толщина пленки составляет 80÷350 нм, средняя концентрация олова находится в пределах от 2,16 до 7,1 атомных процентов, нанокластеры альфа-олова имеют радиус от 1,5 до 4 нм. Пленка имеет увеличенную интенсивность и уменьшенную ширину полосы фотолюминесценции в диапазоне 700÷1100 нм. 2 ил., 1 табл., 5 пр.
Основные результаты: Имплантированная ионами олова пленка оксида кремния на кремниевой подложке, включающая нанокластеры альфа-олова, отличающаяся тем, что толщина пленки составляет 80÷350 нм, средняя концентрация олова находится в пределах от 2,16 до 7,1 атомных процентов, нанокластеры альфа-олова имеют радиус от 1,5 до 4 нм.

Изобретение относится к материаловедению, к пленкам оксида кремния на кремниевой подложке, имплантированным ионами олова, и предназначено для разработки функциональных элементов нано- и микроэлектроники, оптоэлектроники и нанофотоники. Такие функциональные элементы могут быть использованы при создании приборов и устройств для записи, отображения и преобразования информации, например, в качестве фотосенсоров сигнальных устройств в информационных системах, в качестве элементов волоконной техники и интегральной оптики, а именно, микроминиатюрных источников света и преобразователей коротковолнового излучения в длинноволновое излучение.

Наиболее близкой к предлагаемой пленке является имплантированная ионами олова пленка оксида кремния на кремниевой подложке, имеющая толщину 500 нм и содержащая нанокластеры альфа-олова со средним радиусом не более 5 нм [Поверхность, рентгеновские, синхротронные и нейтронные исследования, 2012, №8, с.44-49].

Недостатком материала-прототипа является пониженная интенсивность фотолюминесценции и уширенная полоса спектра фотолюминесценции в диапазоне 700÷1100 нм.

Задачей изобретения является увеличение интенсивности фотолюминесценции в диапазоне 700÷1100 нм и уменьшение ширины полосы спектра фотолюминесценции в этом диапазоне.

Для достижения указанной задачи имплантированная ионами олова пленка оксида кремния на кремниевой подложке, включающая нанокластеры альфа-олова, отличается тем, что толщина пленки находится в пределах 80÷350 нм, средняя концентрация олова находится в пределах от 2,16 до 7,1 атомных процентов, нанокластеры альфа-олова имеют радиус от 1,5 до 4 нм.

Техническим результатом при использовании предложенной пленки как наноструктурированного материала является увеличение интенсивности фотолюминесценции в полосе свечения 700÷1100 нм (1,13÷1,77 эВ) в четыре раза и сужение ширины полосы фотолюминесценции в 1,24÷1,45 раза. Это обеспечивается наличием в предложенной пленке указанной выше совокупности параметров: толщины пленки, средней концентрации в ней олова и размеров нанокластеров альфа-олова. При этом нанокластеры альфа-олова с радиусом от 1,5 до 4 нм проявляют свойства квантовых точек с эффектами квантового ограничения, обусловливающими вариативность и достижение требуемых электронно-оптических свойств наноструктурированного материала.

При выходе вышеуказанных параметров предложенного материала (толщина пленки, средняя концентрация олова и средний радиус нанокластеров альфа-олова) за пределы, указанные в формуле изобретения, не обеспечиваются увеличение интенсивности фотолюминесценции и сужение ширины полосы фотолюминесценции в диапазоне 700÷1100 нм. Это обусловлено следующими причинами.

Если размеры нанокластеров альфа-олова менее 1,5 нм, происходит деградация структуры материала и ухудшение люминесцентных свойств предложенного материала вследствие увеличения количества структурных дефектов, являющихся центрами тушения люминесценции. Снижается интенсивность фотолюминесценции, расширяется ее полоса.

При размерах нанокластеров альфа-олова более 4 нм полоса свечения сдвигается в низкоэнергетическую область, уменьшается интенсивность свечения, расширяется полоса фотолюминесценции. Кроме того, усложняется технология получения предложенного материала, требуется использование ионного источника с повышенной энергией и увеличение времени имплантации, что экономически нецелесообразно.

Если средняя концентрация олова меньше 2,16 атомных процентов, снижается интенсивность фотолюминесценции, требуется более длительная термообработка для получения кластеров размерами 1,5÷4 нм.

При средней концентрации олова более 8 атомных процентов начинают проявляться эффекты концентрационного тушения и увеличиваются размеры нанокластеров.

Если толщина пленки меньше 80 нм, не достигается достаточная степень воспроизводимости технического результата получаемой пленки оксида кремния вследствие повышенного влияния свойств кремниевой подложки на свойства пленки, нарушений структуры границы пленка-подложка, излишнего повышения плотности радиационных дефектов пленки (E'-центры, ODC-центры, центры на немостиковых атомах кислорода и др.). При этом не обеспечивается получение требуемых размеров нанокластеров альфа-олова и повышенной интенсивности свечения.

При толщине пленки, большей чем 350 нм, увеличивается длительность технологического процесса ионной имплантации, что приводит к увеличению размеров наночастиц альфа-олова, растет количество радиационных дефектов в структуре пленки. В результате происходит частичное тушение фотолюминесценции, расширение полосы фотолюминесценции и сдвиг ее в длинноволновую область. Расширение полосы фотолюминесценции обуславливает уменьшение интенсивности в диапазоне длин волн 700÷1100 нм.

На фигурах 1 и 2 представлены параметры предложенного материала.

Фиг.1 - распределение величины концентрации олова (вертикальная ось, атомные проценты - ат.%) по толщине пленки предложенного материала (горизонтальная ось, нм) при толщине пленки 250 нм и средней концентрации олова 2,3 ат.%.

Фиг.2 - спектр свечения предложенного материала (вертикальная ось - интенсивность фотолюминесценции, отн.ед., горизонтальная ось - длины волн излучения, нм) при толщине пленки 250 нм и средней концентрации олова 2,3 ат.%.

Приведенный на фиг.2 спектр фотолюминесценции в пределах 700÷1100 нм получен возбуждением в диапазоне 77,5÷335 нм (3.7÷16 эВ), в частности, лазером типа DTL-394QT или DTL-389QT (Россия, «Лазер-компакт») с длиной волны 263 нм [http://www.laser-compact.ru]. Регистрация проведена при помощи монохроматора ARC Spectra Pro-308i (0.3 м) и фотоумножителя R6358P (Hamamatsu).

Предложенная имплантированная ионами олова пленка оксида кремния на кремниевой подложке, содержащая нанокластеры альфа-олова, получена из готового материала, представляющего собой пленку SiO2 толщиной 80÷350 нм, термически выращенную на кремниевой подложке и обработанную следующим способом:

- пленка SiO2 облучена ионами олова Sn+ в непрерывном режиме при энергии ионов от 80 до 350 кэВ и флюенсе (5.0±0.5)×1016 ион/см-2;

- после имплантации ионов пленка отожжена при температуре 850÷950°С в течение 30÷45 минут в атмосфере сухого азота.

Имплантация ионов олова в полученную пленку SiO2 осуществлялась с помощью ионного источника, работающего в непрерывном режиме при вакууме (1,4÷2,5)×10-4 Topp. В качестве катода ионного источника использовалось гранулированное олово чистотой 99,6%, в качестве анода - образцы пленки оксида кремния на кремниевой подложке, промытые спиртом в ультразвуковой ванне. Отжиг производился в электропечи сопротивления (типа НТ 40/16).

Полученные образцы предложенного материала - имплантированной ионами олова пленки оксида кремния на кремниевой подложке - представляют собой плоскопараллельные пластины площадью 1 см2, толщиной 3 мм, с поверхностью оптического качества. Поверхностный слой каждого образца включает нанокластеры альфа-олова, подложка образца представляет монокристалл кремния с ориентацией (100).

В таблице приведены примеры получения предложенного материала (образцы №№2÷4), а также примеры получения двух других материалов (образцы №№1 и 5), состав и структура которых не соответствуют составу и структуре предложенного материала.

Спектр фотолюминесценции образца №3 предложенного материала приведен на фигуре 2. Спектры свечения остальных образцов по форме соответствуют спектру образца №2, отличаясь интенсивностями излучения и шириной полосы, указанными в таблице.

Таблица
№ п/п Толщина пленки оксида кремния(нм) Энергия ионов, флюенс (кэВ; ион/см-2) Температура и время отжига (°С; мин) Средняя концентрация олова и размеры нанокластеров альфа-олова (ат.%; нм) Интенсивность излучения на длине волны 870 нм, ширина полосы спектра на уровне 0,5 (отн.ед.; нм)
1 70 65 750 10.7 15630
5×1016 30 1 130
2 120 110 850 7.1 45450
5×1016 80 2 172
3 250 240 910 3 87650
5×1016 120 2,6 185
4 350 300 950 2,2 56110
5×1016 160 3,9 201
5 380 340 1100 2 18920
5×1016 90 5 250

Максимумы интенсивности фотолюминесценции образцов №№2÷4 предложенного материала на длине волны 870 нм находятся в пределах 45450-87650 отн.ед. Максимумы интенсивности фотолюминесценции образцов №№1 и 5 материалов, параметры которых выходят за пределы предложенного материала, равны соответственно 15630 и 18920 отн.ед., что примерно в четыре раза ниже интенсивности свечения предложенного материала. Ширина полосы спектра на уровне 0,5 образцов №№2÷4 предложенного материала находится в пределах 172÷185 отн.ед. Ширина полосы спектра образца №5 материала, параметры которого выходят за пределы предложенного материала, равна 250 отн.ед., то есть ширина полосы спектра свечения предложенного материала в 1,24÷1,45 раза меньше ширины полосы спектра материала по прототипу.

Имплантированная ионами олова пленка оксида кремния на кремниевой подложке, включающая нанокластеры альфа-олова, отличающаяся тем, что толщина пленки составляет 80÷350 нм, средняя концентрация олова находится в пределах от 2,16 до 7,1 атомных процентов, нанокластеры альфа-олова имеют радиус от 1,5 до 4 нм.
ИМПЛАНТИРОВАННАЯ ИОНАМИ ОЛОВА ПЛЕНКА ОКСИДА КРЕМНИЯ НА КРЕМНИЕВОЙ ПОДЛОЖКЕ
ИМПЛАНТИРОВАННАЯ ИОНАМИ ОЛОВА ПЛЕНКА ОКСИДА КРЕМНИЯ НА КРЕМНИЕВОЙ ПОДЛОЖКЕ
Источник поступления информации: Роспатент

Показаны записи 111-112 из 112.
10.07.2019
№219.017.b13b

Способ определения производительности плавильного агрегата

Изобретение относится к измерительной технике для контроля технологического процесса производства теплоизоляционных изделий из минеральной ваты в промышленности строительных материалов, в частности к способу для определения производительности плавильного агрегата. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002469962
Дата охранного документа: 20.12.2012
31.07.2019
№219.017.ba79

Способ определения параметров движения объектов локации в радиолокационных датчиках с частотной манипуляцией непрерывного излучения радиоволн и устройство для его реализации

Изобретение относится к области радиолокации с частотной манипуляцией непрерывного излучения (ЧМНИ) радиоволн и может быть использовано для обнаружения движущихся целей, измерения расстояния до объекта локации, скорости и направления движения. Достигаемый технический результат - расширение...
Тип: Изобретение
Номер охранного документа: 0002695799
Дата охранного документа: 29.07.2019
Показаны записи 121-130 из 160.
10.12.2015
№216.013.96da

Способ и устройство изучения плотности и/или поверхностного натяжения образца металлического сплава

Изобретение относится к технической физике, а именно к определению физико-химических параметров металлических сплавов методом геометрии «большой капли», т. е. путем измерения параметров неподвижно лежащей на подложке эллипсовидной капли образца сплава посредством фотометрической объемометрии....
Тип: Изобретение
Номер охранного документа: 0002570238
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9ac0

Ферритная коррозионностойкая сталь

Изобретение относится к области металлургии, а именно к составам ферритных коррозионно-стойких сталей, применяемых в машиностроении для изделий, к которым предъявляются требования обеспечения высокой твердости и коррозионной стойкости при достаточной пластичности. Сталь содержит углерод, хром,...
Тип: Изобретение
Номер охранного документа: 0002571241
Дата охранного документа: 20.12.2015
27.12.2015
№216.013.9dc6

Магнитотерапевтическое изделие

Группа изобретений относится к медицине, а именно к средствам профилактики и лечения заболеваний половой сферы мужчины и женщины, дисфункций. Кроме того, изобретения могут быть использованы в конструкции других магнитотерапевтических изделий (МТИ), представляющих части одежды....
Тип: Изобретение
Номер охранного документа: 0002572020
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9f58

Способ получения безобжигового зольного гравия

Изобретение относится к технологиям производства пористых заполнителей конструкционного назначения на основе техногенного сырья и рекомендуется для крупномасштабной переработки отходов теплоэнергетики в виде кислых и ультракислых зол. Способ получения безобжигового зольного гравия на основе...
Тип: Изобретение
Номер охранного документа: 0002572429
Дата охранного документа: 10.01.2016
20.01.2016
№216.013.9fac

Способ переработки отработанных нефтепродуктов

Изобретение относится к способу переработки отработанных нефтепродуктов. Способ включает процесс предварительного обезвоживания и отбензинивания сырья, термический крекинг исходного сырья в крекинг-реакторе с отделением парообразных продуктов от тяжелой фракции, конденсацию парообразных...
Тип: Изобретение
Номер охранного документа: 0002572518
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a04f

Способ получения литой цилиндрической заготовки

Предлагаемое изобретение относится к литейному производству и может быть использовано для получения заготовок типа дисков или колец из композиционных материалов. Способ включает получение расплавленного металлического материала матрицы, погружение в расплав трубки из кварцевого стекла, в...
Тип: Изобретение
Номер охранного документа: 0002572681
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a050

Способ получения многослойной полой заготовки

Изобретение относится к области металлургии и может быть использовано при получении многослойных полых заготовок. Первую полую заготовку исходных размеров подвергают прокатке на кольцепрокатном стане с получением заготовки первого перехода. Внутренний диаметр указанной заготовки увеличен до...
Тип: Изобретение
Номер охранного документа: 0002572682
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a13f

Способ получения многослойных магнитных пленок

Изобретение относится к области изготовления многослойных магнитных пленочных материалов и может быть использовано в технологии получения сред для записи информации или при производстве датчиков. Способ получения многослойных магнитных пленок включает ионно-плазменное напыление, по крайней...
Тип: Изобретение
Номер охранного документа: 0002572921
Дата охранного документа: 20.01.2016
10.02.2016
№216.014.c3fc

Способ прокатки двутавровых профилей

Изобретение относится к области сортовой прокатки двутавровых профилей, преимущественно с параллельными гранями полок, на рельсобалочных прокатных станах, снабженных компактными непрерывно-реверсивными группами-тандем универсальных и двухвалковых клетей. Полученную в черновой клети разрезную...
Тип: Изобретение
Номер охранного документа: 0002574632
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c403

Способ производства биметаллического проката на основе низкоуглеродистой стали и алюминиевого сплава

Изобретение относится к производству двух-, трех- и многослойных материалов горячей прокаткой и может быть использовано при производстве биметаллического проката на основе низкоуглеродистой стали и алюминиевых сплавов. Способ включает предварительную механическую обработку поверхности стальной...
Тип: Изобретение
Номер охранного документа: 0002574948
Дата охранного документа: 10.02.2016
+ добавить свой РИД